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Abstract. We present an extraction of the E2/M1 ratio of the ∆(1232) from experimental data applying
an effective Lagrangian model. We compare the result obtained with different nucleonic models and we
reconcile the experimental results with the Lattice QCD calculations.

PACS. 14.20.Gk Baryon resonances with S = 0 – 25.20.Lj Photoproduction reactions – 13.60.Le Meson
production

The deformation of the nucleon and its first excita-
tion, the ∆(1232), is a topic that has focused the atten-
tion of many researchers in the last years from both the
experimental and the theoretical sides [1]. The possibility
of such deformation has been studied using the E2/M1
ratio (EMR) of the γN → ∆(1232) transition [2]. The
emission (absorption) of a photon by a spin-3/2 particle
involves a magnetic dipole (M1) multipolarity and an elec-
tric quadrupole (E2) multipolarity. From experiments it is
found that E2 is small but not zero, which evokes a de-
formed nucleon picture. A deviation from zero of the EMR
is a clear indication of the existence of such deformation
and allows to quantify it. This ratio is mainly obtained in
two different ways, from nucleonic models such as quark
models or Lattice QCD, and from experimental data. Rec-
onciliation of both extractions is significant in order to un-
derstand the structure of the nucleon. This work is con-
cerned with the extraction of the intrinsic E2/M1 ratio
of the ∆(1232) from experimental data using a reaction
model.

In [3,4] we have developed a pion photoproduction
model up to 1 GeV of photon energy based upon effective
Lagrangians. The model follows closely the work of Gar-
cilazo and Moya de Guerra [5] and has similarities with
the work of Sato and Lee [6] as well as with other works
[7,8,9] based on the seminal work of Peccei [10]. The re-
action model allows us to isolate the contribution of the
∆(1232) – taking into account the high energy behaviour
of the tail of the resonance –, to calculate its EMR, and
to compare it with the values provided by nucleonic mod-
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els. In addition to Born terms (those which involve only
photons, nucleons, and pions) and vector meson exchange
terms (ρ and ω exchanges), the model includes all the
four star resonances in Particle Data Group (PDG) [19]
up to 1.7 GeV mass and up to spin-3/2:∆(1232), N(1440),
N(1520), ∆(1620), N(1650), and ∆(1700).

The model displays chiral symmetry, gauge invariance,
and crossing symmetry, as well as a consistent treatment
of the interaction with spin-3/2 particles that avoids well-
known pathologies present in previous models [3,4]. The
dressing of the resonances is considered by means of a phe-
nomenological width which takes into account decays into
one π, one η, and two π. The width fulfills crossing sym-
metry and contributes to both direct and crossed channels
of the resonances.

We assume that the final state interactions (FSI) fac-
torize (πN rescattering) and can be included through the
distortion of the πN final state wave function. The calcula-
tion of the distortion requires one to calculate higher order
pion loops or to develop a phenomenological potential FSI
model. Both approaches are far of the one we apply. The
first one is overwhelmingly complex and the second would
introduce additional model-dependencies, which are to be
avoided in the present analysis, because we are mainly
interested in the bare properties of the resonances. We
rather include FSI in a phenomenological way by adding
a phase δFSI to the electromagnetic multipoles. We de-
termine this phase so that the total phase of the electro-
magnetic multipole is identical to the one of the energy
dependent solution of SAID [11]. In this way we are able
to isolate the electromagnetic vertex and remove the FSI
effects.
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Fig. 1. M
3/2
1+ and E

3/2
1+ electromagnetic multipoles. Curve conventions: solid, real part of the multipole; dashed, imaginary part

of the multipole. Data taken from [11].

In order to assess the parameters of the model we had
to minimize the function χ2 defined by

χ2 =

m
∑

j=1

[

M
exp
j −Mth

j (λ1, . . . , λn)

∆M
exp
j

]2

, (1)

where Mexp stands for the current energy independent
extraction of the multipole analysis of SAID up to 1 GeV
for E0+, M1−, E1+, M1+, E2−, and M2− multipoles in
the three isospin channels I = 3

2 , p, n for the γp → π0p

process [11]. ∆Mexp is the error and Mth is the multi-
pole given by the model which depends on the parameters
λ1, . . . , λn, which stand for the electromagnetic coupling
constans of the resonances and the cutoff Λ which regu-
larizes the high energy behaviour of the Born terms. The
masses and the widths of the resonances have been taken
from the multichannel analysis of Vrana, Dytman, and
Lee [12] and from a speed plot calculation [4]. The EMR
we present has been obtained as an average of the results
obtained with both sets of masses and widths. Electro-
magnetic multipoles are complex quantities and we have
taken into account 763 data for the real part of the multi-
poles and the same amount for the imaginary part. Thus,
m = 1526 data points have been used in the fits.

