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ABSTRACT

Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently consti-
tute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter
(frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium
Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high lev-
els only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes
downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be
cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the
nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to
produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and
narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the
operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely in-
volved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB
and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyano-
bacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively.

IMPORTANCE

Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system,
which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria assimilate ni-
trate, but regulation of the nitrate assimilation system varies in different cyanobacterial groups. In the N2-fixing, heterocyst-
forming cyanobacteria, the nirA operon, which includes the structural genes for the nitrate assimilation system, is expressed in
the presence of nitrate or nitrite if ammonium is not available to the cells. Here we studied the genes required for production of
an active nitrate reductase, providing information on the nitrate-dependent induction of the operon, and found evidence for
possible protein-protein interactions in the maturation of nitrate reductase and nitrite reductase.

Nitrate is widely used as a nitrogen source by plants, algae,
fungi, and bacteria, and it represents an important inorganic

nutrient for the incorporation of nitrogen into living matter. Ni-
trate assimilation involves nitrate uptake into the cells and reduc-
tion to ammonium (1), which is the form of inorganic nitrogen
that is incorporated into carbon skeletons, with an important
contribution being made by the glutamine synthetase-glutamate
synthase (GS/GOGAT) cycle (2, 3). Whereas the nitrate uptake
and reduction pathway is relatively well conserved among nitrate-
assimilating organisms, the regulation of nitrate assimilation fol-
lows diverse schemes in different organisms (1). Cyanobacteria
are oxygenic photoautotrophs that can generally use nitrate and
ammonium as nitrogen sources, but ammonium is used in pref-
erence over nitrate (4, 5). Many cyanobacteria can also fix atmo-
spheric N2, and some filamentous cyanobacteria carry out N2 fix-
ation in specialized cells termed heterocysts, which are formed
only when the filaments have no source of combined nitrogen
available (6).

Reduction of nitrate to ammonium takes place in two succes-
sive steps catalyzed by nitrate reductase and nitrite reductase, re-
spectively, which in cyanobacteria are ferredoxin-dependent en-
zymes (4). An operon or gene cluster including genes encoding

nitrite reductase (nirA), a nitrate/nitrite uptake transporter, and
nitrate reductase (narB) is found in numerous cyanobacteria (4, 5;
see also cyanobacterial genomes at https://img.jgi.doe.gov/). In
many freshwater cyanobacteria, including well-investigated or-
ganisms such as Synechococcus elongatus strain PCC 7942 (here
referred to as S. elongatus) and Anabaena sp. strain PCC 7120
(here referred to as Anabaena), the nitrate assimilation nirA
operon includes the nrtABCD genes encoding an ABC-type trans-
porter for nitrate and nitrite (7, 8). Figure 1 shows a scheme of the
Anabaena genomic region bearing the nirA operon. A number of
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genes, including nirB, ntcB, and cnaT, transcribed in the opposite
orientation are found upstream of nirA. The nirB and ntcB genes
are present in a similar position in the S. elongatus genome (4).
Whereas ntcB and cnaT are required for production of nirA
operon transcripts (see below), the nirB gene has been shown to be
required for attaining maximum levels of nitrite reductase (9, 10).
NirB is likely involved in protein-protein interactions and has
been suggested to act as a scaffolding protein for maturation of
nitrite reductase (9, 10). Two open reading frames (ORFs) con-
served in numerous cyanobacteria are located downstream from
narB in the nirA operon of Anabaena (Fig. 1). ORF alr0613 en-
codes a 155-amino-acid hypothetical protein with four possible
transmembrane segments that shows some similarity to the phos-
phate starvation-inducible E (PsiE) protein from Escherichia coli,
which is of unknown function. ORF alr0614, on the other hand,
encodes a 153-amino-acid protein that exhibits 47% identity to
the S. elongatus NarM protein, which is required for the proper
development of nitrate reductase activity in this unicellular cya-
nobacterium (11).

