
New CMOS VLSI Linear Self-Timed Architectures

A.J. Acosta, M. Bellido, M. Valencia, A. Barriga, R. JimCnez and J.L. Huertas

Dpto. de Diseiio de Circuitos Anal6gicos
Centro Nacional de Microelectrhicd Universidad de Sevilla

Edificio CICA, Avda. Reina Mercedes s/n, 4 1012-Sevilla, SPAIN
e-mail: acojim@cnm.us.es

Abstract

The implementation of digital signal processor cir-
cuits via self-timed techniques is currently a valid altema-
tive to solve some problems encountered in synchronous
VLSI circuits. However; a main difference between syn-
chronous and asynchronous circuits is the hardware re-
sources needed to implement asynchronous circuits. This
communication presents four less-costly alternatives to a
previously reported linear selftimed architecture, and
their application in the design of FIFO memories. Fur-
thermore, the integration and characterization in the labo-
ratory of prototypes of these FIFOs are presented.

1: Introduction

The timing problem is currently becoming more im-
portant in the design of CMOS VLSI digital systems, due
to increased operation speed and complexity. The inherent
problems in synchronous circuits, such as clock skew, syn-
chronization failures, and speed limitation due to the slow-
est unit, and considering current technologies and the case
of high-speed or very large integrated circuits, make the
asynchronous approach a valid alternative to the synchro-
nous one [lo]. Furthermore, asynchronous implementa-
tions are recently proving very suitable for low-power
DSP applications [121. With these encouraging prospects,
the design of digital systems without a global clock be-
come very interesting. Among several asynchronous tech-
niques, the self-timed one is very promising [8] [5] [lo].
This strategy does not need the distribution of a global
clock and presents the potential advantages of higher aver-
age speed -since each module operates at the maximum
possible speed and hence, the fastest ones need not wait
for the slowest ones- and very low power consumption
-since each module operates only when there is data to
process.

The work presented in this communication is based
on the self-timed technique presented in [9], especially
suited for CMOS VLSI design [5]. The purpose of this
communication is dual. On one hand, a specific methodol-
ogy is used to present the design of pipeline interface cir-
cuits, modifying the data-storage scheme and the hand-
shaking protocol of the scheme presented in [9]. On the
other, these proposals and methodology are applied to the
design of a linear FIFO memory used in DSP applications.

The communication is organized as follows: in Sec-
tion 2, the basic linear architecture is discussed; Section 3
presents the proposed modifications for data-storage and
handshaking protocol; in Section 4, the new architectures
are applied to the design of FIFO memories; Section 5 in-
cludes some experimental results obtained from laboratory
measurements of integrated prototypes. Finally, the archi-
tectures are compared and the most important conclusions
are presented.

2: Basic Linear Architecture

The basic linear architecture proposed in [9][10] is
shown in Fig. l.a, where the interface and computation
block are separated, as well as data buses and protocol sig-
nals. Computation blocks (Fig. 1 .c) are built with differen-
tial circuits [3][4], generating both the output (out) and its
complement (outbar), and a complete signal indicating
thai the logic operation is finished. Two operating phases
are distinguished: the precharge phase which generates
not-valid-data (PD: 1 l), and the evaluation phase which
generates the valid-data (VD:10 or 01). The protocol used
is the so-called “full-handshaking”, that operates accord-
ing to the Signal Transition Graph shown in Fig. 1 .d‘ [9].
One implementation of this interface circuit is shown in

1. For every STG in this communication, notation + y - after a signal
name refers to the rise and the fall of that signal, respectively. The ‘‘0”
indicates the token-marking in the STG.

14
0-8186-7098-3195 $04.00 0 1995 IEEE

PDNlD

complete
out outbar

Aout Ain NMOS-tree

Ain-
U

d)
Figure 1. a) Basic Linear Architecture used in [9][10].
b) interface Circuit. c) Processing Element. d) STG.

Fig. l.b, where the memory elements used are the
so-called “C(Mul1er)-elements”. With this handshaking
protocol, the request made at this stage is stored in any one
of the C-elements forming the interface block, and two
consecutive stages can process data simultaneously.

