
Applying System Families Concepts
to Requirements Engineering Process Definition�

Amador Durán1, David Benavides1, and Jesus Bermejo2

1 Department of Computer Languages and Systems
University of Seville, Reina Mercedes S/N, 41012 Seville, Spain

amador@lsi.us.es,benavides@us.es
2 Telvent

Tamarguillo, 29, 41006 Seville, Spain
jesus.bermejo@telvent.abengoa.com

Abstract. In this paper, some experiences gained during the definition of a uni-
fied, common software development process for several companies in Telvent 
are presented. Last year, Telvent made the decision of developing a unique soft-
ware development process which was flexible enough to be adapted to specific 
practices and needs of the different companies. In this paper we focus mainly on 
the experiences gained during the definition of the requirements engineering 
process, al-though many of them are also applicable to other software develop-
ment processes. One of the most interesting experiences from our point of view 
is that, al-though the definition process was started using a top-down approach 
and well-know techniques like data flow diagrams, we eventually end up 
applying requirements engineering techniques like glossaries, scenarios or 
conflict resolu-tion for the definition of the requirements engineering process 
itself. On the other hand, the need of having adaptable processes for the different 
companies in Tel-vent made us adopt a process family approach, i.e. adopting an 
approach similar to the system families development, thus defining a core 
process that could be adapted to specific needs of specific companies in a 
predefined, controlled man-ner. The experiences gained in the definition of the 
process family were applied to the definition of requirements engineering 
process for product line development, which is briefly presented in this paper.

Keywords: Requirements Engineering Process, Systems Families

1 Introduction

Definition and adoption of requirements engineering (RE) processes in software devel-
opment companies is a complex task not easy to accomplish [10,13]. This task is even
harder in a company like Telvent, composed of several companies developing a wide
spectrum of systems like information systems, real–time control systems or satellite
communication systems.

Each company has its own specific needs for developing software, depending on the
type of software, the customer characteristics, the standards to be applied, if they are
project-oriented or product-oriented, etc.
� This work is partially supported by the Eureka Σ! 2023 programme, ITEA ip00004 project

CAFÉ and by the Spanish CICYT project TIC 2000–1106–C02–01 (GEOZOCO).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132468672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PDD

Documentation

PDD Writers Rest of Stakeholders

: PDD

[draft]

PDD Revision
: Change

Request

Any change

request?

[yes]

PDD Versioning

[no]

: PDD

[versioned]

Fig. 1. PDD Iterative Workflow

In 2002, Telvent decided to adopt an ISO–12207–based [9], common software de-
velopment process that should fit the needs of all its companies thus avoiding the mainte-
nance of several internal standards and saving training costs when some employees had
to move from one company to another within Telvent. For that purpose, some research
staff from the Department of Computer Languages and Systems of the University of
Seville were hired by Telvent as consultants. In this context a process family approach
was used where a commin core process was defined. This process serve as base for
specific processes in different companies therefore it includes process variability

For the definition of the common processes, at least one person from each company,
including quality assurance people and consultants from the University of Seville, was
selected. Depending on the specific process, i.e. requirements engineering, software
design, software testing, etc., one or two persons were selected as responsible for writing
a draft version of the corresponding process description document (PDD). Then, the draft
version of the PDD was reviewed during meetings in which all stakeholders took part.
The people responsible for the PDD registered the proposed changes and then presented
an updated version of the PDD in the next meeting. This iterative process ended when
no more change proposals were submitted and the PDD was baselined, as shown in the
UML activity diagram in figure 1.

In this paper, we focus on the problems we found, the solutions we applied and the
experience we gained during the definition of the RE process. The rest of the paper is
organized as follows. In section 2, some initial problems are described. In section 3 we
present how we addressed the variability in the core RE process so it could be adapted
to different needs of the companies in Telvent. In section 4 we briefly described the
RE process for product line developed applying some of the experiences described in
previous sections. Finally in section 5 we present some conclusions.



2 Initial Problems

In this section we present some of the initial problems we identified at the beginning
of the definition process and how they were, totally or partially, solved applying RE
techniques.

2.1 Lack of a Common Vocabulary

One of the first detected problems was the lack of a common vocabulary among all
stakeholders. Depending on their backgrounds, the type of software they were used
to developing or the standards they had had to apply in previous developments, the
vocabularies of the involved people were quite different from each other. This problem
provoked that many hours in the initial meetings were wasted discussing subtle semantic
aspects about some words or phrases.

