
Variability Management in an unaware software product
line company. An experience report

David Benavides and José A. Galindo
Departamento de Lenguajes y Sistemas Informáticos

Universidad de Sevilla
{benavides,jagalindo}@us.es

ABSTRACT

Software product line adoption is a challenging task in soft-
ware development organisations. There are some reports in 
the literature of how software product line engineering has 
been adopted in several companies using different variabil-ity 
management techniques and patterns. However, to the best 
of our knowledge, there are no empirical reports on how 
variability management is handled in companies that do not 
know about software product line methods and tools. In this 
paper we present an experience report observing variability 
management practices in a software development company 
that was unaware of software product line approaches. We 
briefly report how variability management is performed in 
different areas ranging from business architecture to software 
assets management. From the observation we report some 
open research opportunities for the future and foster further 
similar and more structured empirical studies on unaware 
software product line companies.

KEYWORDS

Experience report, software product lines, unaware variabil-
ity techniques organisation

1. INTRODUCTION

Software product line engineering is one of the mainstream 
tendencies in software engineering industrial practices. It is 
well known that transitioning from a project oriented soft-
ware engineering method to a software product line engineer-
ing approach is not a trivial task [22] and may constitute a

strategic decision [3]. There some reports on how compa-
nies transitioned towards a product line approach [4, 9, 14,
16, 20, 26]. According some of these reports, for product
line adoption success, a strong management commitment
is needed as well as a long-term vision. According to [15]
smooth transition strategies eliminate many adoption barri-
ers. In this sense, a first step in a smooth transition strategy
can be to observe the current product-line-related practices
inside an unaware product line organisation, i.e. reporting
the existing approaches of the organisation without giving
too much details on software product line engineering meth-
ods or tools.

To the best of our knowledge, there are no empirical re-
ports of what kind of product line practices are handled in
companies that do not know about software product line en-
gineering but that have a positive potential characteristics
for the transition. To push forward in this direction, in this
paper we present an experience report observing variability
management practices in a software development company
that was unaware of software product line approaches. One
of the authors expended two months working full time in-
side the company and gave little detailed information about
software product line engineering. Methods, processes, tools
and other software engineering artefacts were observed and
several meetings and interviews were held during that time.
After the information gathering, we were able to determine
some variability management practices in the company and
opportunities for improvement.

We briefly report how variability management is performed
in different areas ranging from business architecture to soft-
ware assets management. We can conclude that although
product line engineering concepts were unknown, the com-
pany already have some variability management practices
developed inside the organisation. These practices were
mostly reactive rather than proactive and systematic in the
sense that the organisation reacted to reuse and variability
management needs after those needs were detected instead
of planning for reuse. We also report some open research
questions that can be studied in the future and can stim-
ulate further similar and more structured empirical studies
on unaware software product line companies because we be-
lieve that this can serve as a value input for companies tran-
sitioning to a product line and for the research community
to discover research opportunities.

1.1 The organisation
The organisation visited in this experience was the “Servi-



cio de Rentas Internas” (SRI) 1 in Ecuador, South America.
This is the tax agency of the central government of Ecuador.
It has more than 3000 workers in all the areas and is divided
in eight main national divisions. One of these divisions is the
National Division of Technological Development (“Dirección
Nacional de Desarrollo Tecnológico”), which is responsible
for providing software, hardware services and infrastructure
for business processes automation as well as citizen and com-
panies relationships with the tax agency. This division has
more than 200 employees and is organised in different areas
such as Operations, Planning, Development and Networks.
At the time of the visit, more than one hundred software
products are developed and developed by the company all
of them related to the taxes domain.

One of the authors expended two months inside the organ-
isation as a consultant to try to introduce software product
line awareness in the institution and improve the develop-
ment processes inside the organisation. However, the ap-
proach was a bit different to other practices to introduce
these concepts. The strategy was to observe how variability
management is handled in an unaware software product line
organisation giving only brief basic concepts to the organ-
isation members. Continuous unstructured and structured
meetings and interviews as well as short seminars were de-
veloped and the information was later summarised and pre-
sented for an agreement among the participants.