However, there is a situation in protocol signals for
this architecture that may provoke an error [9][10]. This
may occur when the current stage is still processing - Rout
is still high and Ain is still low- and the previous compuita-
tion block has just entered its precharge phase (Rin be-
comes low). When the previous block enters its precharge
phase, its output data changes from the valid data stored in
the previous evaluation phase (VD:10 or 01) to the pre-
charge data (PD:ll). This undesired change (10 -> 11 or
01 -> 11) may cause a failure while the current block still
needs correct data for its computation. The solution pro-
posed in [9][10] is to place a data-register in the interface
circuit, as shown in Fig. 2a. To ensure that the writing op-
eration in the flip-flops finishes and hence, to show
speed-independent behavior in global operation [7], a spe-
cific mechanism to generate a complete signal
-"camp-reg" in Fig. 2a- had to be considered. This com-
plete signal is fed into the second C-element and is also

used as an acknowledge signal Aout for the previous
stage. This scheme introduces two new signals in the pro-
tocol (“load” and “comp-reg”). Fig. 2b shows the STG for
the modified protocol.

However, to our knowledge, there is a problem asso-
ciated with the implementation of the data-register and the
generation of complete signal “comp-reg”. Particularly,
for every mechanism used in such generation, we must en-
sure the fulfilment of some timing restrictions, concerning
the data-storage in the flip-flops composing the data-regis-
ter. For instance, consider the case in Fig. 2a showing the
data-register scheme presented in [lo], and that corre-
sponding to the generation of the “comp-reg” signal. This
signal is obtained by comparing the input (reg-infi]) and
output (reg-outti]) values of bit “j” with a two-input AND
gate, while the “load” signal is active. In addition, an
n+l-input AND gate is needed for the final comparison,
being n the number of bits. A first consideration is that

I C lcomp-reg complete

r , v Ain

b)
Figure 2. a) Connection of data register, interface
circuit and computation block in [9][10]. b) STG.

15

these comparisons should be performed with (N)XOR
gates, instead of AND gates. In any case, if one of the
memory elements in the data-register enters its metastable
state, incorrect data may be stored and provoke an error in
the data-path. Furthermore, this error may disable genera-
tion of the complete signal, and thus reaching a deadlock
situation [2]. To ensure a correct behavior, we must im-
pose a timing restriction referring to possible violations of
setup time which may occur when data is being written in
the data-register. In the reference case, the implementation
must verify the restriction for setup time presented in (1).

tsetup “gate + tC (1)

Eq. (1) is violated if, prior to the time that valid data
should be stable, the active edge of “load” signal (tSetup)
occurs, not-valid data is stored, coming from the precharge
data of the computation block of the previous stage. In
other words, eq. (1) is not fulfilled if tSetup is larger than
the time elapsed from the generation of valid data in the
previous stage to the rising edge of Aout signal. This time
corresponds to the generation of complete signal in the
previous stage (tgate), plus (the propagation delay of the
first C-element of the interface circuit, that also generates
Aout).

An estimate for integrated blocks in a 1.5 pm CMOS
technology, obtains for the right-hand member of (1) a val-
ue of 1.6 ns (tc=l. 1 ns, tgate=0.5 ns). This value for tSetup is
not very restrictive in integrated flip-flops, but it should be
considered in their design. The cost of this structure for
each stage of the pipeline is 24n+4 transistors, where n is
the width of the data-path. The addition of protocol cir-
cuitry (two 8-transistor C-elements) makes total cost of
the stage 24n + 12 transistors, not including the part corre-
sponding to the computation block.

With these considerations, the reference structure is
not globally speed-independent; thus design techniques
must be used to ensure that the restrictions are met. Based
on this requirement, a group of simplifications may be es-
tablished which reduce the hardware in self-timed archi-
tectures.

3: Proposed Linear Architectures

Our proposals [2] are based on the fact that if the stor-
age time of all the bits in the flip-flops is ensured to be ap-
proximately the same within the VLSI environment, the
“complete” signal for data storage in the latches is not nec-
essary as an integrated part of the protocol. This implies
that it should meet some time restrictions concerning the
data storage time in the flip-flops, as in the reference case.
This will reflect in considerable savings in hardware re-
sources. Four proposals follow that modify both the data
storage scheme and the interface circuitry.

