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Asset Performance Evaluation with Mean-Variance
Ratio

Abstract

Bai, et al. (2011c) develop the mean-variance-ratio (MVR) statistic to test the per-

formance among assets for small samples. They provide theoretical reasoning to use

MVR and prove that our proposed statistic is uniformly most powerful unbiased. In

this paper we illustrate the superiority of our proposed test over the Sharpe ratio

(SR) test by applying both tests to analyze the performance of Commodity Trading

Advisors (CTAs). Our findings show that while the SR test concludes most of the

CTA funds being analyzed as being indistinguishable in their performance, our pro-

posed statistics show that some funds outperform the others. On the other hand,

when we apply the SR statistic on some other funds in which the recent difference

between the two funds is insignificant and even changes directions, the SR statistic

indicates that one fund is significantly outperforming another fund whereas the MVR

statistic could detect the change.

JEL classification: C12; G11

Keywords: Sharpe ratio; hypothesis testing; uniformly most powerful unbiased

test; fund management
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The pioneer work of Markowitz (1952) on the mean-variance (MV) portfolio opti-

mization procedure has been widely used in both Economics and Finance to analyze

how people make their choices concerning risky investments. The Markowitz efficient

frontier also provides the basis for many important financial economics advances, in-

cluding the Sharpe-Linter Capital Asset Pricing Model (Sharpe, 1964; Lintner, 1965)

and the well-known optimal one-fund theorem (Tobin, 1958). Originally motivated

by the MV analysis, the optimal one-fund theorem and the Sharpe-Linter Capital

Asset Pricing Model, the Sharpe ratio (SR), the ratio of the excess expected return

to its volatility or standard deviation, is one of the most commonly used statistics in

the MV framework. The SR is now widely used in many different areas in Finance

and Economics, from the evaluation of portfolio performance to market efficiency test

(see, for example, Ofek and Richardson, 2003; Agarwal and Naik, 2004).

Although the SR has been widely used with a myriad of interpretations, only a few

literary papers study its statistical properties. Jobson and Korkie (1981) first develop

a Sharpe-ratio statistic to test for the equality of two SRs, whereby the statistic is

being further modified and improved by Cadsby (1986) and Memmel (2003). On the

other hand, by invoking the standard econometric methods with several different sets

of assumptions imposing on the statistical behavior of the return series, Lo (2002)

derives the asymptotic statistical distribution for the SR estimator and shows that

confidence intervals, standard errors, and hypothesis tests can be computed for the

estimated SRs in much the same way as regression coefficients such as portfolio alphas

and betas are computed.

The SR test statistics developed by Jobson and Korkie (1981) and others are

important as they provide a formal statistical comparison for the performances among

portfolios. However, as the SR statistic possesses only the asymptotic distribution,

one could only obtain its properties for large samples, but not for small samples.

Nevertheless, it is important in finance to compare the performance of assets by

using small samples, especially before and after markets change their directions, in

which only small samples could be used to predict the assets’ future performance.

Also it is, sometimes, not so meaningful to measure SRs for too long periods as the
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means and standard deviations of the underlying assets could be empirically non-

stationary and/or possessing structural breaks. The main obstacle in developing the

SR test for small samples is that it is impossible to obtain a uniformly most powerful

unbiased (UMPU) test to check for the equality of SRs in case of small samples. To

circumvent this problem, Bai, et al. (2011c) propose to use the MV ratio (MVR)

for the comparison. They also discuss the evaluation of the performance of assets for

small samples by providing a theoretical framework and then invoking both one-sided

and two-sided UMPU MVR tests.

To demonstrate the superiority of our proposed test over the traditional SR test,

we apply both tests to analyze the performance of funds from Commodity Trading

Advisors (CTAs) which involve the trading of commodity futures, financial futures

and options on futures. There are many studies analyzing CTAs, in which some

(Elton et al. 1987) conclude that CTAs offer neither an attractive alternative to

bonds and stocks nor a profitable addition to a portfolio of bond and stocks. Whereas,

others (Brorsen and Irwin 1985) conclude that commodity funds produce favorable

and appropriate investment returns. We choose analyzing CTAs to illustrate the

theories we developed because CTAs have become very popular with many investors,

including universities; the number of universities increasingly allotting their university

endowment funds to CTAs has grown significantly (Kat 2004).

