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Resumen

Muchos problemas de la vida real pueden modelarse como problemas de clasificación,
tales como la detección temprana de enfermedades o la concesión de crédito a un
cierto individuo. La Clasificación Supervisada [9] se encarga de este tipo de proble-
mas: aprende de una muestra con el objetivo final de inferir observaciones futuras.
Hoy en día, existe una amplia gama de técnicas de Clasificación Supervisada. En este
trabajo nos centramos en los bosques aleatorios (Random Forests, [4]).

El Random Forests es una técnica de clasificación que consiste en construir una
colección de árboles de decisión individuales [8] sobre los cuales se aplica aleatoriedad
de cierta manera. Es conocido que esta técnica proporciona un buen rendimiento, in-
cluso cuando trata con problemas de gran escala como los que se tienen en la actu-
alidad. Sin embargo, existe una pequeña brecha entre la teoría relacionada con esta
técnica y la experiencia empírica de la misma. El Random Forests también es útil en
otros campos del Aprendizaje Automático: da medidas de importancia de las variables,
que podrían utilizarse en la Selección de Atributos, y una matriz de proximidades en-
tre las observaciones, lo que permite al analista detectar valores atípicos, reemplazar
valores perdidos, buscar prototipos y obtener una visualización comprensible de los
datos. Estas últimas propiedades hacen que el Random Forests sea una técnica aún
más atractiva.

En este trabajo se hace, en primer lugar, una breve descripción de la Clasificación
Supervisada, incluyendo las principales técnicas de validación y los criterios de rendimiento
más relevantes. En segundo lugar, se explica en detalle la construcción de un ár-
bol de clasificación. Seguidamente, se presenta el Random Forests y se revisan las
propiedades principales del mismo. Por último, se muestran resultados experimentales
en R.
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Introduction

Many problems in the real life can be modelled as classification problems: the early
detection of diseases or the granting of credit to a certain individual, among others.
Supervised Classification [9] handles this issue by learning from a sample in order
to infer forthcoming observations. Nowadays, there exist a wide range of Supervised
Classification techniques. Along this work, we will focus on Random Forests classifi-
cation method [4].

Random forests is a collection of individual decision trees [8] on which random-
ness is applied somehow. This classification technique is well-known for providing
great performance, even with large-scale problems. Nevertheless, there is a little gap
between theory and empirical experience in this scheme. Random Forests are also use-
ful for other fields in Machine Learning: they give measures of variables importance,
which could be used in Feature Selection, and proximities between observations, which
allows the analyst to detect outliers, replace missing values, search prototypes and ob-
tain a comprehensive visualization of the data. These latter properties make Random
Forests even more attractive.

This work is organised as follows. Chapter 1 introduces to the Supervised Clas-
sification, including the most relevant validation techniques and performace criteria.
Next, in Chapter 2, the construction of a classification decision tree is addressed in
detail. Then, Chapter 3 is enterely devoted to Random Forests. The main properties
of Random Forests are reviewed. Last, in Chapter 4, computational experience with
Random Forests is reported. The code in R software is also displayed.
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Chapter 1

Supervised Classification

Supervised Learning is one of the most relevant tasks in Machine Learning and Data
Mining. The general idea in Supervised Learning is to infer a function which is known
only for some examples, with the final goal of mapping new forthcoming examples.
Depending on the range of the inferred function, one can distinguish between Super-
vised Classification and Supervised Regression. Along this text we will mainly focus
on Supervised Classification and briefly survey the regression case.

The aim of Supervised Classification is to seek procedures for classifying objects
in a set Ω into a finite set C of nominal values or classes. Each object u in Ω has
associated a pair (xu, yu), where xu, the predictor vector, takes values on a set X ,
usually assumed to be a subset of Rp, and yu ∈ C is the class membership of the object.
Henceforce, each component of the predictor vector and y will be named predictor and
response variables, respectively.

The whole information about all the objects in Ω is not available as a rule. Instead,
we assume we are given a sample Dn = {(x1, y1), . . . , (xn, yn)} of independent ran-
dom variables distributed as the independent prototype pair (X,C). The goal is to use
the data set Dn to construct a classifier, i.e., an estimate mn : X −→ C of the function
m(x), which gives to each x the class minimizing the misclassification cost.

1.1 Scoring functions
Actually, classifiers are based on scoring functions fc : X → R built for each class
c ∈ C. These functions are in charge of ranking a forthcoming object: they indicate,
in a certain sense, the likelihood that an object represented by x belongs to each class.
In this way, the classifier will be given by the function

mn(x) ∈ arg max
c∈C

fc(x) ∀x ∈ X. (1.1)

These scoring functions have a particular property: if every fc is replaced by fc + h
for a common h, the same classifier mn is obtained. This property is interesting in
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binary classification problems since one of the scoring functions could be set equal
to zero and the classifier will only depend on the sign of one class, i.e., suppose the
variable response Y takes values in C = {Positive,Negative}, setting fNegative = 0, the
classifier (1.1) takes the form

mn(x) =

{
Positive if fPositive(x) ≥ 0
Negative otherwise . (1.2)

1.2 Validation techniques and performance criteria

A large body of the literature has been devoted to develop different classification meth-
ods. Although in this text we are interested in Random Forests [4], which are widely
used, many other classification methods have also been proposed: Support Vector Ma-
chines [11], Naïve Bayes [32], K-Nearest Neighbour [12], Neural Networks [14] and
Logistic Regression [22], among others. They all essentially differ in the statistical
assumptions made of the data and the type of algorithms needed to construct the clas-
sifier.

There is no classification technique that always outperforms the rest. In conse-
quence, it is necessary to compare some of them and choose the best possible one.
This is not an easy task, since several performance criteria, which will be discussed
below, could be considered.

Validation techniques

There exist different techniques for evaluating the power of prediction of each classi-
fier, named as validation techniques.

The simplest technique is to split the sample Dn into two disjoint sets: the training
set, the subset used for constructing the classifier, and the test set, the subset used for
estimating performance. These subsets are usually taken to contain two-thirds and one-
third of the entire sample, respectively. In this technique, known as hold-out method,
the classifier’s evaluation depends largely on how the division of the data is made.

An improvement of the hold-out method is the well-known k-folds cross-validation.
In k-folds cross-validation, the sample is divided into k subsets of similar size. Each
subset is used to test how the classifier constructed from the rest of the sample behaves.
Hence there are k classifiers and k estimates of the performance measures. Averaging
the k estimates, one obtains the k-folds cross-validation estimate. The choice of the
value of k varies according to the sample size though experts generally take k = 10.
When the test subsets are formed by one single instance, the technique is called leave-
one-out validation.

In some cases, the sample size is not very large and validation techniques based
on the idea of resampling are frequently used. A bootstrap [17] is a sample of the
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sample, that is, a set of observations extracted from the original sample, with replace-
ment and of the same size. The observations not appearing in the bootstrap sample
are called out-of-bag (OOB) observations. Similarly to the procedure described for
cross-validation, bootstrap aggregating [3], or bagging, is a methodology that gener-
ates multiple bootstrap samples and the classifier is trained with each one and then
every classifier is tested using the same test set: the original sample. Averaging again,
an estimate of the performance measure is obtained, eboot. The issue is that there are
observations in common between the training sets and the test set; thus, eboot will have
a considerable optimistic bias. It is known that the probability that a given observa-
tion is part of a bootstrap sample is 1 −

(
1− 1

n

)n −→
n

1 − e−1 ≈ 0.632; in other
words, approximately one-third of the sample is the set of OOB observations. In this
way, an estimate for each observation in the sample can be made by employing the
third part of classifiers in whose construction the particular observation has not taken
part. These results are averaged in order to obtain a unique estimate, eOOB. A com-
promise solution is proposed between both estimates, e0.632 = 0.368eOOB+0.632eboot.

Once the validation techniques have been defined, the most celebrated performance
measures, made over the test set, are reviewed in the next subsection.

Performance criteria

The most popular performance measure is the accuracy, defined as the proportion
of correctly classified objects. The accuracy gives us an idea of the general behav-
ior of the classifier; however, the classifier usually finds it easier to classify certain
classes and therefore it is also of interest to know the proportion of correctly classi-
fied objects per class. In the particular case of binary classification problems, C =
{Positive,Negative}, these correct classification rates are called sensitivity and speci-
ficity, respectively, and they can be deduced from the contingency table, a double entry
table that faces the predictions against the real classes, known as confusion matrix, is
commonly displayed, see Figure 1.1.

According to the above table,

Accuracy =
TP + TN

TP + FN + FP + TN

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN
.

The F-measure, the kappa coefficient and the so-called area under the Receiver
Operating Characteristic (ROC) curve, AUC, are prominent for binary classification
problems too.
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Figure 1.1: Confusion matrix.

The F-measure is defined as the weighted harmonic mean of the accuracy and sen-
sitivity, that is,

Fα =
1

α
1

Accuracy
+ (1− α)

1

Sensitivity

=
TP

α (FP − FN) + TP + FN
,

where the weight α ∈ [0, 1].
The kappa coefficient, κ, is an index of concordance between the predicted classes

and the real observations, but contrary to the accuracy, κ takes into consideration the
possible concordances due to chance.

κ =
Accuracy − Pchance

1− Pchance
,

where

Pchance =
(TP + FN) (TP + FP ) + (FP + TN) (TN + FN)

(TP + FN + FP + TN)2

is the hypothetical probability of concordance by chance. For κ = 1, the level of
concordance is perfect while for κ = 0, the concordande is due to chance. When κ
reaches negative values the concordance is less than one would expect by chance.

Last but not least, another performance measure is the AUC, or area under the
ROC curve. The ROC curve is generated by replacing (1.2) by the parametric class of
classifiers

mn,θ(x) =

{
Positive if fPositive(x) ≥ θ
Negative otherwise ,

where θ is the discrimination threshold between classes. For each value of θ, the classi-
fier’s sensitivity and specificity are computed and the ROC curve shows the sensitivity
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against (1 − Specificity), for different values of the parameter θ. As it can be seen in
Figure 1.2, for a fully random classification, the ROC curve corresponds to the seg-
ment joining the points (0, 0) and (1, 1). Hence, classification methods better than
fully random classification lead to ROC curves above such segment, with a larger area
under their ROC curve. In fact, the point (0, 1) represents the ideal classifier, as every
instance has been correctly classified. Therefore, the larger the AUC, the better the
classifier behaves.