3.1: PSCA (Protocol and Storage Controlled by
Acknowledge)

The first proposal consists of making the load signal
of the flip-flops and the acknowledge signal (Aout) be co-
incident. Thus, the reference circuit becomes that shown
in Fig. 3a. Since the protocol circuii is not modified, the
STG describing this circuit’s behavior coincides with the
original (Fig. Id). The data storage mode is the following:
once the preceding module has performed a request
(Rin’), when the actual module is ready to receive the data
(Rout-), Aout is activated (Aout’). The effect of this rise is
double: first, it orders the previous module to start pre-
charging and second, it allows writing in the flip-flops.
Data storage should be done while Rin is high, since Rin
falls as consequence of the previous module going into
precharge (PD, “11”) and data becomes not valid (VD,
“10” ~r“Ol”) . Since data storage occurs once the pre-
charge order is given and thus the valid data disappears,
time intervals should be considered which ensure correct
operation. This infers that the time for data storage in the
flip-flops should be less than the precharge time of the pre-
vious module plus the propagation time in the C-element,
uihich is the time elapsed between the rise of Rin and the
rise of Aout. This is shown in the time diagram of Fig. 3b.
Analytically, this time restriction can be expressed as (2):

‘hold ‘ ‘C 4- tprecharge (2)

ta

R* Co;:yn complete , Ain
- 1
Aout 4

4-

PD VD . PD

Previous Data ’ b {
I , Rin

6
Figure 3. a) Proposed architecture PSCA.
b) Timing Diagram in the case of time violations.

16

As in the reference case, the same type of restriction
must be imposed on violations in the setup time of the
edge-triggered flip-flops. Thus, so that such a violation
does not occur, the previous input data in the flip-flops
must be stored an stable a tSetup time before the active edge
of the clock (Aout) arrives. For this, tsetup must be less
than the signal generation time at the end of the previous
stage (tgate), plus tC (the propagation time in the first C-el-
ement of the pipeline block which generates Aout). Ana-
lytically, this restriction is given in eq. (3) , which is tlhe
same as that expressed for the structure of [9][10].

Pr a

I J

d.
Ai n

a)
Aout

Regarding time parameters, the most interesting is tlhe
throughput, or time needed between consecutive input
data for the system to function correctly, which gives an
idea of the maximum operation speed of these systems.
The maximum throughput is given as the time between
two consecutive rises of the “complete” signal in one of
the modules. In our case, for a stage (i) of a linear matrix,
assuming that the next stage (i+l) is idle (most favorable
case), this amount is given by (4):

(4)
1

4tC + tprech -!- teval

- -
max - PSCA throughput

The advantage of this scheme respecting to that of
[9][10] is that PSCA need not generate a specific protocol
signal to control the register, rather the signal Aout is su€fi-
cient, also used as acknowledge signal in the previous
stage. This reflects in increased throughput with respect to
the reference scheme. Regarding the required hardware re-
sources, the number of transistors will be 16n+16, where n
is the number of bits or data-path width.

3.2: PLCAR (Protocol and Latching Controlled
by Acknowledge and Request)

This proposal and the following aim to substitute the
edge-triggered flip-flops with simpler and smaller latches,
consequently requiring less transistors, but preserving the
operation speed high. Fig. 4a shows the circuit for this
proposal. The logical implementation of the pipeline inter-
face is also composed of two C-elements interconnected in
the same manner as in the reference scheme [9][10]. The
modification lies in the data-storage system. Since neither
STG nor handshaking protocol has been modified from the
PSCA scheme, the hardware can be 100% concurrently
used. The proposed operation philosophy is summarized
in the following.

From a global point of view, the interface circuit can
be considercd as an element storing the request of one cell
to another. In this case, there are two states: the module in
question is occupied or idle. If the module is occupied, the

Previous , VD i / PD
Data :

, I

Aout i j
, I I S

AoutvRouF \
< i tsetup i 7

InputDataj ’ ; VD PD
:tlatci j-

t b)
!e.+?
I ,
I ,

Figure 4. a) Proposed Architecture PLCAR.
b) Timing Diagram in the case of time violations.

protocol signal Ain is high, allowing the request to be
stored in the first C-element (Aout+). If the module is idle,
Ain is low, and the request is stored in the second C-ele-
ment (Rout’), making the module compute. In either case,
the fact that Rout or Aout are high indicates a request in
the module.

The question of how to store data is easily answered if
we consider that while the “complete” signal of the previ-
ous stage (Rin for our module) is high, the input data is
valid (VD), and when Rin is low, the data corresponding
to precharge of the previous module is undesired (PD).
Thus, data storage should occur prior to storing the request
in the pipeline interface, and writing in the latches should
be inhibited during the time the request is stored to avoid
changing data while the module computes the correct data.