Nitrate reductase and nitrite reductase activities are generally
lower in ammonium-grown than in nitrate-grown cyanobacterial
cells (4). However, whereas in non-N2-fixing cyanobacteria, such
as S. elongatus, expression of these enzymatic activities takes
place at appreciable levels in the absence of nitrate or nitrite, in
the heterocyst-forming, N2-fixing cyanobacteria, including
Anabaena, induction by nitrate or nitrite is required for attaining
high levels of expression in the absence of ammonium (4, 10, 12).
Expression of the nirA operon upon ammonium withdrawal is
promoted by NtcA, a cyclic AMP receptor protein-family tran-
scription factor (13) whose activity is enhanced by 2-oxoglutarate
(14–17) and PipX (18, 19). PipX is a small protein factor whose
availability is controlled by the signal transduction PII protein,
which sequesters PipX under low C-to-N balance conditions (18,
19). In addition to NtcA, a route-specific LysR-type transcrip-
tional regulator, NtcB, is involved in the regulation of nirA operon
expression (20–23). In contrast to NtcA, which is strictly required
for expression of the nirA operon in all investigated cyanobacterial
strains, NtcB is involved in regulation with different stringency
levels, depending on the cyanobacterial strain. In the case of
Anabaena, a strict requirement for NtcB for the expression of the
nirA operon is observed (22). In S. elongatus, however, NtcB is not
absolutely required for nitrate assimilation, although it mediates a
nitrite-dependent enhancement of expression of the nirA operon
in the presence of the glutamine synthetase inhibitor L-methio-
nine-D,L-sulfoximine (20, 24). A third positive regulatory element
of nirA operon expression in Anabaena is CnaT, which does not

appear to be a DNA-binding protein and, consequently, may af-
fect nirA operon expression indirectly (25). As is the case for NtcB,
whereas CnaT is strictly required for nitrate assimilation in
Anabaena, any phenotype related to nitrate assimilation was ob-
served in an S. elongatus cnaT mutant (11). In addition to the
positive elements described above, two elements negatively affect-
ing the expression of the nirA operon have been identified in
Anabaena. These are the nitrite reductase protein itself and NirB,
which negatively regulate the expression of the nirA operon when
nitrate is not available in the culture medium (10).

In this study, we aimed at characterizing the 3= region of the
nirA operon in Anabaena (Fig. 1). We found that, under certain
culture conditions, alr0613 is coexpressed with the Anabaena nirA
operon and that alr0614 is expressed monocistronically with a
pattern similar to that of the nirA operon. Consistent with results
previously described for S. elongatus (11), we found that alr0614 is
required for production of nitrate reductase activity, corroborat-
ing that it is the Anabaena narM gene. Additionally, we isolated an
Anabaena mutant with a deletion in the nitrate reductase struc-
tural gene narB (ORF alr0612). Studying the narM and narB mu-
tants, we found that a functional nitrate reductase is required for
attaining high levels of expression of the nirA operon in the pres-
ence of nitrate in the culture medium. Finally, possible interac-
tions between nitrite reductase and NirB and between nitrate re-
ductase and NarM were corroborated by a bacterial two-hybrid
(BACTH) analysis.

MATERIALS AND METHODS
Strains and growth conditions. Anabaena sp. (also known as Nostoc sp.)
strain PCC 7120 was routinely grown photoautotrophically at 30°C under
white light (about 25 �E s�1 m�2), with shaking being used for liquid
cultures. The media used for growth were BG11 (with NaNO3 used as the
nitrogen source [26]), BG110 (BG11 without nitrate), BG110NO2 (BG110

supplemented with 2 mM NaNO2), or BG110NH4
� [BG110 supple-

mented with 4 mM NH4Cl and 8 mM N-tris(hydroxymethyl)methyl-2-
aminoethanesulfonic acid (TES)–NaOH buffer, pH 7.5]. For growth on
plates, medium solidified with separately autoclaved 1% agar (Difco) was
used. When appropriate, the following antibiotics were added to the plates
at the indicated final concentrations: streptomycin sulfate (Sm) at 5 �g/ml
and spectinomycin dihydrochloride pentahydrate (Sp) at 5 �g/ml. In liq-
uid cultures, the antibiotic concentrations used were as follows: 2 �g/ml
for Sm and 2 �g/ml for Sp. Strains CSE36 (nrtB) and CSE38 (alr0614)
were routinely grown in BG110NH4

� medium supplemented with Sm
and Sp. Strains CSE27 (nirA), CSE39 (alr0613), and CSE40 (narB) were
routinely grown in BG110NH4

� medium. Derepression experiments
were carried out as described previously (10).