Figure 1.2: ROC curves.

1.3 Supervised regression
In supervised regression, the scenario is similar to what was explained for supervised
classification, except that it is used to predict a quantitative response rather than a
qualitative one. The classifier is now defined as an estimate mn : X −→ R of the
function m(x) = E [C|X = x], in the sense of least squares.

For regression tasks, the above-described validation techniques do not change and
prediction quality is mainly measured by the Mean Squared Error (MSE) which con-
sists of the average of the squared errors made in each observation in a test sample
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Dtest of size |Dtest|,

MSE(Dtest) =
1

|Dtest|
∑

(xi,yi)∈Dtest

(yi −mn (xi))
2 .

The ideal is to get it as small as possible.



Chapter 2

Classification trees

Decision trees constitute a flexible nonparametric tool for predicting. Originally, deci-
sion trees were employed for regression, aiming to combat the limitations of multiple
regression techniques. The first system used was the AID (Automatic Interaction De-
tection) [31], developed by Morgan and Sonquist in the sixties, so that trees could be
considered a relatively new procedure. It took a decade for a decision tree to be used
in classification, leading to the program THAID [30]. Over the years, improvements
have been made to the pioneers, with other algorithms such as CLS (Concept Learn-
ing System) [23], CHAID (Chisquare-Automatic-Interaction-Detection) [25], CART
(Classification and Regression Trees) ([20] [8]), ID3 ([36] [34]), ACLS [33], ASSIS-
TANT [26] [10] and C4.5 [35], but, probably, the outstanding implementations by the
time were CART and C4.5.

Decision trees are known to be leaders in terms of interpretability: as we will see in
subsequent sections, the tree diagram allows, even non-experts, to interpret the predic-
tion easily. Their popularity is also due to their ability for measuring the importance
of predictor variables over the response variable and, therefore, to find out irrelevant
features in the model. Moreover, decision trees deal with any type of variables: cat-
egorical and continuous. This characteristic differentiates decision trees from other
prediction techniques like Neural Networks, among others, in which dummy variables
are to be created before building the classifier. In fact, decision trees do not require any
data preprocessing like normalizing data or deleting from the study those objects con-
taining some missing value. And as if that were not enough, the speed of construction
of a decision tree is considerably quick in comparison with Support Vector Machines,
for instance, that comprise solving a huge optimization problem.

Although decision trees are endowed with good properties, summarized in the pre-
vious paragraph, empirical evidence shows that they may not be as competitive as
other classifiers. For this reason, decision trees are not usually applied on their own.
A combination of a large number of them is used in their stead: bagging [3], random
forests [4] or boosting [19], to name the most relevant. Although these variants entail
a loss of interpretability, a great gain in prediction accuracy is obtained, which makes

15
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tree-based decision making at the same level as other powerful techniques.
In the remainder of this chapter, the goal is to provide an understandable descrip-

tion of the construction of a classification tree, with main focus on the CART model.
Finally, we will slightly move on to regression trees.

2.1 Getting familiar with classification trees
Prior to formally tackling the construction of a classification tree, some general notions
will be provided to readers. The main elements of a tree are presented too. Figure
2.1 depicts an example of a diagram tree for a hypothetical two-class classification
problem, C = {Positive,Negative}.

Figure 2.1: A diagram tree.

As it can be seen in Figure 2.1, a classification tree is a classifier that involves
the partitioning of Ω, carried out by consecutive and descendant divisions of disjoint
subsets of Ω. For instance, t21 and t22 are disjoint and add up the total previous subset,

t13 = t21 t t22.

Subsets are known as nodes. The root node is the one that appears the highest,
representing Ω itself. Non-split subsets, indicated by rectangular boxes, are called
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terminal nodes and they form a partition of Ω,

Ω = t11 t t31 t t32 t t33 t t21 t t22.

The rest of nodes are non-terminal nodes.
A class label of C is assigned to each terminal node in such a way that there may be

more than one terminal node with the same class label. The way to do this assignment
is yet to be defined.

Besides nodes, branches are another element of a tree. They indicate the different
decision options that can be taken in each split. Splits are due to conditions on the
variables in x = (x1, . . . , xp). For example, Split 2 into t21 and t22 could be of the
form

t21 = {x ∈ t13 : x2 + x4 ≤ 3}
t22 = {x ∈ t13 : x2 + x4 > 3} (2.1)

or Split 3 into t31, t32 and t33:

t31 = {x ∈ t12 : x5 = Blue}
t32 = {x ∈ t12 : x5 = Pink}
t33 = {x ∈ t12 : x5 = Grey} .

In order to predict the class of a given object making use of the classification tree in
the Figure 2.1, the procedure is to start by the first split and take the branch containing
the condition satisfied by the object. In this way, the object gets to another node from
with the same procedure is to be done and repeated until a terminal node is reached.
The predicted class for the object will be given by the class label attached to that ter-
minal node.

According to this brief introduction to classification trees, it follows that the growth
of a tree depends on four basic ingredients:

• Topology of the tree and type of splittings. First of all, the topology of the tree
is to be chosen, that is, the number of branches allowed in splits. In most cases,
trees are assumed to be binary. The kind of conditions on splitting have to be
decided too.

• Splitting criterion. At each non-terminal node, not any split works. It is neces-
sary to define a splitting criterion from which the selected split makes prediction
accuracy improves among the rest.

• Stopping criterion. Deciding when to continue splitting or declare a node ter-
minal is another task that should be taken into account.

• Classes assignment. Finally, once the terminal nodes have been located, the last
step is to assign a class label to each one of these nodes.

The essence of the problem is, therefore, how to address these issues to obtain an
accurate classifier. This will be discussed in the next sections.
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2.2 Topology and type of splitting
The topology or shape of a decision tree comprises, as advanced before, the determi-
nation of how many different branches or options there are when a split is carried out
to create new nodes. There exist binary splitting and multi-splitting.

Let us address separately the cases in agreement with the type of variable under
consideration. Recall that working with both, categorical and continuous variables, is
feasible in this framework. Let us start with categorical variables.

Suppose we depart from a node t. Let xm, 1 ≤ m ≤ p, be a categorical variable,
taking values, say, in {b1, . . . , bQ}. For binary splitting, two alternatives are frequently
considered. For i = 1, . . . , Q the first alternative is to consider only as possible splits
the following subsets:

tL = {u ∈ t : xum = bi}
tR = {u ∈ t : xum 6= bi} ,

denoting tL and tR the left and right new subsets. Q possible splits are done in this
way. The second alternative is to consider every possible subset of {b1, . . . , bQ}, that
is,

tL = {u ∈ t : xum ∈ S}
tR = {u ∈ t : xum 6∈ S} ,

where S ranges over all subsets of {b1, . . . , bQ}. In this case, since tL and tR generate
the same subsets with L and R reversed, 2Q−1 − 1 splits are necessary.

For multi-splitting, a new branch per each i, 1 ≤ i ≤ Q, is created, subdividing the
current node into

ti = {u ∈ t : xum = bi} . (2.2)

Let xm, 1 ≤ m ≤ p, be continuous now, so we have from Dn n real values of
xm. Assuming that these values are in order from lowest to highest, at most n − 1
different divisions can be done for binary splitting at most, by separating the l first
objects, already ordered up to xm, and the remaining n− l, with l = 1, . . . , n− 1, i.e.:

tL = {u ∈ t : xum ≤ cl}
tR = {u ∈ t : xum > cl}

(2.3)

where the cutpoint cl is the halfway between consecutive data values of xm. However,
not every divisions must be considered; those splits in which there is not a change of
class are dominated by the others. Anyway, the bigger is n, the bigger is the number
of potential cutoffs to be taken into consideration, which is time-consuming. In order
to reduce the computational burden, continuous variables can be discretized in a pre-
vious step. Multi-splitting in continuous variables is not of interest because it has been
proved that there is not any advantage in prediction accuracy over binary splitting, [27].
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The process explained above is actually applied to univariate splits, that is, splits
defined by one single predictor variable. Nevertheless, this consideration can be ex-
tended to multivariate splits, splits in which several predictor variables take part, see
(2.1). This extension seems to be plausible in terms of accuracy. Linear splits are
the most popular multivariate splits. Aside from heuristic algorithms, they can be per-
formed by using Linear Discriminant Analisis or the linear SVM, to name a couple of
them.

The simplest topology of a decision tree is when treating with univariate splits and
binary splittings. This method is known as recursive binary splitting.

2.3 Splitting criteria

The problem of building an optimal binary tree is NP-complete. Due to the complexity
of this elementary tree, all trees are constructed by a greedy procedure: at each non-
terminal node, all possible splits are generated and the best of them at the current
step, according to a splitting criterion, is selected. However, this election could not
be optimal for future steps. In this section, the splitting criterion par excellence is
described.

Assuming that the set S of possible splits is already computed for a particular
non-terminal node, the issue is to decide which of them is the best option in order to
improve the classifier accuracy.

First of all, some definitions and notations are needed. Remind the general frame-
work: we are giving a sample Dn = {(x1, y1), . . . , (xn, yn)} with xi ∈ X and
yi ∈ C = {C1, . . . , Ck}, 1 ≤ i ≤ n. Denote nj the number of observations in Dn

that belong to the same class Cj , for 1 ≤ j ≤ k. Prior class probabilities πj can be
then estimated from the sample as follows

πj =
nj
n
.

Given a node t, let nj(t) be the number of observations in t that belong to the same
class Cj , 1 ≤ j ≤ k, and n(t) the total numbers of observations that have fallen into
node t; the proportion of examples belonging to Cj fixed an arbitrary node t is given
by

πj(t) =
nj(t)

n(t)
. (2.4)

Then, an estimation of the probability that an example reaches the node t and belongs
to class j can be deduced:

P (Cj, t) = πjπj(t).

On another hand, the marginal probability that an observation reaches the node t is
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given by

P (t) =
k∑
j=1

P (Cj, t).

The probability that an observation belongs to class j given that it falls into node t is
defined by

P (Cj|t) =
P (Cj, t)

P (t)
.