A simple implementation that allows this operation
mode is shown in Fig. 4a, where the OR operation of the
Aout and Rout signals acts as the “load” signal in the latch
(active in low). Thus, writing is inhibited in the latch when
Aout+ U Rout+.

Obviously, as in the previous cases, if the “complete”
signal is not generated after writing in the latch, proper op-
eration must be ensured by time restrictions, concerning
the relations between the data path and the protocol sig-
nals. For the circuit to operate well, input data must be

17

stored before writing is inhibited in the latch. This is the
same as stating that the storage time in the latch (thoid) plus
the propagation time of the OR gate, must be less than the
propagation time of one (or two) C-elements, accordingly
if Aout or Rout stores the request, plus the precharge time
of the previous module. In the most restrictive case, we
may consider analytically the restriction (5):

‘OR thold ‘ ‘C -k tprecharge (5)

This is shown in the time diagram of Fig. 4b. Once the
previous block finishes evaluation, its “complete” Rin sig-
nal rises, with an equivalent gate delay (tgate in Fig. 4b).
The rise of Rin leads to the rise of Aout, and this forces the
output of gate OR to rise after a time tOR, thus inhibiting
storage of the register REG. On the contrary, the rise in
Aout also provokes the rise in Rout, if the next module is
idle, which is our case. Aout rises after the propagation
time of a C-element (tC in Fig. 4b). Due to protocol, when
Aout rises, the previous module enters precharge with the
delay time of a C-element plus the precharge time of the
previous module and thus, the previous data is no longer
valid. Until Rout v Aout (Rout low) rise, previous data is
stored in the register and the input data “follows” the pre-
vious data, with the only delay of propagation time
through the latch (tiatch in Fig. 4b). Since in the rise of
Aout v Rout, the input data stored in the register contains
the valid result of the previous stage, writing in the register
is not necessary, and the stored data is valid for the time
needed by the block to compute.

The other time restriction to verify is the setup time,
or time that the input data must remain stable prior to de-
activation of the latch’s load signal. In the proposed struc-
ture, this restriction is (6):

t setup ‘ t~ + tgate + t~~ (6)

To meet this restriction tSetup must be less than the
time to generate the complete signal of the previous stage
(tgate), plus tC (propagation time of the first C-element of
the pipeline block, which generates Aout), plus tOR (prop-
agation time of the OR gate that generates the latches’
load signal). Incompliance of this restriction is shown in
Fig. 4b.

As to hardware requirements, this structure requires
two 2-input C-elements plus an OR gate. This makes a to-
tal of 22 transistors. To this, we must add 6 transistors cor-
responding to the latch. Since one latch is needed to store
each bit of information, the cost will be 6n for the case of n
bits. The total cost will be 6n+22 transistors for the trans-
mission of n bits.

Referring to time performance, the maximum
throughput in the PLCAR case is the quantity appearing in
(4), since the path of protocol signals is no different than

the previous case. However, we will experimentally verify
performance variation caused by a different capacitive
load in the output nodes of the C-elements.

The main difference of this scheme in view of that of
[91[10] is the use of level-sensitive logic instead of
edge-sensitive logic, with its intrinsic advantages regard-
ing hardware requirements and simplicity. In addition, the
time behavior, like the PCSA case, is better than that of the
reference architecture [9][101.

3.3: PLCR (Protocol and Latching Controlled by
Request)

The new structure aims to allow writing in the latches
according to the value of the protocol signal Rout. This is
the same as assuming the request made by the previous
module be stored in precisely the second memory element
of the pipeline interface.

With this scheme, we intend that the input data re-
mains stable until the next computation block receive the
actual data. Thus, Rout values define the data writing and
reading phases in the register. When Rout is high, the un-
desired change in the input signal (01 -> 11 or 10 -> 11)
may overwrite actual data. This is avoided if the storage
signal is the request signal of Rout, and if the latches are
active at a low level. However, this operation mode re-
quires modifying the handshaking protocol.

The STG allowing this operation mode is shown in
Fig. Sa. It is basically the original STG, the difference be-
ing the transition Rout’ -> Rin- instead of the original
Rout+ -> Aout-. This introduces a time penalty since signal
concurrence is decreased. That is, the simultaneous rising
and falling of Rout and Rin, respectively, are prohibited,
once Aout has risen. In other words, Rin cannot be dis-
abled (Rin-), precharging the previous block, until Rout
has risen (the block is processing valid data and conse-
quently the latch should have the correct data stored).
However, the new condition imposed (Rout+ -> Rin-) es-
tablishes restrictions on an input signal (Rin), which de-

l
Ain-

a)
I

Adut‘ Ain-
U

b)
Figure 5. STGs corresponding to the proposal PLCR.