In order to solve this problem, and after some disappointing meetings, we decided
to follow Leite’s approach [11] of building a glossary (also know as lexicon) at the
beginning of the process in order to understand the language of the problem before the
problem itself. Items in the glossary should defined not only their corresponding concepts
(notions in Leite’s terminology) but also their interactions (behavioral responses in
Leite’s terminology) with other concepts, as shown in figure 2, where references to
other glossary items are underlined1. As a matter of fact, the glossary was the first
official document in which we started to work.

. . .
Change request: Request for the modification of any item previously baselined. The
author of the change request can be any member of the Software Development Group
or any other person working in the corresponding product line. The motivation
for the change request can be an error detection in the corresponding prod-
uct or an enhance suggestion. Change requests must be processed by the
Change Control Board.
. . .
Change Control Board: Group composed of senior programmers from the
Software Development Group, the Product Test Manager, the Configuration Control
Manager, and the Documentation Manager. The mission of this board is to manage
all change requests, perform the corresponding impact analysis and allocate the re-
sponsibilities for the change process.
. . .

Fig. 2. Glossary excerpt

If some stakeholders did not agree about the meaning of a specific concept even after
consulting standards glossaries like [8], we voted what we considered the meaning of
the concept and the glossary was updated democratically. In this way, we saved time and
avoid personal confrontation apart of developing a comprehensive and useful glossary
of software development terms.

1 In the HTML version of the glossary, references to other items were actually hyperlinks.



Requirements

Engineering
{PDD=SFW-340}

Fig. 3. Adopted notation for complex activities and use of tagged values

Build Use Case

Model

: Use Case Model

(Requirements Document)

[draft]

Fig. 4. Adopted notation for whole/part object flows

2.2 Lack of Common Process Notation

Another initial problem was the selection of a diagrammatic process notation that was
accepted by all stakeholders and helped them have a way of visualizing processes’
sequence of tasks and a general overview of process interactions.

Data flow diagrams (DFD) [15] were rapidly discarded because of the impossibility
of representing neither sequence of activities nor conditional flows. After discarding
DFDs, UML activity diagrams [12] were considered as a tentative notation and eventually
adopted with some adaptations from the original notation. These adaptations were the
following:

1. In order to know what PDD described the corresponding activity in an activity
diagram, we added a tagged value2 in every activity which was described in a PDD,
as shown in figure 3. The tagged value was named PDD and its value was the
corresponding code of the PDD in which the activity was described in more detail.

2. Although in the last version of UML (UML 1.4 [12]), complex activities are depicted
by adding a small activity diagram in the lower left corner of the activity icon, the
lack of a CASE tool supporting this and other changes introduced in UML 1.4 made
us adopt an easier-to-draw notation. In the adopted notation, a complex activity is
drawn using a dash line, as show in figure 3.

3. More often than not, output object flows of activities were parts of documents to be
generated during some process. In order to show this in the activity diagrams, we
adopted the notation for object flows that can be seen in figure 4, in which for part
objects, the corresponding whole object name is also included in the object flow icon
right under the name of the part object inside parentheses. In the example depicted
in figure 4, the Use Case Model object flow is part of the Requirements Document
object flow.

4. Those object flows that were shared by two or more processes, i.e. interface object
flows, were depicted adding a shadow on the lower left corner of the object flow
icon, as shown in figure 5.

2 Tagged values are one of the extensibility mechanisms of UML. Tagged values are pairs
{name=value} used to add extra information to model elements.



Activity X

Roles Activities/Tasks

: input

[state]

: input/output

[state]

condition
[yes]

Activity Y

[no]

Input/Output

: output

[state]

Role A

Default role

Role B

Fig. 5. Adopted notation for swimlanes

5. When many actors participated in an activity diagram, the use of more than three or
four different swimlanes made the diagrams very complex to be drawn and difficult
to read. On the other hand, a high number of object flows in a diagram resulted in
too much crossing lines. In order to avoid these two problems, a different use of
swimlanes was adopted.
We decided to use only three swimlanes. The first swimlane was used for including
roles, i.e. actors performing or participating in some activity in the diagram. The
second swimlane was used for activities and tasks. The third one was used for
input/output object flows. In this way, the resulting diagrams were much more easier
to be created and read (see figure 5). If a role participated in an activity, an association
between the role and the activity was added to the diagram.
In the case a role participated in all activities in a diagram, the role was considered
as a default role and associations between the default role and all the activities were
not drawn, making the diagram easier to read.
For example, in figure 5 role A participates in activities X and Y, while role B
participates only in activity Y.