When πj are estimated using (2.4), one has

P (Cj|t) =
nj(t)

n(t)
,

so these probabilities are the relative proportions of class j in node t.
The above definitions will help us to understand the splitting criteria. The way par

excellence to select the best split, according to the types introduced in Section 2.2,
is to choose the split that best separate the objects in the training sample up to their
classes, that is, that produces the maximum reduction in the diversity or impurity of
objects associated to resultant nodes. To better see this idea, imagine a four-classes
binary tree. The proportions of the classes in the initial node are equal, i.e., P (j|t0 =
Ω) = 1/4 ∀ j = 1, . . . , 4. A good splitting criterion would be to take the split that
leads to two new descendant nodes in which there are only the half of the classes, as
shown in Figure 2.2. A quantitative measure of the effectiveness of a split in this sense

Figure 2.2: First split of a four-classes binary tree. The frequencies of classes that fall
into each node appear next.

is obtained by the concept of impurity.
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Definition 2.3.1 (Impurity function). Let Φ : P −→ R where

P =

{
(p1, . . . , pm) :

m∑
j=1

pj = 1, pj ≥ 0, j = 1, . . . ,m

}
.

Φ is an impurity function if it verifies

(1) Φ reaches its unique maximum at the point (
1

m
, . . . ,

1

m
).

(2) Φ achieves its minima exclusively at the points (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,
(0, . . . , 0, 1).

(3) Φ is a symmetric function of p1, . . . , pm, i.e., if there is a permutation of the
variables pj , Φ will remain constant.

Definition 2.3.2 (Impurity measure). Let Φ be an impurity function. An impurity mea-
sure i(t) of any node t is defined as

i(t) = Φ (P (C1|t), . . . , P (Ck|t)) ,

where P (Cj|t) is the estimated probability of class j within node t.

In this way, the impurity measure will achieve its maximum when every classes in
node t are in the same proportion, and its minimum when there is only one class in
node t.

Since the fundamental idea is to produce purer nodes, the selection of the split of a
parent node will be done in terms of a new concept: the information gain, which mea-
sures somehow the purity gained when a node is split into descendant nodes according
to a type of splitting. In what follows, this concept is formally defined.

Definition 2.3.3 (Information gain). Let s ∈ S be a possible split, let r be the number
of branches considered in the growth of the tree and let i be an impurity function. The
information gain of s relative to node t is defined as the average reduction of impurity
obtained by splitting the observations within node t up to s

G (t, s) = i(t)−
r∑
j=1

qji (tj) , (2.5)

where tj is each descendant node originated in the splitting and qj the proportion of
observations (within node t) that become elements from new node tj .

By virtue of the above definition, the selected split over the current set of nodes Ωc

will be the one that maximizes the corresponding information gain:

G (t∗, s∗) = max
t∈Ωc,s∈S

{G(t, s)} . (2.6)
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It is not hard to see from (2.5) that maximizing the information gain when there is one
single node t is equivalent to minimizing the term that is substracted in the formula,
i.e., minimizing the weighted average impurity of the possible new descendant nodes
of t.

Therefore, once an impurity function is chosen, the selection criterion is perfectly
defined.

2.3.1 Impurity functions
Common impurity functions are introduced now, that is, functions that present the
desirable properties listed in Definition 2.3.1. They are: the classification error rate or
misclassification rate, the Gini index and the cross-entropy.

2.3.1.1 Classification error rate

Given the vector (p1, . . . , pm) ∈ P , the classification error rate (CER) is defined as

Φ(p1, . . . , pm) = 1− max
1≤j≤m

{pj} .

In the field of decision trees, the elements pj are assumed to be P (Cj|t) according to
Definition 2.3.2, thus, CER would be the fraction of observations in node t that do not
belong to the most common class. It seems that CER has the deficiency of not being
sensitive enough for the overall tree-growing procedure. For further details, the reader
is refered to [8]. The following impurity functions are preferable instead.

2.3.1.2 Gini index

Given the vector (p1, . . . , pm) ∈ P , the Gini index is defined as

Φ(p1, . . . , pm) =
m∑
j=1

pj(1− pj) = 1−
m∑
j=1

p2
j .

When pj = P (Cj|t), the Gini index measures the total variance across all the k classes.
By the way this index is defined, it takes smaller values if every pj in node t is close
to zero or one. In this sense, node impurity is perfectly measured: a small value will
indicate that the node is dominated by a single class.

2.3.1.3 Cross-entropy

Given the vector (p1, . . . , pm) ∈ P , the cross-entropy is defined as

Φ(p1, . . . , pm) = −
m∑
j=1

pj log2(pj)
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Figure 2.3: Impurity functions for two classes.

with the agreement 0 log2 0 = 0. The negative sign is due to the p′js: in this field, they
represent probabilities and it follows that log pj < 0 when 0 ≤ pj ≤ 1.

The interpretation with pj = P (Cj|t) is quite similar to the Gini index: if a node
is pure, the cross-entropy will take a small value. In fact, the Gini index and the cross-
entropy are usually alike numerically.

Actually, the concept of entropy was first introduced in Information Theory. In this
way, it can be seen as the minimum number of information bits needed to encode the
classification of any object in a particular node. For instance, Φ (1, 0, . . . , 0) = 0 since
the given object belongs to C1 undoubtedly, with no need for any message or any bit
to transmit its information.

In Figure 2.3, these three impurity functions are shown for a two-class problem.

2.3.2 Gain ratio

In the case of non-binary trees, the information gain is a measure that gives advantage
to those variables that have a lot of categories when deciding the splitting. To deal
with this problem, alternative measures for the selection of the splitting variable have
been proposed. One of them is the gain ratio, which penalizes variables with many
categories by means of the information value.
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Definition 2.3.4 (Information value). Let A be a variable with r possible categories.
Let mj(t) be the number of examples of category j that fall into node t. Then, the
information value Iv(A, t) of A into t is defined as

IV (A, t) = −
r∑
j=1

mj(t)

n(t)
log

(
mj(t)

n(t)

)
. (2.7)

The information gain is nothing more than the cross-entropy defined above but,
instead of considering the outputs of the classification, the categories of variable A are
now adressed. From the information gain, the gain rate is defined.

Definition 2.3.5 (Gain rate). Let t be a node and A a particular variable. The gain
rate of A in node t is:

GR (A, t) =
G(A, t)

IV (A, t)
(2.8)

where G and IV refer to the information gain and variable, respectively.

The gain rate presents an issue: its denominator can be near zero if mj(t) and
n(t) are closer to each other for some category. A heuristic rule can be adopted: first,
the information gain is computed for each variable candidate to the splitting and then,
making use of the same selection rule based on the gain rate (2.6), the splitting is
chosen. The only difference is that only those variables whose gain is above average
will be considered.

2.4 Stopping criteria
In the previous section, the methodology for evaluating the quality of a particular split
has been analyzed. The following step is to decide when to declare a node terminal.

The process of growing a tree could continue until every node contains one single
observation. In this way, there will be one terminal node per observation in the given
sample, so each one will be labelled with the class of its corresponding observation.
This proposal can present serious deficiencies in practice, ending up in the great prob-
lem of Machine Learning: the overfitting. The overfitting is the effect of getting any
learning algorithm that has learned too much from the training sample and is not able
to generalize and predict new examples, see Figure 2.4. Several criteria that help to
avoid overfitting are usually taken.

A first criterion is not to split a node t if the maximum information gain that one
would obtain by making the split is lower than some pre-set threshold β:

max
s∈S

G (s, t) ≤ β.

Although this rule seems to be quite reasonable, it may not provide satisfactory out-
comes: if β is too small, the resulting tree may be too complex and overfit the training
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Figure 2.4: Overfitting.

data; if β increases, it takes chances of stopping splitting nodes with low maximum
information gain, but whose descendant nodes would do suffer splits with a high max-
imum information gain.

Another rule that is also used is the one based on stopping the subdivision of a node
if it does not present a minimum number of training examples. 1, 5 or 10 are typical
values.

Finally, a criterion based on statistic tests exists and it is due to [25]. The idea is to
continue splitting until the class distribution of the available observations is indepen-
dent to the variables in the predictor vector. For categorical variables, one can use the
χ2 test; for continuous ones, the F − Student test.

Actually, an alternative of these rules is done in practice. Instead of stopping the
growth of the tree, a very large tree is built and properly pruned later so that the
branches that explain worse are eliminated. This process of pruning a tree is devel-
oped in Section 2.7.

2.5 Labeling terminal nodes
Once terminal nodes are declared by means of a stopping criterion, the class labels
assignment is still left. Recall from Section 2.1 that the set of terminal nodes T induces
a partition of Ω. Let t ∈ T be a terminal node. The assignment rule is

A : T → C

t 7→ arg max
Cj

nj(t), (2.9)
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that is, depending on the classes of the observations fallen in the given node, the as-
signed label will be the one corresponding to the most frequent class.

The size of the classification tree is defined as the total number of terminal nodes,
|T |.

Note 2.5.1. The outcomes of a decision tree are invariant to monotone transformations
of the input variables.

2.6 Classification tree step by step
At this juncture, after describing theoretically the top-down construction of a classi-
fication tree, a simple example is now shown. Firstable, see Algorithm 1 to have a
pseudocode with the main steps of the construction of a classification tree.

Algorithm 1: Top-down construction of a classification tree.

Input: the training set Dn, the type of splitting, the number of branches
allowed, the splitting criterion and the stopping criterion.

Set P := {Dn} the initial list of non-terminal nodes;
Set Pfinal := ∅;
while P 6= ∅ do

for t ∈ P do
if in t the stopping criterion is satisfied then

Delete t from P ;
Pfinal ← Concatenate(Pfinal, t);

end
Compute the information gain for t along every predictor variable,
according to the topology of the tree;

end
Choose the best split, the one whose information gain is maximum;
Cut the node t according to the best split and call t1, . . . , tr the resulting
nodes;

Remove t from P ;
P ← Concatenate(P, t1, . . . , tr);

end
Label nodes in Pfinal using definition (2.9);

Output: A classification tree by terms of the set of terminal nodes Pfinal.