Escherichia coli DH5�, HB101, XL1-Blue, and ED8654 were grown in

FIG 1 Genomic region of Anabaena sp. strain PCC 7120 bearing the nitrate assimilation gene cluster. Genes and ORFs are indicated by thick arrows, which also
show the direction of transcription. Black arrows correspond to the ORFs investigated in this work. The locations of the restriction sites into which gene cassette
C.S3 (strains CSE36 and CSE38) was inserted are indicated. The regions deleted from nirA (strain CSE27; see reference 10), alr0613 (strain CSE39), and narB
(strain CSE40) are indicated with hatched bars. Abbreviations for some restriction endonuclease sites: E1, EcoRI; P, PvuII; and Sc, ScaI. Lines below the genes
denote the probes used for Northern analyses.
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Luria-Bertani medium as described previously (27). Strain BTH101 (cya-
99) was used for BACTH analysis (28).

Generation of mutant strains. The method of sacB-mediated positive
selection for double recombinants in Anabaena (29) was used to generate
mutant strains CSE36 (nrtB::C.S3), CSE38 (narM::C.S3), CSE39
(�alr0613), and CSE40 (�narB). Plasmids pCSE153B (for CSE36),
pCSE140B (for CSE38), pCSE174B (for CSE39), and pCSE245 (for
CSE40) were transferred to the cyanobacterial parental strain by conjuga-
tion (30). See Table 1 for descriptions of the strains and plasmids. Plas-
mids pRL623 and pRL443 were used as helper and conjugative plasmids in
the conjugations, respectively (31). In all cases, the genomic structure of
the resultant Anabaena mutant strain was checked by Southern analysis or

PCR analysis to confirm the absence of wild-type chromosomes. All mu-
tant strains were homozygous for the mutated chromosomes.

RNA isolation and analysis. RNA from the Anabaena spp. was pre-
pared as described previously (32). The resulting RNA preparations were
treated with RNase-free DNase I to eliminate contaminating DNA. For
Northern blot analysis, RNA (approximately 20 to 25 �g) was subjected to
electrophoresis in denaturing formaldehyde gels, transferred to Hy-
bond-N� membranes, and subjected to hybridization at 65°C as de-
scribed previously (33). The DNA probes (see reference 10) used in
Northern experiments were the nirA probe, a DNA fragment generated by
PCR using primers nir-7120-23 and nir-7120-25; the narB probe, a DNA
fragment generated by PCR using primers N-narB-7120 and C-narB-

TABLE 1 Cyanobacterial strains and plasmids used in this study

Strain or
plasmid Relevant characteristics

Reference
or source

Strains
PCC 7120 Wild-type Anabaena strain 26
EF116 Derivative of Anabaena sp. strain PCC 7120 unable to fix nitrogen under oxic conditions 47
CSE27 Derivative of EF116 with a deletion in the nirA gene 10
CSE36 Smr Spr derivative of strain EF116; nrtB::C.S3 This work
CSE38 Smr Spr derivative of strain PCC 7120; narM::C.S3 This work
CSE39 Derivative of strain PCC 7120; �alr0613 This work
CSE40 Derivative of strain PCC 7120; �narB This work

Plasmids
pCSE139 1,618-bp product of PCR with primers narB-7120-5 and alr0614-3, cloned in pGEM-T This work
pCSE140B pCSE139 insert bearing EcoRI-ended gene cassette C.S3 (39) inserted into the EcoRI site of narM, cloned in pRL271;

used to generate mutant strain CSE38
This work

pCSE148 2.0-kb BspHI/SphI fragment from pCSE26 (8) cloned in NcoI/SphI-digested pCSAM170 (48); it overproduces His-
tagged Anabaena NirA protein