Applying the traditional SR test, we fail to reject the possibility of having any

significant difference among most of the CTA funds; thereby implying that most

of the CTA funds being analyzed are indistinguishable in their performance. This

conclusion may not necessarily be accurate as the insensitivity of the SR test is well

known due to its limitation on the analysis for small samples. Thus, we invoke our

proposed statistic, which is valid for small samples as well as large samples, to the

analysis; the conclusion drawn from our proposed test will then be meaningful. As

expected, contrary to the conclusion drawn by applying SR test, our proposed MVR

test shows that the MVRs of some CTA funds are different from the others. This

means that some CTA funds outperform other CTA funds in the market. Thus, the

test developed in our paper provides more meaningful information in the evaluation
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of the portfolios’ performance and enable investors to make wiser decisions in their

investments.

On the other hand, when we apply the SR statistic to some other funds, we find

that the statistic indicates that one fund significantly outperforms another fund even

though the difference between the two funds becomes insignificantly small or even

changes direction. This shows that the SR statistic may not be able to reveal the real

short-run performance of the funds. On the other hand, in our analysis, we find that

our proposed MVR statistic could reveal such changes. This shows the superiority of

our proposed statistic in detecting short term performance, and in return, enabling

the investors to make better decisions in their various investments. In addition, in

this paper, we show that the values of the MVR are proportional to the corresponding

investment plans in the optional MV optimization. This shows that the MVR test

not only enables investors to find out which asset is superior in performance, but also

enables investors to compute its corresponding investment plan over the asset. On the

other hand, as the SR is not proportional to the weight of the corresponding asset, an

asset with the highest Sharpe ratio does not infer that one should put highest weight

on this asset whereas our MVR does. In this sense, our proposed test is superior.

The rest of the paper is organized as follows: Section 1 begins by providing a theo-

retical framework and goes on to develop the theory for both one-sided and two-sided

MVR tests and studies its properties. In Section 2, we demonstrate the superiority

of our proposed tests over the traditional SR tests by applying both tests to analyze

the CTAs. This is then followed up by Section 3 which summarizes our conclusions

and shares our insights. Technical proofs of some propositions are provided in the

appendix.

1 The Theory

Let Xi and Yi (i = 1, 2, · · · , n) be independent excess returns drawn from the corre-

sponding normal distributions N(µ, σ2) and N(η, τ 2) with joint density p(x, y) such
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that

p(x, y) = k × exp(
µ

σ2

∑
xi − 1

2σ2

∑
x2

i +
η

τ 2

∑
yi − 1

2τ 2

∑
y2

i ) (1)

where k = (2πσ2)−n/2(2πτ 2)−n/2 exp(−nµ2

2σ2 ) exp(−nη2

2τ2 ).

To evaluate the performance of the prospects X and Y , financial practitioners and

academicians are interested in testing the hypotheses

H∗
0 :

µ

σ
≤ η

τ
versus H∗

1 :
µ

σ
>

η

τ
(2)

to compare the performance of their corresponding SRs, µ
σ

and η
τ
, the ratios of the

excess expected returns to their standard deviations.

Rejecting H∗
0 implies X to be the better investment prospect with larger SR that

X has either larger excess mean return or smaller standard deviation or both. Jobson

and Korkie (1981) and Memmel (2003) develop test statistics to test the hypotheses

in (2) for large samples but their tests are not appropriate for testing small samples as

the distribution of their test statistics is only valid asymptotically, but is not valid for

small samples. However, it will be important in finance to test the hypotheses in (2)

for small samples to provide useful investment information to investors. Furthermore,

as it is impossible to obtain any UMPU test statistic to test the inequality of the SRs

in (2) for small samples, Bai, et al. (2011c) propose to alter the hypothesis to test

the inequality of the MVRs as shown in the following:

H0 :
µ

σ2
≤ η

τ 2
versus H11 :

µ

σ2
>

η

τ 2
. (3)

They develop the UMPU test statistic to test the above hypotheses. Rejecting H0

suggests X to be the better investment prospect as X possesses either smaller variance

or bigger excess mean return or both. As, sometimes, investors do conduct the two-

sided test to compare the MVRs, to complete the theory, they also consider the
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following hypotheses in this paper:

H0 :
µ

σ2
=

η

τ 2
versus H12 :