Now, imagine it is interesting to know the policy employed by a certain bank upon
granting a loan, depending on two characteristics of the applicants: their age and their
income level. In this way, suppose this information is got for eleven old applicants, as
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Applicant Age Income level Loan granted
1 22 Medium No
2 26 Medium No
3 30 Medium Yes
4 32 Low No
5 40 High Yes
6 45 Medium Yes
7 60 High No
8 54 Medium Yes
9 50 Low No

10 48 High Yes
11 20 High No

Table 2.1: Sample.

well as the final decision of the bank, see Table 2.1. Then, there is a continuous variable
(age) and a categorical one (income level); and the set of classes is C = {Yes,No}.

First, every element of the classification tree is to be chosen: univariate splits will
be considered; for the age, splits will be like in (2.3), and for the income level, multi-
splitting is used, (2.2); the impurity measure selected is the cross-entropy; and the
stopping criterion will be not to continue splitting a node that has less than 5 observa-
tions. Let us start!

The initial node contains the eleven observations. Since there are 6 “No” and 5
“Yes”, the cross-entropy for t0 is:

i(t0) = −
[

6

11
log2

6

11
+

5

11
log2

5

11

]
= 0.99.

Now, the information gain is computed for every possible split. Since univariate splits
are used, age and income level can be studied separately.

For the age, the first step is to order the different ages and take into account as
many splits as changes in classes are. The arrows in Table 2.2 indicate the cutpoints to
be taken.

Applicant 11 1 2 3 4 5 6 10 9 8 7
Age 20 22 26 30 32 40 45 48 50 54 60

Loan granted No No No Yes No Yes Yes Yes No Yes No

↑ ↑ ↑ ↑ ↑ ↑

Table 2.2: Age. Split 1.

Then, it can be seen in Table 2.3 the information gain.
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Age
Cutpoint Splits qi P (No|ti) P (Yes|ti) i(ti)

∑
j qji(tj) G(t0, s)

28
Age ≤ 28 3/11 3/3 0/3 0

0.76 0.23
Age > 28 8/11 5/8 3/8 0.95

31
Age ≤ 31 4/11 3/4 1/4 0.81

0.92 0.07
Age > 31 8/11 5/8 3/8 0.98

36
Age ≤ 36 5/11 4/5 1/5 0.72

0.83 0.16
Age > 36 6/11 2/6 4/6 0.92

49
Age ≤ 49 8/11 4/8 4/8 1

0.98 0.01
Age > 49 3/11 2/3 1/3 0.92

52
Age ≤ 52 9/11 5/9 4/9 0.99

0.99 0
Age > 52 2/11 1/2 1/2 1

56
Age ≤ 56 10/11 5/10 5/10 1

0.91 0.08
Age > 56 1/11 1/1 0/1 0

Table 2.3: Information gain. Age. Split 1.

For the income level, see Tables 2.4 and 2.5.

Income level Low Medium High
Applicant 4 9 1 2 3 6 8 5 7 10 11

Loan granted No No No No Yes Yes Yes Yes No Yes No

Table 2.4: Income level. Split 1.

Income level
Splits qi P (No|ti) P (Yes|ti) i(ti)

∑
j qji(tj) G(t0, s)

Income level = Low 2/11 2/2 0/2 0
0.80 0.17Income level = Medium 5/11 2/5 3/5 0.97

Income level = High 4/11 2/4 2/4 1

Table 2.5: Information gain. Income level.

Regarding Tables 2.3 and 2.5, one can see that the first split to be done is “Age ≤
28” and “Age < 28”. In this sense, the variable age is the one that best explains the
response variable, i.e., the one that best classifies loans applicants. See Figure 2.5. The
resulting nodes are t11 and t12. The node t11 is already represented with a squared box,
indicating that the stopping criteria has been satisfied and, also, the class label has been
assigned regarding the most ocurring class in that node. The next step will be to split
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Figure 2.5: First split. Numbers in nodes t11 and t12 correspond to applicants fallen
into each node.

Applicant Age Income level Loan granted
3 30 Medium Yes
4 32 Low No
5 40 High Yes
6 45 Medium Yes
7 60 High No
8 54 Medium Yes
9 50 Low No

10 48 High Yes

Table 2.6: Subsample in node t12.

the node t12, see Table 2.6. Again, the same procedure as before is repeated only with
this subsample.

i(t12) = −
[

3

8
log2

3

8
+

5

8
log2

5

8

]
= 0.95.

Applicant 3 4 5 6 10 9 8 7
Age 30 32 40 45 48 50 54 60

Loan granted Yes No Yes Yes Yes No Yes No

↑ ↑ ↑ ↑ ↑

Table 2.7: Second split. Age.
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Age
Cutpoint Splits qi P (No|ti) P (Yes|ti) i(ti)

∑
j qji(tj) G(t12, s)

31
Age ≤ 31 1/8 0/1 1/1 0

0.86 0.09
Age > 31 7/8 3/7 4/7 0.98

36
Age ≤ 36 2/8 1/2 1/2 1

0.94 0.01
Age > 36 6/8 2/6 4/6 0.92

49
Age ≤ 49 5/8 1/5 4/5 0.72

0.79 0.16
Age > 49 3/8 2/3 1/3 0.92

52
Age ≤ 52 6/8 2/6 4/6 0.92

0.94 0.01
Age > 52 2/8 1/2 1/2 1

56
Age ≤ 56 7/8 2/7 5/7 0.86

0.75 0.3
Age > 56 1/8 1/1 0/1 0

Table 2.8: Information gain. Age. Split 2.

Income level Low Medium High
Applicant 4 9 3 6 8 5 7 10

Loan granted No No Yes Yes Yes Yes No Yes

Table 2.9: Income level. Split 2.

Income level
Splits qi P (No|ti) P (Yes|ti) i(ti)

∑
j qji(tj) G(t12, s)

Income level = Low 2/8 2/2 0/2 0
0.35 0.60Income level = Medium 3/8 0/3 3/3 0

Income level = High 3/8 1/3 2/3 0.92

Table 2.10: Information gain. Income level. Split 2.

See Tables 2.7, 2.8, 2.9 and 2.10. It is deduced that the second and last split, as
it can be seen in Figure 2.6, is the multi-splitting by the income level. Last, the new
terminal nodes have been labeled. The conclusion drawn from this classifier is the
following: it is likelt that, if an applicant is early age or is older but has low income,
the bank does not look like to give that loan. In other cases, the response is “Yes”.
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Figure 2.6: Second split. Final tree.

2.7 Tree Pruning

Building a too big tree may cause overfitting and building a too small tree, perhaps,
all the information available in the sample Dn for classification may not be used. So
it is sometimes preferable to search the right-sized tree. The usual way to do this is
to build a tree large enough Tmax (for instance, until every node contains one single
observation) and then, having the general overview of the tree, to prune it up in a
proper way to obtain a subtree.

Given a node t, to prune a tree T from node t consists of deleting every descesdant
node of t; that is, if Tt is the subtree with root node t, the pruning of Tt is to delete
every node in Tt except t, which will turn into a terminal node. As usual, the most
frequent class will label this new node. The resulting tree T ′ is a subtree of T , T ′ � T .
Such reduction should be made only if T ′ does not performs worse than T over the set
of objects used for its validation.

The best known procedure for pruning a tree is cost-complexity pruning, proposed
in [8]. Given a classification tree T , its performance is defined as a sum of some
measure over every terminal node, i.e.,

R(T ) =

|T |∑
t=1

i(t) =

|T |∑
t=1

Φ (P (C1|t), . . . , P (Ck|t)) ,



32 2.8. Regression trees

where Φ usually denotes the fraction of cases in the training sample that are misclassi-
fied, but any impurity function can be used. R(T ) is called the resubstitution error of
T . So, given a real number α, the total cost Rα(T ) of tree T is defined as

Rα(T ) = R(T ) + α|T |. (2.10)

The parameter α is the penalty imposed over the complexity (size) of the tree; while
small values of α will originate trees with a huge number of terminal nodes, big values
of α will originate trees with few terminal nodes. The basic idea given in [8] is to
select a subtree T (α), with the same root node that Tmax, that minimizes (2.10).

2.8 Regression trees
For regression trees, the construction is quite similar. In fact, Sections 2.2 and 2.4 can
be applied to the regression case without change. Regarding splitting criteria, the split
is selected by minimizing the Residual Sum of Squares (RSS). The residual of each
observation is computed as the difference of its value in the response variable and the
mean value of all observations in the same node. By last, as expected, the prediction
or value associated to each terminal node is usually the mean of the response variable
in every training object that has fallen into the same terminal node.
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Ensembling trees: Random Forests

Random forests (RFs) are a state of the art prediction method. RFs are known for
usually providing great predictions and being flexible enough to deal with large-scale
problems, even in settings where the number of variables is much larger than the num-
ber of observations. Despite being widely used, RFs’ performance is not supported by
many theoretical results. There is, therefore, a little gap between theory and empirical
experience in this scheme. Even so, along this chapter, the most celebrated theoretical
results of RFs will be sketched out.

A random forest is a collection of individual decision trees, reviewed in Chapter
2, each of which is constructed by applying randomness twice: first, a training sample
is selected randomly for each tree and, secondly, randomness is injected somehow in
the split selection process. The term random forest is attributed to Breiman, who first
introduced it in [4].

RFs inherit the properties from decision trees, which were named in the introduc-
tion of Chapter 2: they give measures of variables importance and proximities between
observations, mainly. The extension of these properties to RFs usually makes the con-
clusions more reliable since a collection of different predictors are now taken into
account. In addition to others, these properties are fully discussed afterwards.

3.1 Random forests. Influences and definition.

3.1.1 Background

First of all, the road to RFs is introduced to the reader in this first section.
Decision trees, discussed in Chapter 2, are known to suffer from high variance.

This means that if two decision trees are grown over two disjoint subsamples from the
training data, they may lead to quite different results. A general procedure for reducing
variance of any learning method is bagging [3], which has already been presented in
Chapter 1. The idea of bagging given in Chapter 1 was to give a technique for handling

33
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small datasets. In this context, using bagged trees is based on the statistical result
outlined in Note 3.1.1.

Note 3.1.1. Given B independent observations, each with variance σ2, the variance of
the mean of these observations is reduced to σ2/B.