18

pend on the previous, rather than the actual, block. To
avoid this, a new intermediate protocol signal (h) is intro-
duced in the STG that does not suppose a substantial mod-
ification in the global behavior and eases the synthesis
procedure. Thus, the definite STG is shown in Fig. 5b.
Since there is no loop in this STG that contains the transi-
tions (Rout+->Ain+ and h-->Rin+) where successive stages
are computing , this protocol enables concurrent use of all
the hardware, as it happens in the previous cases.

The STG of Fig. 5b served as input for SIS [11], to
check that it verifies the properties of correctness (i.e. the
STG was live, safe, free-choice and with the complete
state coding property) and can thus be synthesized haz-
ard-free. From this STG, SIS generated the following next
state equations (7):

Rout-next = Ain’ h- + Ain’ Rout- + h- Rout-
h-next = h- Rin + Rin Rout-’

Aout = h-Rout-
(7)

Implementation at a logic level of these equations
gave us the circuit of Fig. 6a. As in previous cases, the cir-
cuit presents two memory elements. The first is an
OR-AND gate (oa12) with a feedback loop connecting fhe
output with one of the OR gate input. The second (a
two-input C-element) generates the request (Rout), which,
upon performing the AND operation with the output of the
first (h), generates the acknowledge (Aout), whose com-
plement serves as Ain input for the preceding module.

4
prt VD PD

Previous 1, I!

Data i‘ I8

, I Rin
. ,
, I

a v< >
Rout tpa? ‘oa12

Aout f : &+ t p r e c 9 \
Input Data VD ! PD

{ a -
tsetup +

b)
Figure 6. a) Proposed Architecture PLCR.
b) Timing Diagram in the case of time violations.

As in previous cases, we must apply certain time re-
strictions to ensure correct operation. Concretely, the data
storage time in the latches should be less than the time it
takes for Rout to rise, to transmit through the AND gate,
causing Aout (tAND) to rise, plus the time elapsed since
Aout rises until the data shows the precharge value (k +
$,recharge, Fig. 6b). This restriction is shown in eq. (8).

thold < tC + tprecharge + tAND (8)

Once again, time restrictions must be set for the setup
time. This restriction appears in eq. (9):

‘setup < ‘C + ‘oa12 + tgate (9)

To meet this restriction tSetup must be less than the
time to generate the “complete” signal of the previous
stage (tgate in Fig. 6b), plus tOa12 (the propagation time for
the first flip-flop in the pipeline stage) plus tC (propagation
time for the second C-element of the pipeline block, which
generates Rout). Incompliance of this restriction is shown
in Fig. 6b.

To implement the first flip-flop of the circuit in Fig.
6a, we will take advantage of the abilities of CMOS tech-
nology to perform composed boolean functions. Thus, this
implementation is realizable with 8 transistors, and the
output and its complement are available. Consequently,
excluding the part corresponding to the latch, the interface
circuit consists of 20 transistors, which added to the 6
needed to implement each latch, makes a total of 6n+20
for a data-path of n bits.

Refemng to time performance, the throughput will be
less than in previous cases due to the elimination of con-
current transitions in the protocol. This occurs because the
acknowledge signal, Aout, will only activate (Aout’)
when the auxiliary signal (h) and the request signal (Rout)
are active, that is, when h+ n Rout’ is fulfilled. Thus, pre-
charge is delayed in the previous module by, at least, the
propagation time of a C-element. In this case, for a cell of
a linear array, assuming that the next stage is idle (most fa-
vorable case), the throughput will be given by eq. (10):

(10)
1 -

thrpLCR - 4tCf 2toa12 + 2tgate + tprech f t eval

The biggest advantage of this scheme with respect to
the reference scheme lies in the hardware gain, although it
is achieved at the cost of reducing the time efficiency.