2.3 Describing Process Interactions

Although the use of enhanced UML activity diagrams increased communication and
agreement among all stakeholders, having a big picture, i.e. an overview of all processes
and their interactions, was still a problem. For that purpose, one of the stakeholders took
the responsibility of developing a process map.

The process map should show all ISO–12207 high–level processes and their in-
teractions, i.e. the products they interchanged with each other, usually documents or
software.



After some weeks of work, the final result was an A0 size sheet with dozens of icons
and crossing lines which was difficult to understand. In order to make the process map
more usable, different views of it were developed. Each view was focused on only one
of the processes and their interactions, thus simplifying the initial process map.

Anyway, since the processes in the process map were the ISO–12207 high level
processes, i.e. development, operation, maintenance, management, configuration man-
agement, etc. (see [9]) for more details), it was still very difficult to know what was the
interaction between processes in specific situations.

In other words, if a new employee were hired, performing a specific task taking
into account all process interactions would make necessary to read several documents
carefully and deduced the implied interactions. Something that would probably take too
much time.

In order to avoid these problems, we consider the use of scenarios [11], i.e. descrip-
tions of interactions in a given situation. For example, what happens when a customer
applies for a change and the requirements document is not baselined yet?, what if the
requirement document is already baselined?, what are the roles implied?.

After considering different scenario description techniques (including different ap-
proaches for use case descriptions like [2] or [6]), we eventually chose Leite’s scenarios
because of their simplicity and expressiveness (see [11] for a detailed description).

We introduced some adaptations to the original notation. For example, we dropped
the exceptions section after some initial descriptions because it seemed unnecessary
for our purposes. We added a variations section in the scenario description in order to
describe possible alternatives to process enactment. We also introduced substeps into
conditional blocks in order to ease reading. As proposed by Leite, glossary items in the
scenario text are underlined and references to other scenarios appear in upper case. See
figure 6 for an example.

3 Introducing Variability in the Common RE Process

A high–level model of the RE process was developed and agreed among all stakeholders
(see figures 7 and 8). In this RE process, three main subprocesses were identified, namely
requirements development, requirements negotiation and requirements management.
The responsibilities of each process the following:

– Requirements Development: this is the most important subprocess and it is respon-
sible for the elicitation, analysis, verification and validation of requirements. It is
composed of four activities forming what we call the requirements pipeline whose
responsibilities are:

• Requirements Elicitation: this activity is responsible of eliciting requirements
from customers and users and producing a draft version of requirements. It is the
most complex one due to the needed human interaction. The usual techniques
are interviews, meetings, observation, documentation analysis, etc.

• Requirements Analysis: this activity is responsible for analyzing elicited re-
quirements in order to identify conflicts. If conflicts are identified, they must
be solved by the Requirements Negotiation subprocess. The usual technique is
requirements modelling.



Fig. 6. Scenario Example

Title: Register a new Customer Request before requirements are baselined.
Goal: Make requirements according to customers needs.
Context: The project has started and the Requirements Document is not baselined yet.
Resources: Requirements Document, Requirements Management Tool, Configuration
Management Tool.
Roles: Customer, Requirements Engineer, Project Manager, Configuration Management
Manager, Software Quality Assurance Group.

Steps:

1. A Customer informs of a new Customer Request.
2. The Requirements Engineer registers the new request using a
Requirements Management Tool.
3. The Requirements Engineer performs an Impact Analysis of the Customer Request.
4. The Requirements Engineer informs the Project Manager of the results of the
Impact Analysis of the Customer Request.
5. Depending on the Impact Analysis, the Project Manager makes the decision of accept-
ing the Customer Request, rejecting the Customer Request or Organizing a Meeting of
the Change Control Board.
6. If the Customer Request is eventually accepted, then

6.1 The Customer Request is incorporated into the Requirements Document as a new
Requirement.

6.2 The Configuration Management Manager manages the new version of the
Requirements Document.

6.3 The Software Quality Assurance Group performs Requirements Verification on the
new Requirement.
7. If the Customer Request is eventually rejected, then

7.1 The Customer Request is incorporated into the Requirements Document as a
Rejected Change Request.

7.2 The Configuration Management Manager manages the new version of the
Requirements Document.

Variations:

1. A Customer may inform of a new request by phone (to a previously specified
contact person in our company), by fax, by email (to a contact person) or personally.