µ

σ2
6= η

τ 2
. (4)

One may argue that SR test is scale invariant whereas the MV ratio test is not

and thus MVR test is not as good as SR test. To support the MVR test to be an

alternative reasonably good choice, before developing the test statistic, we first show

the theoretical justification for the use of the MV test statistic in the following remark

and lemma:

Remark 1 One may think that the MVR could be less favorable than the SR as the

former is not scale invariant while the latter is. However, in some financial processes,

the mean change in a short period of time is proportional to its variance change. For

example, many financial processes could be characterized by the following diffusion

process such for stock prices formulated as

dYt = µP (Yt)dt + σ(Yt)dW P
t ,

(see, Cheridito et al., 2004), where µP is an N-dimensional function, σ is an N ×N

matrix and W P
t is an N-dimensional standard Brownian motion under the objective

probability measure P . Under this model, the conditional mean of the increment dYt

given Yt is µP (Yt)dt and the covariance matrix is σ(Yt)σ
T (Yt)dt. When N = 1, the

SR will be close to 0 while the MVR will be independent of dt. Thus, when the time

period dt is small, it is better to consider the MVR rather than the SR.

The above remark lends credibility to the use of the MVR tests. To give example

to further support the use of MVR, in this paper we shed light on the preference

of the MVR based on the Markowitz MV optimization theory as follows: suppose

that there are p-branch of assets S = (s1, ..., sp)
T whose returns are denoted by

r = (r1, ..., rp)
T with mean µ = (µ1, ..., µp)

T and covariance matrix Σ = (σij). In
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addition, we suppose an investor will invest capital C on the p-branch of securities S

such that she/he wants to find out her/his optimal investment plan c = (c1, ..., cp)
T

to allocate her/his investable wealth on the p-branch of securities to obtain maximize

return subject to a given level of risk.

The above maximization problem can be formulated to the following optimization

problem:

max R = cT µ, subject to cT Σc ≤ σ2
0 (5)

where σ2
0 is a given risk level. We call R satisfying (5) to be optimal return and c to

be its corresponding allocation plan. One could easily extend the separation Theorem

(Cass and Stiglitz, 1970) and the mutual fund theorem (Merton, 1972) to obtain the

solution of (5)1 from the following lemma:

Lemma 1 For the optimization setting displayed in (5), the optimal return, R, and

its corresponding investment plan, c, are obtained as follows:

R = σ0

√
µT Σ−1µ

and

c =
σ0√

µT Σ−1µ
Σ−1µ . (6)

From Lemma 1, we find that the investment plan, c, is proportional to the MVR

when Σ is a diagonal matrix. Hence, when the asset is concluded to be superior

in performance by utilizing the MVR test, its corresponding weight could then be

computed based on the corresponding MVR test value. Thus, another advantage of

using the MVR test over the Sharpe ratio test is that it allows investors to compare

1There are several studies, for example, Ju and Pearson (1999) and Maller and Turkington (2002)

that result in different solutions for settings similar to that in (5). We note that Bai et al. (2009a,b,

2011b) also use the same framework as in (5).
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the performance of different portfolios as it enables investors to find out which asset

they should put heavier weight and vice versa. It also enables investors to compute

the corresponding allocation for the assets. On the other hand, as the SR is not

proportional to the weight of the corresponding asset, an asset with the highest SR

does not infer that one should put highest weight on this asset whereas our MVR

does. In this sense, the test proposed by Bai, et al. (2011c) is superior.

Bai, et al. (2011c) also develop both one-sided UMPU test and two-sided UMPU

test to check the equality of the MVRs for comparing the performances of different

prospects with hypotheses stated in (3) and (4) respectively. We first state the one-

sided UMPU test for the MVRs as follows:

Theorem 2 Let Xi and Yi (i = 1, 2, · · · , n) be independent random variables with

joint distribution function defined in (1). For the hypotheses setup in (3), there exists

a UMPU level-α test with the critical function φ(u, t) such that

φ(u, t) =





1, when u ≥ C0(t)

0, when u < C0(t)
(7)

where C0 is determined by ∫ ∞

C0

f ∗n,t(u) du = K1 ; (8)

with

f ∗n,t(u) = (t2 − u2

n
)

n−1
2
−1(t3 − (t1 − u)2

n
)

n−1
2
−1 ,

K1 = α

∫

Ω

f ∗n,t(u) du ;
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in which

U =
n∑

i=1

Xi , T1 =
n∑

i=1

Xi+
n∑

i=1

Yi , T2 =
n∑

i=1

X2
i , T3 =

n∑
i=1

Y 2
i , T = (T1, T2, T3) ;

with Ω = {u|max(−√nt2, t1 −
√

nt3) ≤ u ≤ min(
√

nt2, t1 +
√

nt3)} to be the support

of the joint density function of (U, T ).