This work

pCSE153B 2.9-kb ClaI/XbaI fragment from pCSE2 (8) bearing HincII-ended gene cassette C.S3 inserted into the ScaI site of
nrtB, cloned in pRL278; used to generate mutant strain CSE36

This work

pCSE174B 1,265-bp product of PCR with primers narB-7120-5, alr0613-5, alr0613-6, and alr0614-3, with pCSE39 as the
template; presents a deletion of a 351-bp internal segment of alr0613, corresponding to nucleotides 36 to 386 of
the 459-nucleotide coding region; cloned in pRL277; used to generate mutant strain CSE39

This work

pCSE189 PCR fragment amplified using primers narB-7120-8 and narB-7120-11, cloned in pKT25 using XbaI and KpnI; it
produces the T25-NarB hybrid protein

This work

pCSE191 Derivative of pUT18C; it presents restriction site XbaI in a polylinker replaced by restriction site NcoI, using primers
pUT18-3 and pUT18-4

This work

pCSE192 Derivative of pKT25; it presents restriction sites SalI and KpnI in a polylinker replaced by restriction sites BspHI and
SphI, respectively, using primers pKT25-3 and pKT25-4

This work

pCSE193 2.0-kb BspHI/EcoRV fragment from pCSE26 cloned in pCSE192 using BspHI and SmaI; it produces the T25-NirA
hybrid protein

This work

pCSE195 1,716-bp product of PCR with primers orf398-7120-5 and all0604-2 (10), cloned in pCSE191 using NcoI and ClaI; it
produces the T18-NirB hybrid protein

This work

pCSE200 As for pCSE193, but cloned in pCSE191 using NcoI and SmaI; it produces the T18-NirA hybrid protein This work
pCSE201 Insert of pCSE195 cloned in pCSE192 using BspHI and SmaI; it produces the T25-NirB hybrid protein This work
pCSE242 PCR fragment amplified using primers alr0614-9 and alr0614-10, cloned in pUT18 using PstI and EcoRI; alr0614-9

also allows elimination of the EcoRI site internal to narM without changing the NarM amino acid sequence; it
produces the T18-NarM hybrid protein

This work

pCSE243 As for pCSE242, but cloned in pUT18C using PstI and EcoRI; it produces the NarM-T18 hybrid protein This work
pCSE245 narB gene with a deletion of the internal 588-bp PvuII fragment, cloned in pRL277; used to generate mutant strain

CSE40
This work

pCSE246 As for pCSE189, but cloned in pKNT25 using XbaI and KpnI; it produces the NarB-T25 hybrid protein This work
pRL277 Smr Spr, sacB-carrying, mobilizable vector 49
pRL278 Nmr, sacB-carrying, mobilizable vector 49
pRL443 Kms derivative of conjugative plasmid RP4 30
pRL623 Mobilization helper; encodes M.AvaI, M.Eco47II, and M.EcoT22Ia 31
pUT18 Plasmid used for BACTH analysis 28
pUT18C Plasmid used for BACTH analysis 28
pKT25 Plasmid used for BACTH analysis 28
pKNT25 Plasmid used for BACTH analysis 28

a M, methylase.
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7120; the narB probe (5= end), a 654-bp DNA fragment resulting from
cutting with PvuII a DNA fragment generated by PCR using primers
narB-7120-3 and narB-7120-4; the ntcB probe, a DNA fragment gener-
ated by PCR using primers Nc-ntcB and ntcB-3 (22); the cnaT probe, a
HincII/BstXI DNA fragment from pCSE118 (25); the alr0613 probe, a
DNA fragment generated by PCR using primers alr0613-1 and alr0613-2;
and the alr0614 probe, a DNA fragment generated by PCR using primers
alr0614-1 and alr0614-2. (The oligodeoxynucleotide primers used for the
first time in this work are described in Table 2.) For PCR-generated
probes, Anabaena genomic DNA was used as a template. Results were
visualized and quantified with a Cyclone storage phosphor system and
OptiQuant image analysis software (Packard).