The areas studied were related to enterprise architecture
and organisation, software artefacts management and devel-
opment, new project developments, software testing, soft-
ware development infrastructures and requirements engineer-
ing. Also some less time was expended in software mainte-
nance and evolution areas.

Following, we report in different sections the observed
variability management techniques in the different areas.

2. VARIABILITY IN ENTERPRISE ARCHI-
TECTURE

Enterprise architecture is the model of all the most im-
portant information and behaviour inside a given organisa-
tion [12]. There are several enterprise architecture patterns,
processes or frameworks such as the Federal Enterprise Ar-
chitecture 2 or The Open Group Architecture Framework
(TOGAF) [12]. In the case of SRI, the reference being used
is TOGAF. TOGAF v9 SRI is defines four different enter-
prise architecture perspectives as shown in Figure 1.

The first one on the top is the Business Architecture (BA)
where the most important parts of the organisation are de-
fined such as organisation structure, roles, goals, business
services and so forth. The Information Technology Services
Architecture (ITSA) is intrinsically related with the BA and
should model a product portfolio, interfaces, links between
applications with business functions. The Data Architecture
(DA) is the one modelling a data catalogue, traceability links
between data and business function and services and concep-
tual models of data. Finally, the Technology Infrastructure
Architecture (TIA), which describes a catalogue of techno-
logical elements and the relationship among those with the
elements of the ITSA.

2.1 Current practices
1www.sri.gob.ec
2http://www.whitehouse.gov/omb/e-gov/fea

After some meetings with the members of the team, they
concluded that there are points to handle variability in all
the four elements of the TOGAF defined architecture. How-
ever, there are mainly two points where they considered that
variability management should play a key role.

On the one hand, the variability in the BA is key for
the organisation. Changes in taxes laws and procedures
can change the way all the other architectural components
evolve. In this sense the variability in the processes is be-
ing handled by means of business rules [19]. Business rules
can be seen from different perspectives, the business itself
and from the IT infrastructure. Business rules oriented ap-
proaches try to align business and IT rules. In any case,
rules are used as a first-citizen element to model, in this
case, variability in the business because one of the ideas is
that business rules can change and if they are modelled ex-
plicitly the whole systems do not need to change but only the
business rules. This approach is useful and it is an improve-
ment with respect to process modelling where no explicit
identification of business rules is performed. However, busi-
ness process variability is still not considered as a whole in
the sense that business process families are not identified.
Also, although at the process BA level the business rules
are modelled, this is not yet completely implemented at the
ITSA level which is not an evident transition.

On the other hand, variability management and product
line engineering seems to be key in the ITSA especially in the
way the product portfolio is exposed to the business. Cur-
rently, there are around one hundred different applications
that have been developed and are maintained by SRI devel-
opment unit. According to the information gathered during
meetings, there are several groups of applications that could
be considered as candidates to make up several product lines
related to different domains. This need seems to be a key
strategic decision and including in TOGAF a software prod-
uct line engineering view in the product portfolio level is not
explored in the current literature to the best of our knowl-
edge.

Research opportunity : Studying how software product
line engineering can complement enterprise architec-
ture models such as TOGAF.

2.2 Potential improvements
A short seminar on configurable business processes was

taught to process responsible members of the organisation.
A configurable business process [17] is a process that explic-
itly model variability as a first-class-citizen. It represents
a family of similar business processes in a given domain
and once configured, it defines a concrete configuration pro-
cess instance. A simple example is shown in Figure 2. On
the left hand size, two different processes are modelled for
tax refund. They have some commonality and variability.
On the right hand size, a variation point is included and
a configurable business process is defined. This is just a
naive example of how to model variability in business pro-
cess families. Previous works proposed to include variability
as a modelling element in the business process modelling lan-
guage [17] or modelling the process variability in a dedicated
variability model [8]. Further potential improvements can
include the definition of business process families together
with business process rules.