We call the statistic U in Theorem 2 to be the one-sided MVR test statistic or

simply the MVR test statistic for the hypotheses setup in (3) if no confusion occurs.

In addition, Bai, et al. (2011c) introduce the two-sided UMPU test statistic as stated

in the following theorem to test for the equality of the MVRs listed in (4):

Theorem 3 Let Xi and Yi (i = 1, 2, · · · , n) be independent random variables with

joint distribution function defined in (1). Then, for the hypotheses setup in (4), there

exists a UMPU level-α test with critical function

φ(u, t) =





1, when u ≤ C1(t) or ≥ C2(t)

0, when C1(t) < u < C2(t)
(9)

in which C1 and C2 satisfy





∫ C2

C1
f ∗n,t(u) du = K2

∫ C2

C1
uf ∗n,t(u) du = K3

(10)

where

K2 = (1− α)

∫

Ω

f ∗n,t(u) du,

K3 = (1− α)

∫

Ω

uf ∗n,t(u) du .
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The terms f ∗n,t(u), Ti (i = 1, 2, 3) and T are defined in Theorem 2.

We call the statistic U in Theorem 3 to be the two-sided MVR test statistic or

simply the MVR test statistic for the hypotheses setup in (4) if no confusion occurs.

In this paper, Bai, et al. (2011c) propose to apply numerical methods to look for the

critical values of the tests as stated in the following problem:

Problem 4 To compute the values of the constants C1 and C2 in Ω = [Id, Iu] such

that ∫ C2

C1

f ∗n,t(u) du = K2 (11)

and ∫ C2

C1

uf ∗n,t(u) du = K3 (12)

where

f ∗n,t(u) = (t2 − u2

n
)

n−1
2
−1(t3 − (t1 − u)2

n
)

n−1
2
−1 ,

K2 = (1− α)

∫

Ω

f ∗n,t(u) du,

and

K3 = (1− α)

∫

Ω

uf ∗n,t(u) du .

To solve this problem, we have to conduct the following steps:

Step 1: We first let

δ0 = (Iu − Id)/K, and C1 = Id (13)

where Id and Iu are two end points of the support interval defined in Problem

4. Here, K is an integer chosen to be big enough, say for example, 400, such

that (Iu − Id)/K is set to be a small increment.
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Step 2: Thereafter, we let

C1 = C1 + kδ0, k = 0, 1, ..., K.

For each C1, we are going to solve equations in (11) and (12) to obtain two approxi-

mate values of C2, one obtained by solving (11) and another obtained by solving (12).

If the approximate values of C2 are very close, they could be used as the approximate

solutions to equations in (11) and (12). If not, we move on to let k = k + 1 and

continue the process in Step 2 till the values of two C2’s are approximately equal. In

this procedure, we can achieve the appropriate calculation precision by controlling

the precision of solutions to equations in (11) and (12) respectively. We note that one

could choose a very large value of K so as to get δ0 as small as possible. However, it is

not necessary to do so because any big value of K could not improve the calculation

precision remarkably and thus we suggest using 400 which is large enough.
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2 Illustration

In this section, we demonstrate the superiority of the MV tests developed in this

paper over the traditional SR tests by illustrating the applicability of our tests to

the decision making process of investing in commodity trading advisors (CTAs). For

simplicity, we only demonstrate the two-sided UMPU test.2 The data analyzed in

this section are the monthly returns of 61 indices from CTAs for the sample period

from January 2001 to December 2004 in which the data from Jan 2003 to Dec 2003

are used to compute the MVR in Jan 2004, while the data from Feb 2003 to Jan

2004 are used to compute the MVR in Feb 2004, and so on. However, using too short

periods to compute the SRs would not be meaningful as discussed in our previous

sections. Thus, we utilize a longer period from Jan 2001 to Dec 2003 to compute the