So, considering a collection of decision trees is translated into a reduction of vari-
ance, which directly leads to an increase of prediction accuracy. The random subspace
method was also proposed for constructing decision forests [21]. This method aims
to reduce correlation between trees by randomizing the predictor variables to use in
each individual tree. The next stop to RFs is random split selection [16], which uses
bagging with the only difference that at each node, among the k best potential splits,
the final split is chosen in a random way. Breiman emphasizes that the key paper, the
one that was really decisive to develop random forests, was [1], in which a random
selection of features at each split is done for a particular problem. And this is how the
Random Forests grew up [4].

3.1.2 Definition

Random forests share common characteristics with bagging: B decision trees are
grown over B bootstrapped training samples and the prediction is the class with ma-
jority vote too; but, at each time a split is considered, a random sample of m predictor
variables is chosen randomly among the p initial predictor variables. Remember from
Chapter 1 that the observations not appearing in the bootstrap sample are called OOB
observations. At first sight, this randomization of bagged trees seems not to make sense
but it helps to “decorrelate” trees. In order to understand how it decorrelates trees we
will use the explanation given in [24], which is quite simple. Consider a dataset that
contains a very strong predictor variable together with other moderately strong predic-
tor variables. Then, although the number of decision trees is large, most of them will
locate the strong predictor variable in the top split. In consequence, every decision tree
will look quite similar to each other, and predictions in all the trees will be highly cor-
related. This fact would imply that the reduction in variance will not be as important
as expected.

Definition 3.1.1 (Random forests’ prediction). Let {mn (X, θb)}1≤b≤B be a family of
B individual decision trees, built as in Algorithm 2. Given an unlabeled observation
x, its predicted class using RFs is

mn(x, θ1, . . . , θB) = arg max
Cj

B∑
b=1

I{mn(x,θb)=Cj},

where I(·) is the indicator function.
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Algorithm 2: RF’s construction.

Input: inputs in Algorithm 1, the number of trees B and the number of
predictor variables to select randomly at each split p.

for b ∈ {1, . . . , B} do
Generate a bootstrap sample of Dn, Dn(θb).
Store the OOB observations in Dn(θb).
Construct an individual decision tree according to Algorithm 1 over Dn(θb).
Compute the bootstrap error for the tree, i.e.,

eboot(b) =

∑
(x,y)∈Dn(θb) I{mn(x;θb)6=y}

|Dn(θb)|
.

end
Obtain the bootstrap error by averaging over all the trees, i.e.,

eboot =
1

B

B∑
b=1

eboot(b).

Output: The collection of individual decision trees for RFs,
{mn (X, θb)}1≤b≤B, and the bootstrap error, eboot.

3.1.2.1 Parameters tuning

Research in parameters tuning is scarce in RFs. Article [15] handles these issues.
The first parameter is the size of the forest, that is, the number B of individual

decision trees to be grown. Breiman [4] introduces an interesting result for B: RFs do
not overfit as largerB is, but yield a limiting value of the generalization error. Theorem
3.1.1 picks up this result. Two previous definitions are needed.

Definition 3.1.2 (Margin function). Let {mn (X, θb)}1≤b≤B be a family ofB individual
decision trees. The margin function mg(·) is defined as

mg(X, Y ) =

(
1

B

B∑
b=1

I{mn(X,θb)=Y }

)
−max

j 6=Y

(
1

B

B∑
b=1

I{mn(X,θb)6=j}

)

where I(·) is the indicator function.

According to Definition 3.1.2, the margin function measures how much (in fre-
quency) objects correctly classified exceed objects misclassified in any other class.
Thus, the larger this margin function is, the more confidence in the prediction.
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Definition 3.1.3 (Generalization error). The generalization error of a random forest is
defined as the probability that the margin function is negative, i.e.:

PE∗ = P(X,Y ) [mg(X, Y ) < 0] .

Theorem 3.1.1. The generalization error PE∗ converges almost surely to

P(X,Y )

[
Pθ (mn(X, θ) = Y )−max

j 6=Y
(mn(X, θ) = j) < 0

]
.

The proof of Theorem 3.1.1 follows directly from the Strong Law of Large Num-
bers and it can be found in [4]. Actually, this result can be extended to any ensemble of
classifiers. One consequence of Theorem 3.1.1 is that one does not require to compute
a very large number of decision trees, since, from a value B∗ on, the predictive power
of the model will stay the same. In this context, Latinne el al. propose in [28] an ap-
proach for determining a priori the number B in order to obtain an accuracy similar to
the one obtained with a larger B. This approach is based on a non-parametric test, the
McNemar test [29]. Given two random forests RFm and RFn of size m and n, respec-
tively, the McNemar test compares the number of examples misclassified by RFm but
not by RFn (labeled Mmn) and the number of examples misclassified by RFn but not
by RFm (labeled Mnm), i.e., informally, the test is

H0 : There is no difference between RF ′n and RF ′m predictions.

There are three possible answers when computing the McNemar test: to rejectH0 with
Mmn > Mnm, in this case the conclusion is that combining n decision trees yields
a significant improvement in performance than combining m decision trees, and the
procedure should carry on with a B larger than m; to reject H0 with Mnm > Mmn,
here the procedure must stop and use B = m; or not to have significant evidence for
rejecting H0, which means that there is not significant difference between growing n
or m decicion trees, so the final decision must be to construct the minimum classifiers
as possible: B = m. Experimental results in [28] show that B can be limited signif-
icantly. Nevertheless, authors in general, included [15], believe that the parameter B
is irrelevant and opt not to tune it, as long as they take it large enough for getting the
stability (Breiman [6] proposes B = 1000 or B = 5000) but for computations to be
completed within a reasonable time.

The second parameter is m, the number of predictor variables taking part in each
split. Breiman in [5] found m = d√pe to be a good choice since he obtained generally
near optimum results. His advice is to grow three random forests with m = d√pe,
m = 2d√pe and m = 1

2
d√pe, respectively, and observe the one that performs the best

and move around that value. Breiman also points out that a higher m works better
when noise predictor variables are present. In [15], they conclude, again, that tuning
this parameter is not an interesting task.



Chapter 3. Ensembling trees: Random Forests 37

Aside from choosing B and m, the elements of each tree have to be decided, that
is, the topology of the trees, the types of splitting, the splitting criterion, the stopping
criterion and if they are pruned trees or not. So far, the proposed RFs’ are collections of
unpruned trees. The elements named are the ones that differentiate between trees. For
instance, Breiman’s original forest uses CARTs: unpruned trees with univariate splits,
binary splitting, the information gain as a splitting criterion and the nodesize criterion.
In the R package randomForest, 1 is set as a default value of nodesize, and 5
for regression. These values are reported to be a good choice in [15].

3.2 Properties of Random Forests
During the construction of the individual trees the OOB observations can be used to
measure the performance of the forest without requering an independent validation set
(as we could appreciate in Algorithm 2), as well as obtaining some information about
the data. Also, the output of the individual trees give us some interesting information.
Hereafter, the main properties of RFs are being reviewed.

3.2.1 Variable importance
RFs provide variable importance measures, making them very interesting since a hi-
erarchy of the predictor variables can be obtained from the model, that is, it can be
measured how related each predictor variable is to the response variable. Moreover,
these measures help with another appealing task in Machine Learning: Feature Selec-
tion. Feature Selection is the process of discarding irrelevant or redundant predictor
variables, without losing power in prediction. In this way, the robustness of the classi-
fier may be improved and computing time will be reduced.

Two embedded methods for measuring variable importance are described: the
Mean Decrease Accuracy (MDA, [4]) and the Mean Decrease Impurity (MDI, [5]).
They are called embedded because they are specific for RFs and are computed during
the training process.

Note 3.2.1. Breiman [5] proposed to grow more than the usual number of trees if one
searches for some auxiliary information like variable importance measures or proximi-
ties (which will be seen later), to make these measures stable. In [15], Breiman’s thesis
is supported experimentally: as B grows, the variable importance measures start to
be stable.

3.2.1.1 Mean Decrease Accuracy

The Mean Decrease Accuracy (MDA, [4]), also known as the permutation importance
measure, is one of the most common variable importance measures. MDA is based
on the following principle: if a variable is not influential in the model, rearranging the
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values it takes should not degrade prediction accuracy. If the predictor variable brings
nothing but random noise, the prediction accuracy will like not to be affected after
the permutation. OOB observations will be the main characters in MDA. Every time
an individual tree is grown over a bootstrap sample, accuracy in OOB observations is
going to be computed. Also, accuracy in OOB observations after permuting the values
of some variable will be computed. The MDA of that variable is obtained by averaging
over all trees the differences of both accuracies. See Algorithm 3.

Algorithm 3: Computing MDA.

Input: inputs in Algorithm 2.

for b ∈ {1, . . . , B} do
Generate a bootstrap sample of Dn, Dn(θb).
Store the OOB observations in Dn(θb).
Construct an individual decision tree according to Algorithm 2 over Dn(θb).
Compute the number of correctly classified samples in Dn(θb),i.e.,

Accb =
∑

(x,y)∈Dn(θb)

I{mn(x;θb)=y}.

for j ∈ {1, . . . , p} do
Permute randomly the values that predictor variable j takes on the set
Dn(θb), yielding a sample Dn(θb)

j
.

Compute the number of correctly classified samples in Dn(θb)
j
,i.e.,

Accjb =
∑

(x,y)∈Dn(θb)
j

I{mn(x;θb)=y}.

Compute difjb = Accb − Accjb.
end

end
for j ∈ {1, . . . , p} do

MDA(X(j)) =
1

B

B∑
b=1

difjb.

end

Output: Mean Decrease Accuracy (MDA) for each predictor variable.

Therefore, the larger the MDA, the better the associated predictor variable.

Note 3.2.2. If permutations are done over OOB observations in the same class, a
measure of variable importance over each class is obtained.
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3.2.1.2 Mean Decrease Impurity

Another way for ranking predictor variables is Mean Decrease Impurity (MDI, [5]).
Recall that the splitting criterion used for growing a decision tree, extensively ex-
plained in Section 2.3, was to select among every non-terminal node that split that
maximizes the information gain. This means that if a variable appears in a given node
is because, among the other m preselected variables, it is the one that best separates
between classes. As a result, the MDI is based on that idea: given a predictor variable
Xj , its corresponging MDI is obtained by averaging over all the trees in the forest the
decrease of impurity (or, equivalently, information gain in our language) corresponding
to splits along that variable, which is weighted with the fraction of examples falling
in that node. As we can see, here the OOB observations do not take part, only the
bootstrapped training samples are used. See Algorithm 4.