Procesos 
Gobernantes

Procesos 
Cadena de 

Valor

Procesos 
HabilitantesBusiness Architecture (BA)

Information Technology 
Services Architecture (ITSA)

Data Architecture (DA)

Technology Infrastructure 
Architecture (TIA)

Figure 1: Organisational Architecture at SRI

Verify tax 
refund

Sign 
authorization

Verify tax 
refund

Sign 
authorization

Refund by 
bank transfer

Refund by 
check

Verify tax 
refund

Sign 
authorization

Refund by 
bank transfer

Refund by 
check

variation point

Commonality

Variability

Check refundBank refund

+

=

Bank variant Check variant

Figure 2: Configurable business process example insipired by examples in [17]



Shifting from a project-centric software engineering model
to a software product line engineering model seems to be a
key part in the long term at the ITSA level. This software
product line strategy shifting is not an evident task and the
domain experts reported that this will require a strong team
commitment that, with the current size of the institution,
can take long time. In this sense, one of the domain experts
asked if there are team techniques to foster the variability
mentality inside development teams. After an informal lit-
erature review in research databases, we did not found such
a set of techniques and we envision that this can be an in-
teresting area for future work in the variability management
community brining knowledge from cognitive science.

Research opportunity : Studying how variability men-
tality can be introduced in software developers and
managers.

3. ASSETS MANAGEMENT
Although as explained in the previous section there is no

software product line strategy defined in the current prac-
tices. The development team have gained experience the
last decades and detected opportunities for reuse. In soft-
ware product lines, one of the most important parts of a
product line infrastructure is the management of common
and variable software assets of a product line.

3.1 Current practices
Currently, there are several software assets that are de-

fined in SRI as “genéricos” (generics). Those assets have
been built following an opportunistic reuse strategy when
similarities in several features of different projects were de-
tected. More than twenty projects from the hundred being
maintained and developed at SRI are described as generics.
Some of them are key software assets that are used in most
of the new and existing projects and some of them are less
common assets that are included in some projects while are
omitted in some others. In this sense, some software product
line smell is present in the organisation although it comes
from opportunistic reuse needs rather than a well system-
atic and planned reuse strategy. We can say that there is
an incipient division between domain engineering activities
(where generics are developed and maintained) and applica-
tion engineering activities (where generics are tailored and
used for product development.

In the organisation, a Continuous Integration (CI) [6] ap-
proach together with agile development principles is being
introduced in the new projects (currently around six projects
are following this strategy). In this sense, a software infras-
tructure is used including several external applications such
as Jenkins 3, Fisheye 4, SVN 5, JIRA 6 or maven 7 among
others. The source code repository is organised in several
branches and folders according to process and roles needs.
Domain experts described this planning as a complicated
task since many interactions in the development team as
well as in the development process exist.

3www.jenkins-ci.org/
4www.atlassian.com/software/fisheye/
5www.subversion.tigris.org
6www.atlassian.com/es/software/jira
7maven.apache.org

Inside this software infrastructure SRI uses a repository
management tool such as NEXUS 8 to manage internal and
external software artefacts. A repository management tool
can be roughly defined as a software shelf that allows to
handle external and internal software repositories to offer a
set of software artefacts to a given organisation. One of the
current practices at SRI includes using this tool to include
generics artefacts. After an informal literature search we
found no experience reports, case studies or any other kind of
empirical evidence describing how to use software repository
management tools such as NEXUS to handle software assets
in a software product line.

Research opportunity : Studying how repository man-
agement tools such as NEXUS can be used to manage
assets in software product lines.