SR ratio in Jan 2004, from Feb 2001 to Jan 2004 to compute the in Feb 2004, and so

on.3

For simplicity, in our illustration we only report the comparison of three pairs

of indices with the largest or smallest means, variances, or MVRs, respectively, from

January 2004 and December 2004. They are: AIS Futures Fund LP (maximum mean,

denoted by X11) versus Beacon Currency Fund (minimum mean, X12), JWH Global

Financial & Energy Portfolio (maximum variance, X21) versus Worldwide Financial

Futures Program (minimum variance, X22), Oceanus Fund Ltd (maximum MVR,

X31) versus Beacon Currency Fund (minimum MVR, X32). Let rij,t be the excess

return of Xij over the risk-free interest rate at time t with mean µij and variance σ2
ij

2The results of the one-sided test which draw a similar conclusion are available on request.
3We note that, actually, we should use even longer periods to compute the SRs but the earlier

data are not available or do not exist at all. Also, the results for too long periods are expected to

yield insignificant difference for all comparison, which is not useful to investors.
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for i = 1, 2, 3 and j = 1, 2 respectively. The 3-month Treasury bills rate obtained

from Datastream is used to proxy the risk-free rate. We test the following hypotheses:

H0i :
µi1

σ2
i1

=
µi2

σ2
i2

versus H1i :
µi1

σ2
i1

6= µi2

σ2
i2

for i = 1, 2, 3. (14)

To test the hypotheses in (14), we first compute the values of the test function U for

the MVR statistic shown in (9) for each pair of funds and display the values in Tables

1, 2 and 3 respectively. We then compute the critical values C1 and C2 under the test

level of 0.05 for each pair of funds to test the hypotheses in (14). In addition, in order

to illustrate the performance of the funds and their corresponding test results visually,

we exhibit the returns of the two funds being compared and their difference for each

pair of funds in Figures 1A, 2A, and 3A respectively, and display their corresponding

values of U with C1 and C2 in Figures 1B, 2B and 3B respectively.

For comparison, we also compute the corresponding SR statistic developed by

Jobson and Korkie (1981) and Memmel (2003) such that

zi =
σ̂i2µ̂i1 − σ̂i1µ̂i2√

θ̂
(15)

which follows standard normal distribution asymptotically with

θ =
1

T

[
2σ2

i1σ
2
i2 − 2σi1σi2σi1,i2 +

1

2
µ2

i1σ
2
i2 +

1

2
µ2

i2σ
2
i1 −

µi1µi2

σi1σi2

σ2
i1,i2

]

to test for the equality of the SRs for the funds by setting the following hypotheses

such that

H∗
0i :

µi1

σi1

=
µi2

σi2

versus H∗
1i :

µi1

σi1

6= µi2

σi2

for i = 1, 2, 3. (16)
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Different from using one-year data to compute the values of our proposed statistic,

we use the overlapping three-year data to compute the SR statistic for the year 2004

as discussed before. The results are also reported in Tables 1 to 3 next to the results

for our proposed statistic while their plots and their critical values are depicted in

Figures 1C to 3C for comparison.

We first examine the performance between the returns of AIS Futures Fund LP,

the fund with the largest mean, and those of Beacon Currency Fund, the fund with the

smallest mean. As shown in Table 1 and Figure 1C, we cannot detect any significant

difference between their SRs, implying that the performances of these two funds are

indistinguishable. We note that the three-year monthly data being used to compute

the SR statistic could be too short to satisfy the asymptotic statistical properties for

the test but, still, we cannot find any significant difference between the performance of

these two funds. If we use any longer period, the result is expected to be insignificant

as the high means in some sub-periods could be offset by the low means in other sub-

periods. Thus, a possible limitation of applying the SR test is that it would usually

conclude indistinguishable performances among the funds, which may not be the

situation in reality. In this aspect, looking for a statistic to evaluate the performance

among assets for short periods is essential. In this paper, we adopt our proposed

statistic to conduct the analysis. As shown in Table 1 and Figure 1, we find that our

proposed statistic does not disappoint us that it does show some significant differences

in performance between these two funds in some periods. This information could be

useful to investors for their decision making process.