For reverse transcriptase PCR (RT-PCR) experiments, 10 �g of
Anabaena total RNA was mixed, in a final volume of 20 �l, with 40 pmol
of oligonucleotide narB-7120-6, alr0613-4, alr0613-2, alr0614-4, or
alr0614-2 in the presence of 10 mM Tris-HCl (pH 8.0), 150 mM KCl, and
1 mM EDTA, and the mixture was heated for 10 min at 85°C and then at
50°C for 1 h for annealing. To control for the presence of contaminating
DNA, 10 �l of an annealing reaction mixture was treated with 1 �g RNase
A for 15 min at 50°C. The extension reactions were carried out at 47°C for
1 h in a final volume of 20 �l containing 10 �l of the annealing reaction
mixture (with or without RNase), 0.5 mM each deoxynucleoside triphos-
phate, 100 U of reverse transcriptase (SuperScript II; Invitrogen), 10 mM
dithiothreitol, and the buffer recommended by the transcriptase provider.
PCR was carried out with 2 �l of a reverse transcription mixture as the
template and the following oligonucleotide pairs as the primers: narB-
7120-5/narB-7120-6 (for the segment named A in Fig. 3), narB-7120-5/
alr0613-4 (for segment B), narB-7120-5/alr0613-2 (for segment C), narB-
7120-5/alr0614-4 (for segment D), narB-7120-5/alr0614-2 (for segment
E), alr0613-1/alr0613-2 (for segment F), alr0613-1/alr0614-4 (for seg-
ment G), alr0613-1/alr0614-2 (for segment H), and alr0614-1/alr0614-2
(for segment I). PCRs with samples containing the same oligonucleotides
and plasmid pCSE139 as the template were run in parallel and used as
controls. PCR was performed by standard procedures, and the PCR prod-
ucts were resolved by electrophoresis in 0.7% agarose gels.

BACTH assays. The plasmids used for the BATCH assays (28) were
cotransformed into E. coli BTH101 (cya-99). Four transformants of each
combination of plasmids were plated onto LB medium containing selec-
tive antibiotics, 5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside (X-
Gal; 40 �g ml�1), and 0.5 mM isopropyl-�-D-1-thiogalactopyranoside
(IPTG) and then incubated at 30°C for 24 to 48 h. The efficiencies of the
interactions between different hybrid proteins were quantified by measur-
ing �-galactosidase activity in liquid cultures. Bacteria were grown in LB
medium in the presence of 0.5 mM IPTG and appropriate antibiotics at
30°C for 16 h. Before the assays, the cultures were diluted 1:5 into buffer Z
(60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4). To
permeabilize cells, 30 �l of toluene and 35 �l of a 0.1% SDS solution were
added to 2.5 ml of bacterial suspension. The tubes were vortexed for 10 s
and incubated with agitation at 37°C for 45 min for evaporation of tolu-
ene. For the enzymatic reaction, 875 �l of permeabilized cells was added
to buffer Z supplemented with �-mercaptoethanol (final concentration,
25 mM) to a final volume of 3.375 ml. The tubes were incubated at 30°C in
a water bath for at least 5 min. The reaction was started by adding 875 �l
of 0.4 mg ml�1 o-nitrophenol-�-galactoside in buffer Z without �-mer-
captoethanol. One-milliliter samples, taken at times for up to 10 min,
were added to 0.5 ml of 1 M Na2CO3 to stop the reaction. The A420 was
recorded, and the amount of o-nitrophenol (ONP) produced was calcu-
lated using an extinction coefficient (ε420) of 4.5 mM�1 cm�1 and referred
to the amount of total protein, determined by a modified Lowry proce-
dure (34). The amount of ONP produced per milligram of protein versus
time was plotted and �-galactosidase activity was deduced from the slope
of the linear function.