3.2 Potential improvements
One of the problems described by domain experts is the

evolution of generics. It is common to have a generic asset
being evolved in parallel in different projects. This later
makes it difficult to maintain and merge all the changes
made. Concrete guidelines and process have to be defined
handling this co-evolution. In this sense, the role of “generic
owner/master” was agreed that is needed and will be intro-
duced in the future. This role will be responsible of allowing
(or not) changes and commits to a given generic.

Another potential improvement would be to align an even-
tual software product line strategy with current agile and CI
practices in the institution. In this sense some effort in the
software product line community have been presented re-
cently [1, 18] but more concrete experiences and work seems
to be needed. Especially important is to define and describe
how a CI approach can cohabit with a software product line
engineering one.

Research opportunity : Studying how continuous inte-
gration and delivery practices can be combined with
software product line practices.

Generics are used as reusable assets but after some meet-
ings with domain experts they argued that generics can also
be seen as product lines because they have variation points
and can be tailored to work in different domains. In this
sense, a multiple product line vision can also be considered
in the future [11, 5].

4. COMMON BASE ARCHITECTURE
At SRI, a good amount of projects are web-based projects.

Those projects have been developed in the last decade or so.
After some time, the development team detected that most
of the projects had a common base architecture.

4.1 Current practices
Currently, the new projects are developed from what the

team call the “base project”. This project is a sort of skele-
ton (a.k.a. archetype) for starting any new web develop-
ment project and includes a common architecture as well as
commonly used configuration files and features. The base
project is tested and certified by the Q&A unit and it is
indexed in the repository manager (NEXUS) and can be
retrieved with the build management tool (maven). Once

8www.sonatype.org/nexus/



installed, the development team can remove parts as needed
depending on the kind of project or task. Here we detect
what is known as negative variability, i.e. the base project
has internal variability because there are common parts and
optional ones but all the optional parts are included in the
project and then the development team has to remove the
optional parts that are not required.

4.2 Potential improvements
One of the potential improvements would be to have in the

base project a configuration process to include the generics
explained in Section 3. According to domain experts, it
would be of great help to have a sort of wizard or configura-
tor that allowed to select or deselect artefacts to be included
in the base project following a positive variability approach
in the sense that required optional features are added to the
base project according to specific needs. A feature model
base configurator [2] can eventually help in this task.

The possible evolution of the base project is a challenging
task. It might happen that parallel projects use the base
project at the same time but some of them make changes
in the project because some bugs are detected or some fea-
tures are added. Also, technology evolution can make the
base project obsolete in some scenarios (e.g. evolution of the
Java virtual machine or SDK version used). Although at the
moment the base project has not evolved, it is recognised
by the domain experts that this will happen in the future.
Therefore, techniques and processes have to be described
to handle this evolution. The management of the evolution
of generics is mainly done manually and automated mecha-
nisms are expressed to be desirable.

Research opportunity : Studying automated mechanisms
and processes for software product line and assets evo-
lution.

5. DEPENDENCY MANAGEMENT AMONG
ASSETS

Dependency management among assets is a crucial task in
software product line engineering. It has to do with the de-
pendency, relationship and traceability that exist among the
different software assets and how to handle these dependen-
cies. There are different levels of dependency management
going from high-level features to features representing frag-
ments of code.

5.1 Current practices
At the time of the visit, SRI is following TOGAF v9 rec-

ommendations. Therefore, a map of relationships among
the different projects is being established and documented.
With the help of domain experts a catalogue of applications
together with the dependencies and relationships is being
documented. In this sense, some not well-defined domain
engineering activities are being performed like domain scop-
ing and analysis but not structured or following concrete
domain engineering guidelines. One of the set of projects
being documented and one of the most important ones in
this task according to domain experts is the so-called gener-
ics (see Section 3). In this sense, a high level dependency
map of these assets is being constructed and a variability
model was saw as a good mechanism to model these arte-
facts. However, it was difficult, if not impossible, to con-
struct a hierarchically arranged feature model because there

was not a hierarchical structure in the relationships of gener-
ics. Instead, a spreadsheet is being used.