Similar conclusion could also be drawn for the comparison between JWH Global

Financial & Energy Portfolio and Worldwide Financial Futures Program; the former

is the fund possessing the maximum variance while the latter attains the minimum

14



variance. Again, applying the SR test concludes that the performance between these

two funds is indistinguishable while invoking our proposed statistic enables us to

detect some significant differences.

Then, we turn to investigate the performance between Oceanus Fund Ltd and

Beacon Currency Fund in 2004, with the former possessing the maximum MVR while

the latter attaining the minimum MVR. From Table 3, we find that the differences

between these two funds become very small after June 2004 and even turn positive

to negative in September 2004. However, the SR test cannot detect such change and

indicates that Oceanus Fund Ltd performs significantly better than Beacon Currency

Fund in the entire 2004. In applying our proposed MVR test, this test reveals that

the change in its value has become insignificant after June 2004. The information

that is derived from our proposed test is thus useful for investors who takes their

decision making with regard to their investment seriously.

3 Concluding Remarks

In this paper, to evaluate the performance among the assets for small samples, we

propose to apply the MV test statistics developed by Bai, et al. (2011c). We illustrate

the superiority of the proposed test over the traditional SR test by applying both

tests to analyze the performance of funds from Commodity Trading Advisors. Our

findings show that while the traditional SR test concludes most of the CTA funds

being analyzed as being indistinguishable in their performance, our proposed statistic

shows that some funds outperform the others. In addition, when we apply the SR

statistic on some other funds, we find that the statistic indicates that one fund is

significantly outperforming another fund even though the difference between the two
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funds become insignificantly small or even changes directions. However, when our

proposed MVR statistic is applied, we could detect such changes. This shows the

superiority of our proposed statistic in revealing short term performance and in return

enables the investors to make better decision about their investments.

We note that although in some situations, data could be transformed to be

normally-distributed as discussed in our theory section whereas, in some other situa-

tions, this transformation may not be possible. Thus, further research could include

applying the approaches by Dufour et al. (2003) and others to extend our proposed

MV test to relax the normality assumption. However, we note that the price to relax

normality assumption is that the test may no longer be uniformly most powerful un-

biased as shown in our paper. Nonetheless, our proposed test statistic will still have

some merits over the statistics relaxing the normality assumption. Further research

could also include conducting simulation to study the robustness of our proposed

MVR test. If our proposed MVR test is found to be robust to non-normality, the

MVR test will then be a good test for non-normality data as well as normality data.

Another direction of further research is to develop confidence interval for the MVR

which could shed new light on asset investments.

There are two basic approaches to the problem of portfolio selection under un-

certainty. One approach is based on the concept of utility theory, see for example,

Wong and Li (1999), Post and Levy (2005), Wong and Chan (2008), Wong and Ma

(2008), Wong et al. (2006, 2008), and Sriboonchita et al. (2009) for more information.

Davidson and Duclos (2000), Barrett and Donald (2003), Linton et al. (2005), Bai, et

al. (2011a) and others have developed several stochastic dominance (SD) test statis-

tics using this approach. This approach offers a mathematically rigorous treatment

for portfolio selection but it is not popular among investors since few investors like to
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specify their utility functions and choose a distributional assumption for the returns

before their investment decision making.

The other is the mean-risk (MR) analysis as discussed in this paper. In this ap-

proach, the portfolio choice is made with respect to two measures – the expected

portfolio mean return and portfolio risk. A portfolio is preferred if it has higher

expected return and smaller risk. There are convenient computational recipes and

geometric interpretations of the trade-off between the two measures. A disadvantage

of the latter approach is that it is derived by assuming the Von Neumann-Morgenstern

quadratic utility function and that returns are normally distributed (Feldstein, 1969;

Hanoch and Levy, 1969). Thus, it cannot capture the richness of the former. Among

the MR analysis, the most popular measure is the SR introduced by Sharpe (1966).

As the SR requires strong assumptions that the assets being analyzed have to be iid,

various measures for MR analysis have been developed to improve the SR, including

the Sortino ratio (Sortino and van der Meer, 1991), the conditional SR (Agarwal and

Naik, 2004), the modified SR (Gregoriou and Gueyie, 2003), Value-at-Risk ( Christof-

fersen, 2004; Chen, 2005; Kuester, et al., 2006), Expected Shortfall (Chen, 2008) and

others. However, most empirical studies, see for example, Eling and Schuhmacher

(2007), find that the conclusions drawn by using these ratios are basically the same

as that drawn by the SR. Nonetheless, recently Leung and Wong (2008) develop a

multiple SR statistic and find that the results drawn from the multiple Sharpe ratio

statistic could be different from its counterpart pair-wise SR statistic comparison,

indicating that there are some relationships among the assets that have not being

revealed from the pair-wise SR statistics.