When the impurity function is the Gini index, this measure is commonly called
Gini importance.

Algorithm 4: Computing MDI.

Input: inputs in Algorithm 2.

for b ∈ {1, . . . , B} do
Generate a bootstrap sample of Dn, Dn(θb).
Construct an individual decision tree according to Algorithm 2 over Dn(θb).
Initialize WIG as the null vector of dimension p.
for j ∈ {1, . . . , p} do

for t ∈ {1, . . . , number.of.non.terminal.nodes} do
if j partitions node t then

WIG(Xj) = WIG(Xj) +
Nt

N
IG(t, s)

end
end

end
end
for j ∈ {1, . . . , p} do

MDI(Xj) =
1

B

B∑
b=1

WIG(Xj).

end

Output: Mean Decrease Impurity (MDI) for each predictor variable.

Note 3.2.3. The importance of a predictor variable is usually given by its relative
influence, which is simply the fraction of its importance measure over the sum of the
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importance measures of all variables:

RIM(Xj) =
IM(Xj)∑p
i=1 IM(X i)

,

where RIM is the abbreviation of Relative Importance Measure, IM is the Impor-
tance Measure that can be any of MDA and MDI and Xj refers to the j-th predictor
variable.

3.2.2 Proximity measure
A proximity measure quantifies the similarity or dissimilarity of pairs of objects. RFs
give a novel and embedded way to obtain a similarity measure between objects.

The standard proximity measure was proposed by Breiman [5] and is computed as
follows. Let i and j be two objects, the similarity measure between both, δij , is the
proportion of trees that the RF places both in the same terminal node. Starting with
δij = 0, object i and object j are applied down each tree and, each time they end up
in the same terminal node, δij is increased by one. Finally, this measure is normalized
by the number of trees B. Usually, this proximity measure is calculated while the
construction of RF taking use of the OOB observations. Now, it is not normalized by
B but by the number of trees where each pair of OOB observations concur.

Proximities are represented by an object-by-object matrix, ∆ = (δij), which is
symmetric. Every δij takes values on the closed interval [0, 1]. δij near to one means
that objects i and j are alike; so, the main diagonal only contains ones since any object
is trivially similar (equal) to itself. As consequence, the closer δij is to zero, the more
dissimilar objects i and j are.

Recall that Breiman in [4] and authors in [15] find it necessary to take a large
number of trees to get stable estimates of data proximity. In [18], a new proximity
measure when few trees are grown is proposed:

δij =
1

B

∑
b∈B

1

ew·gijb
,

where gijb is the number of branches between the two terminal nodes where i and j
have fallen in tree b, and w is an arbitrary parameter that controls the influence of the
distance between both terminal nodes. To know how g works, go to Figure 2.1 and
check that gt11,t21,1 = 3. In this way, given a tree b, if i and j end up in the same
terminal node, gi,j,b = 0 and δij will be increased by one as in the original proximity
measure.

In addition to give a different proximity measure using RFs, in [18] an approach
for assessing the quality of data proximity matrices is proposed: to use them as kernel
matrices in a Support Vector Machine (SVM) classifier. The best data proximity matrix
will be the one that gives the highest classification accuracy. Both proximity measures,
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the standard and the new ones, are compared thereby. An SVM based on the radial
basis function kernel is also used. Experimental results across four data sets show
that the proposed measure improves the data proximity estimate, especially when RFs
are made of a small number of trees. Furthermore, an SVM exploiting the suggested
proximity matrix kernel has been able to outperform an SVM based on the standard
radial basis function kernel in many cases.

A data proximity matrix is an important information source from which RFs can
take sides for many relevant tasks in data mining: data visualization via scaling, outlier
detection, missing values imputation and prototypes search; some of them specific for
RFs’ similarities and others, more general. A review of how the proximity matrix
obtained with RF can be applied to these fields is done next, [7].

3.2.2.1 Data visualization

Data visualization includes every technique that helps to uncover hidden patterns in
data by means of pictures. In order to provide a visual representation of the pattern
of proximities, RF’s similarity measure in our case, the classical approach used for
this is MultiDimensional Scaling (MDS, [13]). MDS is similar to Principal Compo-
nent Analysis (PCA) with the main difference that PCA uses as input the correlation
matrix and MDS, any proximity matrix (dissimilarity matrices, generally). The RF’s
dissimilarity matrix is defined as ∆̄ = (δ̄ij), where

δ̄ij =
√

1− δij.

Without going into much detail, the main idea of the MDS is, given ∆̄, to construct
n vectors, v1, . . . , vn ∈ Rm, as many as observations in the sample, such that ‖vi −
vj‖ ' δ̄ij ∀i, j = 1, . . . , n, where ‖ · ‖ is an arbitrary norm. When this norm is the
Euclidean one, the MDS is known as the Classical MDS (CMDS). In other words, if
we are dealing with CMDS, for instance, the method returns a set of points in a low
dimensional Euclidean space such that the Euclidean distances between the points are
preserved.

The m new coordenates are ordered in the sense that for i < j, the i-th coordenate
explains more about the proximity of data than the j-th coordenate, ∀i, j = 1, . . . ,m.
For this reason, the first two coordinates of all new points v1, . . . , vn are usually pro-
jected down into the two dimensional plane and if points of different classes are also
coloured differently, an overview of how separated the classes are can be observed. In
this way, this picture would allow analysts to decide if the model explains the response
variable properly or, by contrast, the information obtained is confusing. The way of in-
terpreting this graph is: the closer the distance between points, the closer the similarity
between their corresponding objects.

In Chapter 2 of [13], a practical algorithm for the CMDS and its theoretical devel-
opment can be found.
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Figure 3.1: Representation of an outlier.

3.2.2.2 Outliers detection

In Statistics, an outlier is an observation that is numerically distant from the rest of the
data. See Figure 3.1. It is quite interesting to explore data in order to locate outliers,
since the conclusions obtained from a particular model can be disturbed if they include
such observations. Sometimes they should even be excluded.

Proximities allow to obtain a measure of outlyingness for each observation in the
data set. In this setting, Supervised Classification and Proximity Measures, outliers
are defined as observations having weak proximities to the remaining observations in
the same class. Given an observation (xi, yi), let Ii the set of observations in Dn that
belongs to the same class, that is,

Ii = {(xj, yj) ∈ Dn : yj = yi, i 6= j} .

Take the inverse of the average of the squared similarity measures in Ii, yielding to

Oi =
|Ii|∑
j∈Ii δ

2
ij

.

Now, Oi’s are normalized by substracting the median in Ii, Mi, and dividing by the
mean absolute deviation of Oi from the median, MADi = |Oi − Mi|. The final
outlying measure for observation i is

O∗i =
Oi −Mi

MADi

.

This measure of outlyingness takes large values for instances away from others in its
same class. Generally, a value over 10 for a given observation is a sufficient reason to
suspect that such observation is a potential outlier, [5]. Negative values of this measure
are set to zero.

3.2.2.3 Missing values imputation

Observations with missing values are those in which the value of any of the predictor
variables is unknown. A common practice is to get rid of those records that contain
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missing values or of the predictor variable that contains them. The former is not ef-
fective if the size of Dn is small; the latter is even worse, since that predictor variable
could be decisive for the classification. A first and cheap solution for not losing any in-
formation is to replace every missing value in them-th predictor variable by the median
or the most frequent value of non-missing values in that predictor variable, depending
on whether it is a continuous or categorical variable, respectively. Breiman [5] also
proposes an iterative process using RFs for improving this missing values imputation
by means of RFs and their proximity measure. See Algorithm 5.

Algorithm 5: Missing values imputation using RF.

Step 1 Make an initial estimate of the missing values using the median or mode as
appropriate, depending on if the variable is continuous or categorical,
respectively.

Step 2 Compute Algorithm 2 and obtain the data proximity matrix.

Step 3 Make a new imputation of initial missing values:

Continuous Weighted average of non-missing values in that variable, using
proximities as weights.

Categorical The most frequent modality of non-missing values in that variable,
weighting the frequencies by the proximities.

Step 4 Repeat Step 2 and Step 3 to ensure proximities convergence.

The missing values imputation method described above is more expensive; nev-
ertheless, it has turned out to be remarkably effective. For Step 4 in Algorithm 5,
Breiman pointed to make from 4 to 6 iterations.

3.2.2.4 Prototypes search

Through the proximity matrix obtained in RF, prototypes can be estimated. Given a
class Ci, a prototype is defined as a representative instance of the whole class Ci. The
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method for selecting the prototypes for each class is explained in Algorithm 6.
Algorithm 6: Protoypes selection.

Input: the sample Dn, the similarities δij and a scalar s.

For each observation in Dn, the s nearest neighbors using δij .
For each class, the observation that has more neighbors of that class is
identified. The prototype for the class is the neighbors’ medioid.

Output: A prototype for each class.

The medioid in Algorithm 6 is obtained by calculating the median for the continu-
ous predictor variables and the mode for the categorical ones.

3.3 Regression Random Forests
Regression RFs are a collection of regression decision trees. Randomness is applied
twice in the same way as for Classification RFs. For regression, m is suggested to be
dp

3
e and, for Breimans’ forests, nodesize is usually 5. As expected, the prediction

of a collection of regression decision trees is the mean of the predictions over each
individual regression tree.



Chapter 4

Random Forests in R

This last chapter is devoted to put into practice everything learned about RFs in the
previous chapters using the software R. First, the necessary code for exploiting RFs’
properties is shown; second, an experiment to measure the ability of RFs for Feature
Selecion tasks.

The package randomForest is going to be used along this chapter, whose main
function is also called randomForest that has as input arguments the following.

## S3 method for class 'formula'
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
## Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else
ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y))
5 else 1,
maxnodes = NULL,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest),
corr.bias=FALSE,
keep.inbag=FALSE, ...)

Most arguments are selfexplanatory. Note that the default value of importance
is FALSE but, in the case the analyst writes TRUE the ranking of the predictor variables
explained in the Subsection 3.2.1 is done. Furthermore, proximity works similar:

45
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it will take the value TRUE if the analyst wants to store the standard proximity matrix
and FALSE, otherwise.