3.4: PLCRAI (Protocol and Latching Controlled
by Request via Acknowledge In)

As in the PLCR architecture, this proposal intends to
allow writing data in the latches depending on the value of
the request signal Rout. However, the operation philoso-

19

phy is very distinct, since activation of the acknowledge
signal (Aout') that allows precharging the previous mod-
ule, will only be possible once the acknowledge signal
(Ain-) of the following module is disabled. To enable this
type of operation, we have slightly modified the handshak-
ing protocol in such a way that after deactivation of Ain
(Ain-), Aout' and Rout' will rise concurrently. This can be
described with the STG of Fig. 7a.

Analyzing this STG, we observe that to activate Rout
(Rout+) the acknowledge signal (Aout+) must first be acti-
vated, at the same time ordering the previous module
(Rin-) to precharge. Consequently, the previous module
(Rin-) may precharge an instant before the inhibition of
valid data storage in the latches (Rout'). Thus, time re-
strictions must be imposed on the latches, as in all the pre-
viously proposed cases, including the reference.

i;
1' 1 I

d o u t b)
PD VD PD

Previous\ /
Data ? , f:

Input Data\ VD /, PD

c)
Figure 7. a) STG for PLCRAI. b) Proposed Architecture.
c) Timing Diagram in the case of time violations.

The STG of Fig. 7a served as input for SIS [I l l , pro-
viding the following next state equations (1 1):

Rout-next = Ain' Rout + Aout
Aout-next := Ain' Rin Rout' + Aord Rin + Aout Rout' (1 1)

Once again, in this STG there is no loop that covers
the two transitions corresponding to consecutive modules
computed (Rout+->Ain+ and Aout-->Rin+), and thus there
is total hardiware benefit.

Implementation at the gate level of the pipeline inter-
face that verifies (1 1) is shown in Fig. 7b. As seen, the cir-
cuit is comlposed of two interlaced flip-flops. The most in-
teresting aspect is the fact that the primary input Ain
serves as input for both flip-flops, in such a way that deac-
tivation of Ain (Aid) affects both Rout and Aout output
signals. However, activation of Aout (Aout+), provokes
activation of Rout (Rout-) after the propagation delay of
the OR gate of the second flip-flop (Fig. 7c). Thus, eq. (12)
must be met:

thold + ' o r < 'precharge 'b2 (12)

The other time restriction to meet is the setup time of
the latches. In PLCRAI, this restriction is (13):

setup ' b 1 4- tb2 'gate t

To meet this restriction tSetup must be less than the
time to generate the "complete" signal of the previous
stage (tgate, in Fig. 7c), plus tbl (propagation time of the
first memory element of the pipeline block) plus tb2 (prop-
agation time of the second memory element of the pipeline
block, which generates the charge signal of the latches).
Incompliance of this restriction is shown in Fig. 7c.

When implementing the circuit of Fig. 7b, we take ad-
vantage again of the capabilities of CMOS technology to
perform composed boolean functions. Thus, implementa-
tion of the first flip-flop is realizable with 9 transistors, and
the second with 8, having the output and its complement in
both cases. Thus, excluding the part corresponding to the
latch, the interface circuit consists of 17 transistors, which
added to the 6 needed to implement each latch, makes a to-
tal of 6n +17 for a structure with n bits.

Regarding time restrictions, the maximum throughput
is given by eq. (14):

(14)
1 -

fhrrnax- E'LCRAI -
3'bl -t 2tb2 -I- tprech 'eval

As in the PLCR case, we obtain hardware gain, but
based on dlegrading timing perfomance.

As summary of the proposed architecture, a group of
parameters to check the distinct proposals is included in
Table 1. All the architectures proposed improve the archi-
tecture referenced, in terms of hardware resources. The
time restrictions to impose in each case have been mea-

20

sured through electrical simulation, and show values that
are not very limiting in a VLSI environment. Concerning
throughput, both PSCA and PLCAR architectures improve
the referenced one.

(Maximum Throughput)-’

IPLCRAII 6n+17 I 0.30 I 2.43 I 3tb l + 2tb2 + t + te 1
Table 1. Characteristics of the architectures; n: bit
number; tp: lime of precharge; t,: time of evaluation.

4: Application to designing a FIFO memory

In this section, the pipeline architectures described in
Section 3 are applied to the design of linear FIFO memo-
ries of 1 bit width. This type of circuit was chosen for its
simplicity, its wide use in DSP architectures and its suit-
ability to check protocols and interface circuitry. Imple-
mentation of computation elements, in this case realizing
the logic function of buffer-inverter, uses the differential
structure SODS, presented in [1][2]. This proposal, shown
at a transistor level in Fig. 8, has almost half the area,
higher operation speed, and less power consumption than
other differential structures (for example, DCVS- Domino
[4] and ECDL [6]), making it especially suited to improve
all aspects of self-timed architectures.