2. Depending on the maturity of the Requirements Engineering process at the company
developing the project, the Requirements Management Tool can be a spreadsheet tool
like Excel or an actual Requirements Management Tool like DOORS or Requisite Pro.

3. Depending on the facilities provided by the Requirements Management Tool, the
Requirements Engineer can perform the Impact Analysis manually or using the
Requirements Management Tool. In both cases, a previous Traceability policy has to be
considered in the Software Development Plan.

4. Depending on the company policy (or the project policy), if the impact of the
Customer Request is considered to be non significant by the Requirements Engineer,
steps 4 and 5 can be skipped, so the Project Manager is not directly informed of the
Customer Request.

6.2/7.2 Depending on the Configuration Management Plan of the project,
these steps can be performed automatically without the intervention of the
Configuration Management Manager.



Requirements

Development

Roles Activities/Tasks

: Conflict

[solved]

: Requirements

Document

[draft]

Input/Output

: Conflict

[to be solved]

Requirements Engineer

Default role

Customer&User

Default Role

Requirements

Negotiation

Requirements

Management

: Requirements

Change Request

[draft]

Fig. 7. High–level Requirements Engineering Process

• Requirements Verification: this activity is responsible for verifying analyzed
requirements in order to detect defects. If defects are found, they must be solved
by the requirements writers in the Requirements Elicitation activity. The usual
techniques are checklists, formal reviews, inspections, etc.

• Requirements Validation: this activity is responsible for validating verified re-
quirements, thus confirming that they are consistent with the intentions of cus-
tomer and users. As in the Requirements Verification activity, if conflicts are
found, they must be solved by the Requirements Negotiation subprocess. The
usual technique is user interface prototyping.

– Requirements Negotiation: this subprocess is responsible for solving all conflicts
identified during the Requirements Development subprocess. The solved conflicts
are fed back into the Requirements Elicitation activity, the head of the requirements
pipeline.

– Requirements Management: this subprocess is responsible for the management of
the Requirements Engineering process. Their main responsibilities are requirements
change request management and traceability.

Apart from the variations section of process scenarios like the one in figure 6, which
allows the introduction of a certain amount of variability in the RE process, once a high–
level model of the RE process was developed and agreed among all stakeholders (see
figures 7 and 8), it was needed to include different needs from different companies in
Telvent. Following a product line approach [1], we identified different features which
could be necessary in order to tailor the core RE processes for the different companies
in Telvent.

3.1 Elicitation Techniques Variability

One of the first features identified as variants were elicitation techniques, requirements
documents templates and (single) requirements templates. Some companies were used
to apply interviews as the only elicitation technique while others used questionnaires,
group meetings or even video–conference for widely distributed projects.



Requirements Development
<<subprocess>>

Requirement

[draft]

Requirement

[verified]

Requirements

Elicitation

Requirements

Analysis

Requirements

Verification

Requirements

Validation
Defect

Requirement

[analyzed]

Conflict

[to be solved]

Conflict

[solved]

Requirement

[validated]

Fig. 8. Requirements Development Subprocess

For requirements analysis, some companies preferred structured techniques like
entity-relationship diagrams and data flow diagrams while other preferred object-
oriented techniques.

In order to express these possible variants we adopted stereotyped UML class dia-
grams similar to the notation proposed in [14]. For example, the hierarchy of elicitation
techniques in figure 9 is presented as a feature of the requirements elicitation activity.
When a company has to tailor the requirements elicitation activity, some of the elicita-
tion techniques must be chosen. In this case, an important issue about feature selection
was the selection criteria. Some heuristics were also developed in order to help project
managers chose the right feature, i.e. the right elicitation technique. Those heuristics
were based on the previous work by Davis and Hickey [4].

3.2 Roles Variability

Another configurable feature of the RE process was the roles of the different Telvent
personnel performing the RE process. Role names and responsibilities had to be adapted
to the different backgrounds of the Telvent companies3.

There was also the possibility of determining for every project if a role was played
simultaneously by another person playing another role or by a specific person playing
one role only.

For example, in figure 10 the Requirements Verifier role can be played by the person
playing the Requirements Engineer role, by the person playing the SQA role o by a
person playing the Requirements Verifier role specifically.