4.1 Random Forests and properties
The purpose of this section is to show the properties of RFs using R. The study will
be carried out over the well-known Iris data set, which contains the measures in cen-
timeters of the predictor variables Sepal Length, Sepal Width, Petal Length and Petal
Width for 150 flowers of three different species: Setosa, Versicolor and Virginica. This
data set is balanced: there are exactly 50 individuals from each of the classes. For
classification, the goal would be to correctly classify the three species according to the
four characteristics of the flowers.

First, we load the data and get a brief statistical summary of the data.

data(iris)
str(iris)

## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2...
## $ Species : Factor w/ 3 levels "setosa","versicolor",
## "virginica"

summary(iris)

## Sepal.Length Sepal.Width Petal.Length
## Min. :4.300 Min. :2.000 Min. :1.000
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
## Median :5.800 Median :3.000 Median :4.350
## Mean :5.843 Mean :3.057 Mean :3.758
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
## Max. :7.900 Max. :4.400 Max. :6.900
## Petal.Width Species
## Min. :0.100 setosa :50
## 1st Qu.:0.300 versicolor:50
## Median :1.300 virginica :50
## Mean :1.199
## 3rd Qu.:1.800
## Max. :2.500
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library(randomForest)

In this context, we do not worry about tuning any parameter and we build the random
forest taking B = 1000 and m = 2. The training sample will be the entire data set.
Because of randomness in this technique, it is advisable to previously set a seed in
order to make the results reproducible.

set.seed(1349187)
iris.rf = randomForest(Species∼., data=iris, ntree=1000,

mtry=2)
print(iris.rf)

##
## Call:
## randomForest(formula = Species ~ ., data = iris,
## ntree = 1000, mtry = 2)
## Type of random forest: classification
## Number of trees: 1000
## No. of variables tried at each split: 2
##
## OOB estimate of error rate: 4.67%
## Confusion matrix:
## setosa versicolor virginica class.error
## setosa 50 0 0 0.00
## versicolor 0 47 3 0.06
## virginica 0 4 46 0.08

As it can be seen above, we obtain a prediction error rate of 4.67% and, in view of
the confusion matrix, we conclude that the specie Setosa is the best classified over the
OOB observations. Moreover, the model is presumed to confuse the species Versicolor
and Virginica.

The first property we are going to obtain from the built random forest is the impor-
tance of the four predictor variables in the model. In order to rank them according to
their importance, the same random forest will be re-build imposing importance =
TRUE.

set.seed(1349187)
iris.rf = randomForest(Species∼., data=iris, ntree=1000,

mtry=2, importance=TRUE)
importance(iris.rf)

## setosa versicolor virginica
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## Sepal.Length 8.916362 10.098419 12.051028
## Sepal.Width 6.624870 1.037431 8.454989
## Petal.Length 30.762171 46.828426 39.621372
## Petal.Width 32.085780 46.794090 44.675201
## MeanDecreaseAccuracy MeanDecreaseGini
## Sepal.Length 15.506218 9.976061
## Sepal.Width 8.264094 2.454234
## Petal.Length 46.363973 42.803821
## Petal.Width 47.402607 44.058583

The previous table shows the measures of importance of each variable. Let us see it
graphically.

varImpPlot(iris.rf)
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iris.rf

Both measures of variable importance reviewed are represented in the picture above:
on the left side, the MDA; on the right side, the MDI using the Gini index as the
impurity function. On this occasion, there is no discrepancy between both measures
since they point out that the predictor variables Petal.Width and Petal.Length are the
most important.

Next, following the same order than in Section 3.2, let us obtain the standard prox-
imity matrix. Again, the same forest is built, now adding proximity = TRUE.

set.seed(1349187)
iris.rf = randomForest(Species∼., data=iris, ntree=1000,

mtry=2, proximity=TRUE)

A matrix of dimension 150 by 150 is obtained. Let us see, for example, the measure
of proximity for the first five observations, which correspond to flowers of the species
Setosa.



Chapter 4. Random Forests in R 49

iris.rf$proximity[1:5,1:5]

## 1 2 3 4 5
## 1 1.0000000 0.9683544 0.9931973 0.9930070 1.0000000
## 2 0.9683544 1.0000000 0.9877301 0.9790210 0.9791667
## 3 0.9931973 0.9877301 1.0000000 1.0000000 0.9925373
## 4 0.9930070 0.9790210 1.0000000 1.0000000 0.9913043
## 5 1.0000000 0.9791667 0.9925373 0.9913043 1.0000000

It is observed that the first five cases are closely related. Also, remember that they are
part of the species that our model classifies best.

From now on, we exploit the ability of the proximity matrix.

Data visualization

MDSplot(iris.rf,iris$Species,pch=19,cex=1.1,
palette=c(3,5,6),main="Multidimensional Scaling")

legend(-0.55,0.44,col=c(3,5,6),pch=19,
legend=levels(iris$Species),cex=1.1)
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This graph shows that the Setosa species is clearly distinguished from the other two
species, as the confusion matrix advanced.
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Outliers detection

out_measure = outlier(iris.rf)
plot(out_measure,type="h",col=c("green","red","blue"),
[as.numeric(iris$Species)])
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The species Setosa does not present huge levels of outlyingness, compared to species
Versicolor and the Virginica, being the latter the one with more outliers.

Missing values imputation

Iris database does not present missing values; however, we will do an experi-
ment in order to see how good the imputation method provided by random forests
is when replacing missing values. Suppose we do not know the values of the variable
Sepal.Length of flowers 1 (Setosa), 51 (Versicolor) and 101 (Virginica). The algorithm
of imputation of lost values will be applied and, later, the difference between the pre-
dicted and the real values of the predictor variable Sepal.Length for the three flowers
is going to be computed.

iris.na = iris
iris.na[1,"Sepal.Length"]=NA
iris.na[51,"Sepal.Length"]=NA
iris.na[101,"Sepal.Length"]=NA
set.seed(1349187)
iris.imputed = rfImpute(Species∼., iris.na)
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(dif1 = iris.imputed[1,"Sepal.Length"]
-iris[1,"Sepal.Length"])

## [1] -0.1046023

(dif51 = iris.imputed[51,"Sepal.Length"]
-iris[51,"Sepal.Length"])

## [1] -1.125318

(dif101 = iris.imputed[101,"Sepal.Length"]
-iris[101,"Sepal.Length"])

## [1] 0.4308188

Except for the flower 51, the method has a proper performance.

Prototypes search

Last, a representative instance for each species is being computed.

x = iris[,names(iris)!="Species"]
label =iris$Species
(iris.prot=classCenter(x,label,iris.rf$proximity))

## Sepal.Length Sepal.Width Petal.Length
## setosa 5.0 3.4 1.5
## versicolor 5.8 2.8 4.3
## virginica 6.5 3.0 5.6
## Petal.Width
## 0.20
## 1.30
## 2.05

For every species, the previous table shows the medioid, i.e., the instance that best
represents its class. We will represent the prototypes together with the observations
over the predictor variables related to the petals.



52 4.2. Feature Selection based on Random Forests

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Observations and prototypes

Petal.Length

P
et

al
.W

id
th

setosa
versicolor
virginica

4.2 Feature Selection based on Random Forests

RFs provide two measures of variable importance: the MDA and the MDI, previously
reviewed in Subsection 3.2.1. In this section, the purpose is to use these measures
as Feature Selection techniques and investigate their performance. Given a data set,
the idea is to train different classifiers with different techniques of Feature Selection
in the current literature (including those for RFs’ variable importance measures) and
check which technique performs best in terms of the accuracy over a test set, totally
independent from the training set. The technique that gives the highest accuracy over
the whole set of classifiers will be considered as the best. Remember from Chapter 1
that the accuracy is defined as the proportion of observations correctly classified by a
given classifier.

The package randomForest will be used for computing MDA and MDI. The
other techniques will be taken from the package FSelector, which contains some
functions for selecting attributes from a given dataset. Among them, the functions
cfs, chi.squared, oneR, relief and consistency are used. While the techniques cfs and
consistency give a subset of predictor variables to consider, the techniques chi.squared,
oneR and relief perform similar to MDA and MDI: their outcoming is a ranking of the
predictor variables, so the size of the subset of predictor variables is to be chosen. In
this study, around the 25% of the whole set of predictor variables is taken.

The classifiers to be used in this study are: Naive Bayes (NB), Radial Basis Func-
tion (RBF) SVM and of course Random Forests (RF).
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An outline of the experiment can be seen in Algorithm 7.
Algorithm 7: Comparison of Feature Selection techniques.

Given a data set:
Step 1. Split the sample into a training sample (70%) and a test sample (30%).
Step 2. Obtain the subset of predictor variables considered for every Feature
Selection technique using the training sample.

Step 3.
• Train the different classifiers making their corresponding parameters tuning for

every subset of predictor variables obtained in Step 2. The training sample is
used.

• Measure the performance (accuracy) over the test sample of every pair Feature
Selection technique - Classifier.

Step 4. Get conclusions.
Three different data sets are used for this task: Breast Cancer Wisconsin, Iono-

sphere and Spam data sets:

• Breast Cancer Wisconsin, which consists of a sample of size 569 on which 30
continuous features are computed from a digitized image of a fine needle aspirate
(FNA) of a breast mass. They describe characteristics of the cell nuclei present in
the image. Moreover, there is a variable that identifies every observation, which
is out of the study, and the response variable malignant that takes the value 1 if
the cell is malignant and 0, otherwise.

• Ionosphere, which comprises 351 observations (electrons in the ionosphere) on
which 35 variables were measured. The first 34 variables are predictor and con-
tinuous, except two of them that have been removed from the study; the last one
is the response variable and takes good if returns are those showing evidence of
some type of structure in the ionosphere and bad, if returns are those that do not;
their signals pass through the ionosphere.

• Spam, which contains a sample of 4601 e-mails spam and non-spam so the re-
sponse variable takes one of these values. In addition to this class label there are
57 predictor variables indicating the frequency of certain words and characters
in the e-mail.

The code used in R for the Spam dataset will be displayed next. For Breast Cancer
Wisconsin and Ionosphere data sets, the procedure is the same.