Fig. 9 shows circuits at a transistor level of the pro-
posed architectures. Pseudostatic implementation was
used for both the C-elements as well as the D-type
edge-triggered flip-flops. Those proposals requiring latch-
es used a bidirectional latch, that is, the input “in” passes
to the output “out”, and vice versa. It has operated correct-
ly in our case, since the data only goes in the direction
in->out, being the inverse path of very high impedance.
Another requirement for correct operation is that the in-

@i

A -

I NMOS-tree

-
Figure 8. implementation of computation blocks
with SODS [1][2].

Rin P

Aoi

P

in r i

P

I I 4-

4
Figure 9. One-bit FIFO cell: a) PSCA, b) PLCAR, c)
PLCR and d) PLCRAII. Inverters marked * are “weak”.

verter closing the loop must be “weak”. This is due to the
fact that since the data storage loop never opens, the input
value should be stored whenever the switch opens the
writing phase, regardless of the value stored in the loop.
For the implementation of other memory elements we
have taken advantage of the facility that CMOS technolo-
gy to implement all or-and type functions, including a
feedback loop. Reset logic is performed by two P transis-
tors, setting to “0” the memory elements of the pipeline in-
terface, indicating that all the stages are in idle state.

To measure the time performance of each cell making
up the circuits, a specific methodology has been con-
ceived, consisting of multiplexing the output and connect-

21

a)

8-bit FIFO area

16-bit FIFO area

Figure 10. a) Scheme for the measurement of perform
ances of basic cell. b) Interconnection detail.

SO5 x 328 SOS x 314 505 x 308 SO5 x 300

1010x328 1010x314 1010x308 1010x300

ing the input to the 8- and 16-bit FIFOs of each proposal.
This scheme, presented in Fig. 10, allows determining the
propagation time of a cell (tp) if we measure the quantity
(15), where tp(16) and tp(8) are the times measured in the
terminals of the integrated circuit (including pads and
multiplexers) for the 16- and 8-bit FIFOs, respectively.
This eliminates the contributions of the pads and output
multiplexers, since they contribute in the same way to
tp(16) and tp(8).

The total number of transistors per cell, including 9 of
the differential logic, isshown in Table 2. Both 8- and
16-bit FIFOs, for each architecture, were integrated in a
double metal standard 1.5 pm CMOS technology. The
area of each cell, shown in blocks, and of each FIFO are
presented in Table 2. Note that the least costly proposals
are PLCRAI and PLCR. A microphotograph of the FIFOs
is shown in Fig. 11.

I PSCA I PLCAR I PLCR I PLCRAI I
I 34x94 I 34x94 1 34x94 I 34x94 I Computation I block area

I 42x83 1 37x36 1 37x36 1 37x36 I Memory I elements area

Cells size

Global area

SO x 84

SO x 230

11500

36

Table 2. Characteristics of 1-bit FIFO cell including the
proposed architectures. Dimensions are in pm and
area in pm2.

Figure 111. Microphotograph of the chip.

5: Expeirimental Results

The designs realized were completely characterized
through EISPICE simulations and laboratory measure-
ments of integrated prototypes, showing a good behavior
in a wide range of operating conditions.

As a result of the timing characterization, Table 3
shows a group of time parameters measured from experi-
mental data. The most significant data is the throughput
and the latency of an 8-bit FIFO. This table also shows the
data calculated for each cell from eq. (15): precharge and
evaluation times for each data (0 and 1). As to power con-
sumption, measurements made in the frequency range 0 to
50 MHz and Vdd = 5 volts, obtained the data included in
the last ro’w of Table 3. Power values are around 3 mW per
cell, at a frequency of 50 MHz.

Table 3. Summary of experimental results.

Lastly, Fig. 12 shows a representation of the variation
with the bias voltage of two time parameters in each cell.
Concrete1,y it shows the evaluation and precharge time of a
cell if a ‘‘I ” is introduced in each FTFO.

22

Precharge Time of one stage for ” 0 ”

T - - r

” 3.5 4.5 5.5 6.5

Biasing (volts)
Evaiuation Time of one stage for “0”

4.5 5.5 6 6.5
NL’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
3.5

Biasing (volts)
Figure 12. Experimental timing data for the FIFOs.