In order to fit the data and determine the best pa-
rameters of the resonances we have written a genetic al-
gorithm combined with the E04FCF routine from NAG
libraries [13]. Although genetic algorithms are computa-
tionally more expensive than other algorithms, in a min-
imisation problem it is much less likely for them to get
stuck at local minima than for other methods, namely
gradient based minimisation methods. Thus, in a mul-
tiparameter minimisation like the one we face here it is
probably the best possibility to search for the minimum

[3,14]. In Fig. 1 we show the fits to M
3/2
1+ and E

3/2
1+ elec-

tromagnetic multipoles.

Different definitions of the EMR have been employed
in the literature. We should distinguish between the in-

trinsic or bare EMR of the ∆(1232) and the directly mea-
sured value in experiments which is often called physi-
cal or dressed EMR value [15,8,6]. The physical EMR
is obtained as the ratio between the imaginary parts of

E
3/2
1+ and M

3/2
1+ electromagnetic multipoles at the invari-

ant mass (photon energy) at which Re
[

M
3/2
1+

]

= 0 =

Re
[

E
3/2
1+

]

. Since all the reaction models are fitted to the

experimental electromagnetic multipoles, they generally
reproduce the physical EMR value within the error bars
(see table 1). We obtain

EMRphysical =
Im

[

E
3/2
1+

]

Im
[

M
3/2
1+

] × 100% = (−3.9± 1.1)%. (2)

However, this measured EMR value is not directly avail-
able from theoretical models of the nucleon and its reso-
nances. Instead, if we want to compare to models of nu-
cleonic structure, it is necessary to extract the bare EMR
value of ∆(1232) which is defined as

EMRbare =
G

∆(1232)
E

G
∆(1232)
M

× 100% = (−1.30± 0.52)%, (3)

The EMR defined in this way depends only on the
intrinsic characteristics of the ∆(1232) and can thus be
compared directly to predictions from nucleonic models. It
is not, however, directly measurable but must be inferred
(in a model dependent way) from reaction models.

The intrinsic quadrupole deformation of the ∆(1232)
is found to be EMR= (−1.30± 0.52)%, indicative of a
small oblate deformation. In Tables 1 and 2 we compare
our EMR values (bare and physical) to the ones extracted
by other authors using other models for pion photopro-
duction, as well as to predictions of nucleonic models.
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Table 1. Comparison of EMRphysical values from experiments
compared to the values obtained with reaction models.

EMRphysical Ref.

Experiments

LEGS Collaboration (−3.07± 0.26 ± 0.24)% [16]
A1 Collaboration (−2.28± 0.29 ± 0.20)% [17]
A2 Collaboration (−2.74± 0.03 ± 0.30)% [18]
Particle Data Group (−2.5± 0.5)% [19]
Reaction models

Fernández-Ramı́rez et al. (−3.9± 1.1)% [15]
Pascalutsa and Tjon (−2.4± 0.1)% [8]
Sato and Lee −2.7% [6]
Fuda and Alharbi −2.09% [20]

Table 2. Comparison of EMRbare values extracted from ex-
periments through reaction models compared to the values ob-
tained with nucleonic models.

EMRbare Ref.

Reaction models

Fernández-Ramı́rez et al. (−1.30± 0.52)% [15]
Pascalutsa and Tjon (3.8± 1.6)% [8]
Sato and Lee −1.3% [6]
Davidson et al. −1.45% [7]
Garcilazo and Moya de Guerra −1.42% [5]
Vanderhaeghen et al. −1.43% [9]
Nucleonic models

Non-relativistic quark model 0% [21]
Constituent quark model −3.5% [22]
Skyrme model (−3.5± 1.5)% [23]
Lattice QCD (Leinweber et al.) (3± 8)% [24]
Lattice QCD (Alexandrou et al.) [25]
(Q2 = 0.1 GeV2, mπ = 0) (−1.93± 0.94)%
(Q2 = 0.1 GeV2, mπ = 370 MeV) (−1.40± 0.60)%

Reconciliation of the experimental value of the E2/M1
γN → ∆(1232) transition ratio (EMRphysical) with the
one obtained using Lattice QCD (EMRbare ) within a con-
sistent and sound framework (besides our analysis only in
[8] a consistent treatment of the spin-3/2 interaction is
performed). is one of the goals of this work [15]. Our re-
sults also indicate that quark models need improvements
in order to reproduce the value obtained from experiment.

C.F.-R. work has been developed under Spanish Government
grant UAC2002-0009. This work has been supported in part
under contracts of Ministerio de Educación y Ciencia (Spain)
FIS2005-00640 and BFM2003-04147-C02-01.
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