At lower level, dependencies are also modelled and man-
aged using the maven capabilities. Maven [21] is a project
management tool at development level. It allows automated
building as well as testing, deployment and so forth using
different plug-ins and complementary tools covering most of
the development life cycle. Maven, as a dependency mech-
anism worth being analysed from a variability management
perspective. Maven configuration files contain advanced de-
pendency management capabilities that are widely exploited
in industry. At SRI, maven is used for the project man-
agement life-cycle and the dependencies among assets are
described in the maven configuration files. It is possible to
say that a maven file is able to describe a variability model
similarly to other low-level languages such as the Debian
package description files [7].

5.2 Potential improvements
It might be interesting to use more structured domain

analysis techniques to better scope the domain and retrieve
the dependency map and variability model at a high level.
Also, the traceability among the high-level dependency man-
agement described in the TOGAF architecture and the more
technical and detailed dependencies expressed with maven
are far from being automated. It may be of help to have
automated mechanisms and tools to trace variability mod-
els to build and project management scripts like maven. In
this sense, the work in [10] may help.

Research opportunity : Studying how feature models or
any variability model can trace to build management
tools such as maven, ant or Make.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an experience report on

how variability management techniques are used in a com-
pany that was not aware of software product line concepts.
We detected that variability management is performed all
along the organisation structure and that is seen as a need
in most of the areas studied. From the observation we de-
tected and reported research opportunities. Moreover, we
paved the way for further structured empirical research in
unaware software product line companies to learn what they
do in practice and how they can improve getting insights of
new research opportunities.

However, there is still work to do in the research presented
in this paper:

• Methodology. Improve the description of the re-
search project will help to enhance the probabilities
of succeeding when introducing product lines method-
ology in the organisation as proposed in the literature
[24].

• Learn from the past. Previous research pointed
out some problems when transitioning to a variability-
aware development. For example, Staples et al.[25]
showed how this process was undertook in the HP
Company. Moreover, literature not directly related
to software product line adoption [23, 13] can inspire
this research for a better approximation to the existing
problem in the company.



Acknowledgments
We would like to thank all the members of the SRI that par-
ticipated in the meetings, interviews and discussions. This
work has been partially supported by the Prometeo pro-
gramme by SENESCYT, Ecuador, by the European Com-
mission (FEDER), the Spanish Government under project
TAPAS (TIN2012-32273) project and the Andalusian Gov-
ernment under projects THEOS (TIC-5906) and COPAS
(P12-TIC-1867).

7. REFERENCES
[1] Muhammad Ali Babar, Tuomas Ihme, and Minna

Pikkarainen. An industrial case of exploiting product
line architectures in agile software development. In
Proceedings of the 13th International Software Product
Line Conference, pages 171–179. Carnegie Mellon
University, 2009.

[2] David Benavides, Alexander Felfernig, José A Galindo,
and Florian Reinfrank. Automated analysis in feature
modelling and product configuration. In Safe and
Secure Software Reuse, pages 160–175. Springer, 2013.

[3] Gunter Bockle, Paul Clements, John D McGregor,
Dirk Muthig, and Klaus Schmid. Calculating ROI for
software product lines. Software, IEEE, 21(3):23–31,
2004.

[4] Paul C Clements, Lawrence G Jones, John D
McGregor, and Linda M Northrop. Getting there from
here: a roadmap for software product line adoption.
Communications of the ACM, 49(12):33–36, 2006.

[5] Deepak Dhungana, Dominik Seichter, Goetz
Botterweck, Rick Rabiser, Paul Grunbacher, David
Benavides, and Jose A Galindo. Configuration of multi
product lines by bridging heterogeneous variability
modeling approaches. In Software Product Line
Conference (SPLC), 2011 15th International, pages
120–129. IEEE, 2011.