First, the data set Spam is loaded from the library kernlab. During the experiment,
when dealing with randomness, seeds are going to be set in order to make the results
reproducible at any code line.
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library(kernlab)
data(spam)

Step 1

set.seed(123)
n <- nrow(spam)
trainindex <- sample(1:n, size = floor(0.7*n))
spam.train <- spam[trainindex,]
spam.test <- spam[-trainindex,]

Step 2

At the same time each subset of predictor variables is obtained for a given Feature
Selection technique, the training and the test samples for that restricted set of predictor
variables are going to be stored.

MDA and MDI

The way of obtaining both variable importance measures provided by RF is based
on Breiman’s advice: B is taken large enough in order to get stable measures, B =
5000, and m is tuned between m1 = d√pe, m2 = 1

2
d√pe and m3 = 2d√pe. The

chosen value of m will be the one that give the low error rate in the OOB observations.
For the MDI, the Gini index is taken as the impurity function.

library(randomForest)

p <- ncol(spam)-1
m1 <- round(sqrt(p))
m2 <- 0.5*m1
m3 <- 2*m1

set.seed(123)
RFm1 <- randomForest(type∼., data=spam.train, ntree=5000,

mtry=m1)
print(RFm1)

##
## Call:
## randomForest(formula = type ~ ., data = spam.train,
## ntree = 5000, mtry = m1)
## Type of random forest: classification
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## Number of trees: 5000
## No. of variables tried at each split: 8
##
## OOB estimate of error rate: 4.63%
## Confusion matrix:
## nonspam spam class.error
## nonspam 1897 60 0.03065917
## spam 89 1174 0.07046714

set.seed(123)
RFm2 <- randomForest(type∼., data=spam.train, ntree=5000,

mtry=m2)
print(RFm2)

##
## Call:
## randomForest(formula = type ~ ., data = spam.train,
## ntree = 5000, mtry = m2)
## Type of random forest: classification
## Number of trees: 5000
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 5%
## Confusion matrix:
## nonspam spam class.error
## nonspam 1899 58 0.02963720
## spam 103 1160 0.08155186

set.seed(123)
RFm3 <- randomForest(type∼., data=spam.train, ntree=5000,

mtry=m3)
print(RFm3)

##
## Call:
## randomForest(formula = type ~ ., data = spam.train,
## ntree = 5000, mtry = m3)
## Type of random forest: classification
## Number of trees: 5000
## No. of variables tried at each split: 16
##
## OOB estimate of error rate: 4.88%
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## Confusion matrix:
## nonspam spam class.error
## nonspam 1892 65 0.03321410
## spam 92 1171 0.07284244

According to the results, m = m1:

set.seed(123)
RF <- randomForest(type∼., data=spam.train, ntree=5000,

mtry=m1, importance=TRUE)
names <- colnames(spam)
size <- ceiling(0.25*p)

subsetMDA <- names[order(RF$importance[,"MeanDecreaseAccuracy"],
decreasing = TRUE)][1:size]

trainMDA <- spam.train[,c(subsetMDA,"type")]
testMDA <- spam.test[,c(subsetMDA,"type")]

subsetMDGini <- names[order(RF$importance[,"MeanDecreaseGini"],
decreasing = TRUE)][1:size]

trainMDGini <- spam.train[,c(subsetMDGini,"type")]
testMDGini <- spam.test[,c(subsetMDGini,"type")]

Now, from FSelector package.

library(FSelector)
library(RWeka)

CFS

subsetCFS <- cfs(type∼., spam.train)
trainCFS <- spam.train[,c(subsetCFS,"type")]
testCFS <- spam.test[,c(subsetCFS,"type")]

chi.squared

weightsChi <- chi.squared(type∼.,spam.train)
subsetChi <- cutoff.k(weightsChi, size)
trainChi <- spam.train[,c(subsetChi,"type")]
testChi <- spam.test[,c(subsetChi,"type")]

oneR
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weightsOneR <- oneR(type∼.,spam.train)
subsetOneR <- cutoff.k(weightsOneR,size)
trainoneR <- spam.train[,c(subsetoneR,"type")]
testoneR <- spam.test[,c(subsetoneR,"type")]

relief

weightsRelief <- relief(type ., spam.train, neighbours.count
= 5, sample.size = 20)

subsetRelief <- cutoff.k(weightsRelief, size)
trainrelief <- spam.train[,c(subsetrelief,"type")]
testrelief <- spam.test[,c(subsetrelief,"type")]

Consistency

subsetConsistency <- consistency(type∼., spam.train)
trainConsistency <- spam.train[,c(subsetConsistency,"type")]
testConsistency <- spam.test[,c(subsetConsistency,"type")]

Step 3 In this step every classifier has to be trained with the training sample of
each Feature Selection technique and, then, be evaluated over their corresponding test
sample. Here, the pairs NB-MDA, RBF SVM-MDA and RF-MDA are displayed.
Nonetheless, all the pairs have been computed and are shown in Table 4.1.

NB

NB does not require any tuning procedure, which speeds up the experiment.

library(e1071)

NBMDA <- naiveBayes(type∼.,data = trainMDA)
preditestNBMDA <- predict(NBMDA,testMDA[,-ncol(trainMDA)])
confutestNBMDA <- table(testMDA[,ncol(trainMDA)],

preditestNBMDA)
(NBMDAaccuracy <- 100*(confutestNBMDA[1,1]+

confutestNBMDA[2,2])/sum(confutestNBMDA))

## [1] 82.26

RBF SVM

The RBF SVM has two parameters to tune. The same parameters grid has been
made for all cases and the pair of parameters that give the best performance is chosen.
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set.seed(123)
tunedMDA <- tune.svm(type∼., data = trainMDA,

gamma = 10̂(−6 : −1), cost = 10̂(−1 : 1))
SVMMDA <- tunedMDA$best.model
preditestSVMMDA <- predict(SVMMDA,testMDA[,-ncol(trainMDA)])
confutestSVMMDA <- table(testMDA[,ncol(trainMDA)],

preditestSVMMDA)
(SVMMDAaccuracy <- 100*(confutestSVMMDA[1,1]+

confutestSVMMDA[2,2])/sum(confutestSVMMDA))

## [1] 92.54

RF

For RF, the phase of the parameters tuning has been identical to how variable im-
portance measures provided by RF were obtained in Step 2: B = 5000 and m is
chosen among the values m1 = d√pe, m2 = 1

2
d√pe and m3 = 2d√pe, now being p

the size of the subset of predictor variables for a given Feature Selection technique.

pMDA <- length(trainMDA)-1
mMDA1 <- round(sqrt(pMDA))
mMDA2 <- 0.5*mMDA1
mMDA3 <- 2*mMDA1

set.seed(123)
RFmMDA1 <- randomForest(type∼., data=trainMDA, ntree=5000,

mtry=mMDA1)
print(RFmMDA1)

##
## Call:
## randomForest(formula = type ~ ., data = trainMDA,
## ntree = 5000, mtry = mMDA1)
## Type of random forest: classification
## Number of trees: 5000
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 5.65%
## Confusion matrix:
## nonspam spam class.error
## nonspam 1887 70 0.03576903
## spam 112 1151 0.08867775
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set.seed(123)
RFmMDA2 <- randomForest(type∼., data=trainMDA, ntree=5000,

mtry=mMDA2)
print(RFmMDA2)

##
## Call:
## randomForest(formula = type ~ ., data = trainMDA,
## ntree = 5000, mtry = mMDA2)
## Type of random forest: classification
## Number of trees: 5000
## No. of variables tried at each split: 2
##
## OOB estimate of error rate: 5.99%
## Confusion matrix:
## nonspam spam class.error
## nonspam 1894 63 0.03219213
## spam 130 1133 0.10292953

set.seed(123)
RFmMDA3 <- randomForest(type∼., data=trainMDA, ntree=5000,

mtry=mMDA3)
print(RFmMDA3)

##
## Call:
## randomForest(formula = type ~ ., data = trainMDA,
## ntree = 5000, mtry = mMDA3)
## Type of random forest: classification
## Number of trees: 5000
## No. of variables tried at each split: 8
##
## OOB estimate of error rate: 5.65%
## Confusion matrix:
## nonspam spam class.error
## nonspam 1879 78 0.03985692
## spam 104 1159 0.08234363

According to the results, m = m1:
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RFMDA <- RFmMDA1
preditestRFMDA <- predict(RFMDA,testMDA[,-ncol(trainMDA)])
confutestRFMDA <- table(testMDA[,ncol(trainMDA)],

preditestRFMDA)
(RFMDAaccuracy <- 100*(confutestRFMDA[1,1]+

confutestRFMDA[2,2])/sum(confutestRFMDA))

## [1] 93.92

Step 4 Finally, results are presented for each data set in the study and they are
discussed. The performance of NB, RBF SVM and RF without doing any Feature
Selection technique has also been computed.

Classifiers noFS MDA MDGini CFS Chi oneR Relief Consistency
NB 72.48 82.26 86.75 86.17 83.13 53.66 68.79 74.51

SVM 93.55 92.54 93.12 91.74 92.90 86.68 86.89 92.54
RF 94.42 93.92 94.06 92.40 93.99 87.83 88.05 93.99

Table 4.1: Feature Selection experiment. Accuracy in Spam data set.

Classifiers noFS MDA MDGini CFS Chi oneR Relief Consistency
NB 79.24 89.62 92.45 91.51 56.80 87.74 88.68 83.96

SVM 96.23 94.34 94.34 95.28 91.51 90.57 94.34 88.68
RF 95.28 93.40 93.40 96.23 93.40 88.68 89.62 92.45

Table 4.2: Feature Selection experiment. Accuracy in Ionosphere data set.

Classifiers noFS MDA MDGini CFS Chi oneR Relief Consistency
NB 97.66 98.25 95.32 97.66 92.98 91.81 97.08 98.25

SVM 97.08 95.91 98.25 95.91 96.49 92.98 98.83 95.91
RF 96.49 94.74 95.91 93.57 94.15 91.23 95.91 96.50

Table 4.3: Feature Selection experiment. Accuracy in Breast Cancer Wisconsin data
set.

Tables 4.1, 4.2 and 4.3 illustrate the power of RFs variable importance measures.
The MDA and the MDI using the Gini index usually head the set of best Features
Selection techniques, even being leader in some cases. It seems that the MDI usually
performs a little better than the MDA for these data sets.
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