Expression and purification of Anabaena NirA and production of
antibodies. Plasmid pCSE148, which contains the Anabaena nirA gene
fused to a sequence encoding a 6-His tag under an IPTG-inducible pro-
moter (Table 1), was transferred to E. coli XL1-Blue. An 80-ml preinocu-
lum of this strain grown overnight in LB medium with 50 �g of ampicillin
(Ap) ml�1 and 2% glucose was used to inoculate 720 ml of LB medium
with 50 �g Ap ml�1 and 6 mg liter�1 of ferric ammonium citrate. The
culture was incubated at 37°C for 1 h with shaking. Protein expression was
induced by addition of 0.5 mM IPTG. After 3 h at 37°C, cells were col-
lected, washed in buffer A (40 mM Tris-HCl, pH 7.5, 300 mM NaCl), and
resuspended in buffer A (5 ml/g of cells) with 1 mM phenylmethylsulfonyl
fluoride (PMSF). Cells were broken by passage twice through a French
pressure cell at 14,000 lb/in2. After centrifugation at 8,000 � g (15 min,
4°C), the insoluble 6His-NirA protein was purified by solubilization of
inclusion bodies in a buffer containing 50 mM Tris-HCl (pH 7.5), 50 mM
NaCl, and 8 M urea (35) and chromatography of solubilized proteins
through a 5-ml His-Select column from Sigma, using buffer A with 6 M
urea and imidazole to elute the retained proteins. Samples obtained after
purification (50 to 65 mM imidazole) were subjected to SDS-PAGE, ex-
cised from the gel, electroeluted, and concentrated (Amicon Ultra 4; Mil-
lipore). An amount of 1.0 mg of purified protein was used for the subcu-
taneous injection of a rabbit to produce antibodies in the Centro de
Producción y Experimentación Animal, Universidad de Sevilla (Seville,
Spain). These experiments were performed in accordance with the Euro-
pean Union Directive 2010/63/EU on the protection of animals used for
scientific purposes and approved by the Committee of Animal Use for
Research at the Universidad de Sevilla. Antiserum was recovered 65 days
after the first injection and stored at �80°C until use.

Anabaena cell extracts and immunoblotting. For obtaining cell ex-
tracts, filaments (corresponding to about 60 �g of chlorophyll a) from
strains PCC 7120, CSE38, and CSE40 grown in ammonium (time zero
[t0]) and incubated in medium containing ammonium, nitrate, nitrite, or
no combined nitrogen for 4 h were harvested by filtration, washed with a
buffer containing 50 mM Tris-HCl and 100 mM EDTA (pH 8), and,
finally, resuspended in a buffer containing 10 mM HEPES-NaOH (pH 8),
5 mM MgCl2, 2.5 mM CaCl2, 10% glycerol, and 1 mM PMSF. The fila-
ments were broken, after adding 50 �l of acid-treated glass beads (G9268;
Sigma), by 10 cycles of vortexing (1 min) and keeping the samples in ice (1

TABLE 2 Oligodeoxynucleotide primers used in this work

Primer Sequencea (5=–3=)
orf398-7120-5 CCAAAGCCATGGCGAATAATATCGGTC
narB-7120-3 CTACCAAAACCCTATGTCC
narB-7120-4 GCGAATAGTGGCGAATTACC
narB-7120-5 GCTCGAGCGTCGAGGTAGCGCCAAG
narB-7120-6 CCACTGAGATGACTGGAG
narB-7120-8 CGACGTTCTAGAATCTACCAAAACC
narB-7120-11 AACAGGTACCCACTGAGATGACTGGAG
alr0613-1 GGCAAATTTTGGGAATCACG
alr0613-2 GACAGAGCTAAAATTGCCAC
alr0613-4 CGTGATTCCCAAAATTTGCC
alr0613-5 CACGGATCCGGGCGTGGCAATTTTAGCTC
alr0613-6 GCCACGCCCGGATCCGTGATTCCCAAAATTTGCC
alr0614-1 CAGATTTTGTTGATTCCCTGCG
alr0614-2 AAACTCGGCGATCGCCTTGGG
alr0614-3 ACTCGAGGATTGAGTTAGTAGTAAGGAC
alr0614-4 GAATTCTGCCATAAATGAGCG
alr0614-9 ATTCTGCAGTGAGTTCTTTGAATTTGAATCAG
alr0614-10 ATTGAATTCCCTATTCTACTTATATTAAACTCG
pKT25-3 GTCATGACTCTAGAGGATCCCGGGGCATGCCTAAG