3.3 Documentation Variability

Another important aspect of the RE process variability was the documentation to be
delivered. Depending on the customer, sometimes the requirements document should be

3 Actually, role names are in the way to be universally adopted in all Telvent companies, although
there is an adaptative period of 2 years. Role names were one of the concepts which generated
more discussion when building the glossary of software development terms (see section 2.1).



Requirements

Elicitation

Requirements

Elicitation Technique

<<feature>>

Personal Interaction

Techniques

Non-Personal

Interaction Techniques

Interviews

Group Meetings

In Place Interaction

Video Conference Meeting

Distributed Interaction

JAD Meeting Brainstorming

Questionnaires

Video Conference

Interview

Passive

observation

Immersion

Prototypes

Requirements

Documentation

<<feature>>

Requirements

Template

<<feature>>

Documentation

Analysis

Fig. 9. Requirements Elicitation Techniques Feature Hierarchy

Requirements

Engineer

Requirements

Documentation

Manager
Requirements Change

Requests Manager

Requirements

Analyst

Requirements

Facilitator
Requirements

Verifier

SQA

Documentation

Manager

Change

Requests Manager

Contact

Person

Fig. 10. Requirements Engineering Role Hierarchy

written using IEEE–830 [7], MÉTRICA [3] (Spanish Government Methodology, similar
to SSADM) or other official standards. Keeping the same core RE process, concrete
products were tailored in order to be compliant with standards like those previously
mentioned.



The way how requirements were written, i.e. a requirements template [5], was also
considered as a possible variable feature of the RE process.

4 Definition of a RE Process for Systems Families Development

One of the most important middle–term goals of Telvent at the beginning of the definition
of common software development processes was to adopt a product line approach [1] in
some of their companies. From the experience gained in the definition of the “process
family” for RE, some results were extrapolated into an RE process family for product
line development. An overview of the new RE core process for product line develop-
ment is shown in figure 11, where key activities are highlighted and the Requirements
Development subprocess has been flattened for the sake of simplicity.

Requirement

[draft]

Requirement

[verified]

Requirements

Elicitation

Requirements

Analysis

Requirements

Verification

Requirements

Validation

Defect
Requirement

[analyzed]

Conflict

[to be solved]

Conflict

[solved]

Requirement

[validated]

Product Feature

Request

R

Requirements

Negotiation

R

R+ R

R+ R

R+ R

Requirements

Management

Reference

Requirements

R

Assets

Fig. 11. RE Process for Systems Families Development

The main difference between the single–product RE process and the product line
oriented RE process is the introduction of the Reference Requirements and the set of
reusable assets as inputs of the Requirements Elicitation, Analysis and Negotiation ac-
tivities.

In this new RE process, Requirements Elicitation is responsible for identifying new
product features, but taking into account reference requirements, so the degree of freedom
is substantially reduced.

Requirements Analysis is responsible not only for the identification of conflicts in
new requirements (delta requirements), but also for the identification of conflicts between
new requirements and reference requirements, which can be a much harder work than
for a project–oriented RE process. What is more, in order to identify conflicts, assets in
the product line must be taken into account, making the activity more complex.

On the other hand, solving conflicts, i.e. Requirements Negotiation, is now a critical
activity. Conflicts must be solved not only from a logical point of view, but also taking
into consideration economical and market issues.



5 Conclusions

The main lesson we have learned after our experience is that defining a common process
(software development process, RE process or other kind of process) for different orga-
nizations with different needs is a complex task that can be seen as a RE problem where
RE techniques can be successfully applied. From an abstract point of view, our task
was to develop a product – a RE process embedded in a system/software development
process – that must satisfy different, sometimes contradictory, stakeholders’ needs. If
we had taken the reflexive RE approach from the beginning, instead of trying to impose
a common RE process in a top–down fashion, we would have saved time and effort.

Applying the same solutions for the definition of an RE process family, we have
started the definition of a RE process family for product line development, part of which
has been briefly presented in this paper.

Another interesting lesson is that, sometimes, a product families approach can help
in requirements negotiation. If an agreement is not possible, maybe we can develop a
small product family satisfying incompatible stakeholders’ needs.

References


	1 Introduction
	2 Initial Problems
	2.1 Lack of a Common Vocabulary
	2.2 Lack of Common Process Notation
	2.3 Describing Process Interactions

	3 Introducing Variability in the Common RE Process
	3.1 Elicitation Techniques Variability
	3.2 Roles Variability
	3.3 Documentation Variability

	4 Definition of a RE Process for Systems Families Development
	5 Conclusions
	References