[6] Martin Fowler and Matthew Foemmel. Continuous
integration. Thought-Works
www.thoughtworks.com/ContinuousIntegration.pdf,
2006.

[7] José Galindo, David Benavides, and Sergio Segura.
Debian packages repositories as software product line
models. towards automated analysis. In ACoTA, pages
29–34, 2010.

[8] Gerd Gröner, Marko Bošković, Fernando
Silva Parreiras, and Dragan Gašević. Modeling and
validation of business process families. Information
Systems, 38(5):709–726, 2013.

[9] William A Hetrick, Charles W Krueger, and Joseph G
Moore. Incremental return on incremental investment:
Engenio’s transition to software product line practice.
In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages,
and applications, pages 798–804. ACM, 2006.

[10] Gerald Holl, Christoph Elsner, Paul Grünbacher, and
Michael Vierhauser. An infrastructure for the life cycle
management of multi product lines. In Proceedings of
the 28th Annual ACM Symposium on Applied
Computing, pages 1742–1749. ACM, 2013.

[11] Gerald Holl, Paul Grünbacher, and Rick Rabiser. A
systematic review and an expert survey on capabilities

supporting multi product lines. Information and
Software Technology, 54(8):828–852, 2012.

[12] Andrew Josey. TOGAF Version 9: A Pocket Guide.
Van Haren Publishing, 2009.

[13] Daniel Karlström. Introducing extreme
programming-an experience report. In Proceedings of
the 3rd International Conference on eXtreme
Processing and Agile Processing Software Engineering
(XP2002), 2002.

[14] Charles W Krueger. Easing the transition to software
mass customization. In Software Product-Family
Engineering, pages 282–293. Springer, 2002.

[15] Charles W Krueger. New methods in software product
line practice. Communications of the ACM,
49(12):37–40, 2006.

[16] Pasi Kuvaja, Jouni Similä, and Hanna Hanhela.
Software product line adoption–guidelines from a case
study. In Software Engineering Techniques, pages
143–157. Springer, 2011.

[17] Marcello La Rosa, Marlon Dumas, Arthur HM
Ter Hofstede, and Jan Mendling. Configurable
multi-perspective business process models.
Information Systems, 36(2):313–340, 2011.

[18] Kannan Mohan, Balasubramaniam Ramesh, and
Vijayan Sugumaran. Integrating software product line
engineering and agile development. Software, IEEE,
27(3):48–55, 2010.

[19] Tony Morgan. Business rules and information
systems: aligning IT with business goals.
Addison-Wesley Professional, 2002.

[20] Dirk Muthig. A Light-weight Approach Facilitating an
Evolutionary Transition Towards Software Product
Lines. PhD thesis, University of Kaiserslautern, 2002.

[21] Timothy M O’Brien. Maven: The Definitive Guide.
O’Reilly, 2008.

[22] Klaus Pohl, Günter Böckle, and Frank Van
Der Linden. Software product line engineering:
foundations, principles, and techniques. Springer,
2005.

[23] Susan Rosenbaum and Bertrand du Castel. Managing
software reuse—an experience report. In Proceedings
of the 17th international conference on Software
engineering, pages 105–111. ACM, 1995.

[24] Per Runeson, Martin Host, Austen Rainer, and Bjorn
Regnell. Case study research in software engineering:
Guidelines and examples. Wiley. com, 2012.

[25] Mark Staples and Derrick Hill. Experiences adopting
software product line development without a product
line architecture. In Software Engineering Conference,
2004. 11th Asia-Pacific, pages 176–183. IEEE, 2004.

[26] Stefan Strobl, Mario Bernhart, and Thomas
Grechenig. An experience report on the incremental
adoption and evolution of an spl in ehealth. In
Proceedings of the 2010 ICSE Workshop on Product
Line Approaches in Software Engineering, pages
16–23. ACM, 2010.