The major limitation of these pair-wise MR statistics is that up to now academics

can only develop their asymptotic distributions, but not their distribution for small
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samples. Need not to say about their performance in small samples, even for large

sample, investors do not know how large the sample size should be to make these

distributions valid for testing purpose. As their testing results are only valid asymp-

totically, they may not be valid in small samples nor samples with not too big sizes.

For very large samples, the results of these tests could be valid. However, as discussed

in our introduction section, too large sample could result in extreme positive differ-

ence canceling out the extreme negative difference and the conditions of the market

may not be the same over long period of time. Thus, we are not surprised that in

most empirical studies these MR statistics draw similar conclusions in their testing.

The SD test statistics could be superior to the MR test statistics as the conclusions

drawn by these SD test statistics between the assets being examined could be used by

investors to compare their expected utility on these assets since they do not require

investors to possess quadratic utility function nor any form of the distribution for the

assets being analyzed.

So far, in the literature of the development of test statistics for portfolio selection,

academics have developed the SD test statistics and the MR test statistics to examine

the preferences of different assets or portfolios. However, all the SD test statistics

and the MR test statistics are valid only asymptotically, and thus the conclusion

drawn by these statistics may not be valid if one applies these tests to small samples.

Nonetheless, as discussed in our introduction, the comparison of asset performance for

small samples is very important but so far, in the literature, such test is not available.

Thus, the test developed in this paper sets a milestone in the literature of financial

economics. The test developed in our paper is the first test making such comparison

possible.

One may claim that the limitation of our proposed MV statistic is that it could
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only draw conclusion for investors with quadratic utility functions and for normal-

distributed assets. Our answer is that it may not be. Meyer (1987), Wong (2007), and

Wong and Ma (2008) have shown that the conclusion drawn from the MR comparison

is equivalent to the comparison of expected utility maximization for any risk-averse

investor, not necessarily with only quadratic utility function, and for assets with any

distribution, not necessarily normal distribution, if the assets being examined belong

to the same location-scale family. In addition, one could also apply Theorem 10 in Li

and Wong (1999) to generalize the result so that it can be valid for any risk-averse

investor and for portfolios with any distribution if the portfolios being examined

belong to the same convex combinations of (same or different) location-scale families.

The location-scale family can be very large, containing normal distributions as well

as t-distributions, gamma distributions, etc. The stock returns could be expressed as

convex combinations of normal distributions, t-distributions and other location-scale

families, see for example, Fama (1963), Clark (1973), Fielitz and Rozelle (1983), and

Kon (1984). Thus, the conclusions drawn from the test statistics developed in this

paper are valid for most of the stationary data including most, if not all, of the returns

of different portfolios.
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Figure 1: Plots of the monthly excess returns for AIS Futures Fund LP and Beacon

Currency Fund and corresponding Mean-Variance Ratio test U and Sharpe ratio test

statistic Z
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Note: The Mean-Variance Ratio test U is defined in Theorem 2 with C1 and C2 defined in

(10) and the Sharpe ratio test statistic Z is defined in (15).
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Figure 2: Plots of Monthly excess returns of JWH Global Financial & Energy Portfolio

and Worldwide Financial Futures Program and corresponding Mean-Variance Ratio

test U and Sharpe ratio test statistic Z
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Note: The Mean-Variance Ratio test U is defined in Theorem 2 with C1 and C2 defined in

(10) and the Sharpe ratio test statistic Z is defined in (15).
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Figure 3: Plots of the monthly excess returns for Oceanus Fund Ltd versus Beacon

Currency Fund and corresponding Mean-Variance Ratio test U and Sharpe ratio test

statistic Z
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Note: The Mean-Variance Ratio test U is defined in Theorem 2 with C1 and C2 defined in