6: Structure Comparison and Conclusions

This paper has shown the need to establish certain
time restrictions in a reknown reference architecture
[9][10]. To this end, four new linear self-timed cells have
been presented, all aiming to reduce the hardware of the
reference architecture. The first (PSCA) is a small, but im-
portant, modification of the cell proposed in [9] and [lo].
The second (PLCAR) is the result of using latches to store
data instead of edge-triggered flip-flops, and leads to a
slight modification of the data storage scheme. The third
and fourth proposals (PLCR and PLCRAI) also use latch-
es to store data, storing the request in the second element
of the pipeline interface memory. In both cases, STG is
modified to increase operation safety. For comparison and
application of the structures, two FIFO memories of 8 and
16 bits have been designed and integrated, incorporating
these architectures and the high-performance differential
structure S0:DS. A comparative study of the structures
presented led to the following conclusions:

Regarding time parameters, the structure with the
greatest throughput is PSCA, even moreso than the refer-
ence structure. This is followed by PLCAR, PLCRAI, and
PLCR. Latency values are very similar, with variations of

lo%, being PLCRAI the fastest. Regarding time restric-
tions, the least limiting are those of PLCR architecture.

Power experimental measurements show similar re-
sults for all structures (within 20%). The PLCRAI struc-
ture presents the lowest power consumption.

Regarding hardware requirements, a 1-bit cell for the
proposed architectures improves the original architecture
between 11 % and 36%. This improvement increases as we
increase the width of the data-path, since the proposed
schemes eliminates part of the hardware related to store
data in the data-path. Thus, for a 32-bits wide FIFO, the
gain goes from 32% (PSCA) up to 75% (PLCRAI).

7: References

ACOSTA, A.J., VALENCIA, M., BARRIGA, A.,
BELLIDO, M.J. and HUERTAS, J.L.: “SODS: A New
CMOS Differential-type Structure”, Proc. of European
Solid-state Circuits Conference, pp. 148-151. Sept. 1994.

ACOSTA, A.J.: “Gircuitos Integrados CMOS Autotempo-
rizados”, PhD Thesis, University of Seville, February, 1995.

ERDELYI, C.K., GRIFFIN, W.R. and KILMOYER, R.D.:
“Cascode Voltage Switch Logic Design”, VLSI Design, Vol.

HELLER, L.G., GRIFFIN, W.R., DAVlS, J.W. and
THOMA, N.G.: “Cascode Voltage Switch Logic: A
Differential CMOS Logic Family”. Proc. of the IEEE
International Solid-state Circuits Conference, pp. 16-17.
1984.

JACOBS, M.J. and BRODERSEN, R.W.: “A Fully
Asynchronous Digital Signal Processor Using Self-Timed
Circuits”, IEEE Journal of Solid State Circuits, Vol. 25, No.
6, pp. 1526-1537. December 1990.

LU, S.L.: “Implementation of Iterative Networks with
CMOS Differential Logic”. IEEE Journal of Solid-state
Circuits, Vol. 23, No. 4, pp. 1013-1017. August 1988.

MARTIN, A.J,: “Compiling Communicating Processes into
Delay-Insensitive VLSI Circuits”, Distributed Computing,
Vol. 1, No. 4, pp. 226-234, 1986.

MEAD, C.A. and CONWAY, L.: “Introduction to VLSI
Systems”, Addison-Wesley, 1980.

MENG, T.H.Y., BRODERSEN, R.W. and
MESSERSCHMITT, D.G.: “Automatic Synthesis of
Asynchronous Circuits from High-Level Specifications”,
IEEE Transactions on Computer-Aided Design, Vol. 8, No.

MENG, T.H.Y.: “Synchronization Design for Digital
Systems”, Kluwer Academic Pubs. 1991.

“SIS: A System for Sequential Circuit Synthesis”, Mem.
No. UCB/ERL M92/41. Univ. of California, Berkeley. 1992.

VAN BERKEL, K., BURGESS, R., KESSELS, J.,
RONCKEN, M., SCHALIJ, F, and PEETERS, A.:
“Asynchronous Circuits for Low Power: A DCC Error
Corrector”, IEEE Design and Test of Computers, Vol. 11,
No. 2, pp. 22-32. Summer 1994.

5, NO. 10, pp. 78-86. Oct. 1984.

11, pp. 1185-1205. NOV. 1989.