TAACTAAG
pKT25-4 AATTCTTAGTTACTTAGGCATGCCCCGGGATCCTCT

AGAGTCATGACTGCA
pUT18-3 GGTCGACCATGGAGGATCCCCGGGTACCGAGCTCG
pUT18-4 AATTCGAGCTCGGTACCCGGGGATCCTCCATGGTC

GACCTGCA
a Introduced restriction enzyme-cutting sites are shown in boldface.
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min). Cell debris was discarded after centrifugation at 16,100 � g (20 min,
4°C), and the supernatant was stored at �20°C until use.

For immunoblotting, samples were loaded, run in a 10% Laemmli
SDS-polyacrylamide gel, and transferred to polyvinylidene difluoride
membrane filters. For detection of nitrite reductase (NirA), the filters
were incubated overnight in blocking buffer containing 15 mM Tris-HCl
(pH 7.5), 200 mM NaCl, 5% nonfat milk powder, and 0.05% Nonidet
P-40. Primary antibody (anti-NirA) was added at a dilution of 1:10,000 in
buffer B (15 mM Tris-HCl, pH 7.5, 200 mM NaCl, 2% nonfat milk pow-
der, 0.25% Triton X-100) and incubated for 1 h at 30°C. The secondary
antibody (anti-rabbit IgG conjugated to peroxidase [Sigma]) was added at
a dilution 1:10,000 in buffer B. Detection was performed with a chemilu-
minescence kit (ECL plus; GE Healthcare) and exposure to Hyperfilm
(GE Healthcare).

Enzyme activities and heterocyst counts. Nitrate reductase (36) and
nitrite reductase (37) were measured with dithionite-reduced methyl vi-
ologen as the reductant in cells made permeable with mixed alkyltrimeth-
ylammonium bromide. The amounts of the cells added to the enzymatic
assays for nitrate reductase and nitrite reductase contained 5 and 25 �g of
chlorophyll a, respectively. Activity units correspond to micromoles of
nitrite produced (nitrate reductase) or removed (nitrite reductase) per
minute.

To determine the percentage of heterocysts in filaments of Anabaena
and mutant strains, samples of the cultures were examined by light mi-
croscopy, and a total of about 1,000 cells were counted for each strain and
culture condition.

RESULTS
Expression of genes located downstream of narB. ORFs alr0613
and alr0614 (narM) are located downstream of and in the same
orientation as the narB gene in the genome of Anabaena (Fig. 1).
Expression of alr0613 and narM was studied in wild-type
Anabaena, a nirA mutant (strain CSE27) (10), and an nrtB mutant
(strain CSE36). Strain CSE36 was constructed by insertion of gene
cassette C.S3 into the nrtB gene (Fig. 1), which encodes the mem-
brane component of the ABC-type nitrate/nitrite transport sys-
tem in Anabaena (8). The C.S3 cassette bears transcription termi-
nators in both ends (38, 39). Because of the polar effect that the
insertion of C.S3 has on the expression of downstream genes, in-
cluding narB in the nirA operon, strain CSE36 (nrtB) could not
grow using nitrate as the nitrogen source. However, because nirA
is upstream of the insertion site and because the transporter is not
required in medium containing relatively high concentrations of
nitrate or nitrite (8), strain CSE36 (nrtB) could grow using nitrite.