(10) and the Sharpe ratio test statistic Z is defined in (15).
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Table 1: The Results of the Mean-Variance Ratio Test and Sharpe ratio Test

for AIS Futures Fund LP versus Beacon Currency Fund in 2004

Mean-Variance Ratio Test Sharpe ratio Test

Time X11 −X12 U C1 C2 Z p-value

Jan 0.0580 0.5368 0.4501 0.7574 -0.3717 0.71

Feb 0.1923 0.4943 0.3938 0.6860 -0.2634 0.79

Mar 0.2153 0.4692 0.3311 0.6315 0.0291 0.98

Apr -0.0412 0.8881 0.6969 0.9963 0.4823 0.63

May -0.0104 0.8691 0.4846 0.9127 0.8899 0.37

Jun -0.0107 0.7300 0.2861 0.7310 1.2447 0.21

Jul 0.0851 0.7234* 0.2424 0.7013 1.3469 0.18

Aug 0.0697 0.7190* 0.2647 0.7130 1.4847 0.14

Sep 0.0513 0.6762 0.2381 0.6817 1.5838 0.11

Oct 0.1166 0.6545 0.2441 0.6812 1.6034 0.11

Nov 0.0251 0.6813 0.2618 0.6971 1.5911 0.11

Dec -0.1639 0.6784* 0.2471 0.6760 1.5783 0.11

* p < 5%, the Mean-Variance Ratio Test U is defined in (9)

while the Sharpe ratio Test Z is defined in (15).
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Table 2: The Results of the Mean-Variance Ratio Test and Sharpe ratio Test

for JWH Global Financial & Energy Portfolio versus Worldwide Financial Futures

Program in 2004

Mean-Variance Ratio Test Sharpe ratio Test

Time X21 −X22 U C1 C2 Z p-value

Jan 0.0542 0.1125 0.1103 0.1932 -1.2710 0.20

Feb 0.1188 -0.0455 -0.0465 0.0366 -1.0933 0.27

Mar -0.0616 -0.0507 -0.0538 0.0253 -0.8457 0.40

Apr -0.0514 -0.0115 -0.0153 0.0581 -1.0057 0.31

May 0.0082 -0.0773 -0.0775 0.0101 -1.0128 0.31

Jun -0.1350 -0.0814* -0.0757 0.0116 -1.0132 0.31

Jul 0.0664 -0.1188* -0.1157 -0.0062 -1.1002 0.27

Aug 0.0597 -0.0464 -0.0504 0.0381 -1.0017 0.32

Sep 0.2215 -0.0879 -0.1143 0.0032 -0.7042 0.48

Oct 0.1690 0.2671 0.2124 0.3086 -0.3144 0.75

Nov -0.0011 0.6918 0.6276 0.7242 -0.0742 0.94

Dec -0.1143 0.5415 0.4828 0.5787 0.0165 0.99

* p < 5%, the Mean-Variance Ratio Test U is defined in (9)

while the Sharpe ratio Test Z is defined in (15).
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Table 3: The Results of the Mean-Variance Ratio Test and Sharpe ratio Test

for Oceanus Fund Ltd versus Beacon Currency Fund in 2004

Mean-Variance Ratio Test Sharpe ratio Test

Time X31 −X32 U C1 C2 Z p-value

Jan -0.0003 0.0801* -0.0320 0.0711 2.0180 0.04*

Feb 0.0315 0.0707* -0.0362 0.0635 2.1148 0.03*

Mar 0.0477 0.0789* -0.0434 0.0644 2.2311 0.03*

Apr 0.0858 0.0913* -0.0478 0.0662 2.6265 0.01*

May 0.0396 0.0795* -0.0602 0.0586 3.0249 0.00*

Jun 0.0166 0.0718* -0.0602 0.0524 3.1306 0.00*

Jul 0.0002 0.0535 -0.0690 0.0543 3.6708 0.00*

Aug 0.0075 0.0444 -0.0722 0.0566 3.3177 0.00*

Sep -0.0074 0.0410 -0.0701 0.0563 3.2926 0.00*

Oct 0.0010 0.0195 -0.0584 0.0488 3.2088 0.00*

Nov 0.0278 0.0231 -0.0602 0.0490 3.0957 0.00*

Dec 0.0049 0.0481 -0.0911 0.0666 3.1418 0.00*

* p < 5%, the Mean-Variance Ratio Test U is defined in (9)

while the Sharpe ratio Test Z is defined in (15).
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