Gene expression was studied by Northern analysis, performed
with probes for each of the indicated genes and RNA isolated from
filaments grown with ammonium and incubated in the presence
of ammonium, nitrate, or no combined nitrogen for 4 h (Fig. 2).
As previously reported (8), in Anabaena the nirA operon produces
a long transcript of a size close to 10 kb that is unstable, and
therefore, only a smear of RNA molecules could be detected with
the narB probe (Fig. 2A). In wild-type Anabaena, the alr0613
probe hybridized to a diffuse band of about 0.56 kb (likely corre-
sponding to an alr0613 transcript) present under all conditions
and to a faint smear of longer RNAs in nitrate-incubated cells (Fig.
2B). On the other hand, the narM probe hybridized to three bands
of about 0.92, 0.77, and 0.62 kb, which were more abundant in the
presence than in the absence of nitrate (Fig. 2C). In strain CSE27
(nirA), which overexpresses the nirA operon in the absence of
ammonium (see the hybridization with the narB probe in Fig. 2A
and reference 10), the smear detected with the alr0613 probe in
nitrate-incubated wild-type cells was observed at a higher level

both in the presence of nitrate and in the absence of combined
nitrogen (Fig. 2B). Likewise, the accumulation of a higher level of
the different narM transcripts was observed in strain CSE27 (nirA)
than in the wild type in the presence of nitrate or in the absence of

FIG 2 Expression of narB, alr0613, and narM (alr0614) in strains PCC 7120
(wild type [WT]), CSE27 (nirA), and CSE36 (nrtB). Hybridization assays were
carried out using RNAs isolated from cells grown with ammonium and incu-
bated for 4 h in medium containing nitrate (NO3

�), ammonium (NH4
�), or

no combined nitrogen (�N). Hybridization to rnpB (45) served as a loading
and transfer control for each of the filters used and is shown in the image below
each panel. The positions of some size markers or identified transcripts (in
kilobases) are shown on the left.
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combined nitrogen (Fig. 2C). In contrast, in strain CSE36 (nrtB),
in which no expression of genes downstream of nrtB takes place
(see the expression of narB in Fig. 2A), neither the smear obtained
with the alr0613 probe nor the high abundance of the different
narM transcripts was observed in nitrate-incubated cells (Fig. 2B
and C). These results indicate that the full expression of alr0613
and narM depends on completion of the nirA operon transcript.
However, some hybridization signals were still observed with the
alr0613 and narM probes in strain CSE36 (nrtB) under the differ-
ent nitrogen regimes tested (Fig. 2B and C). These results may
imply that both alr0613 and narM are cotranscribed with the nirA
operon but also that they are expressed at a low level as indepen-
dent transcripts.

The expression of the narB to narM gene cluster depicted in
Fig. 3A was also investigated by RT-PCR. To determine the tran-
scriptional units in this genomic region, five distinct primers were
used for reverse transcription and different primer pairs were used
for PCR amplification. RNA was isolated from ammonium-
grown wild-type cells incubated in nitrate-containing medium for
4 h. Detection of amplification products A, F, and I indicates that
mRNA molecules corresponding to narB, alr0613, and narM, re-
spectively, were present in the RNA preparation (Fig. 3B). Detec-
tion of amplification products B and C indicates the existence of

transcripts overlapping narB and alr0613 (Fig. 3B). Additionally,
detection of amplification product G but not that of amplification
product D suggests that a distinct alr0613 transcript, likely more
abundant than the part of the nirA operon transcript covering the
same region (alr0613 down to the beginning of narM), was present
in the RNA preparation. On the other hand, evidence for tran-
scripts overlapping narB or alr0613 and the whole narM gene was
not obtained (amplification product E or H, respectively, was not
detected), although a distinct narM transcript was found (see am-
plification product I). Therefore, these results corroborate those
obtained by Northern analysis, showing that there is a transcript
covering the nirA operon and alr0613 in Anabaena cells incubated
in the presence of nitrate and that individual transcripts of alr0613
and narM are produced as well. They do not support, however, the
possibility that the whole narM gene can be cotranscribed with the
nirA operon.

Isolation and characterization of alr0613, alr0614 (narM),
and alr0612 (narB) mutants. Given that alr0613 is coexpressed
with the nirA operon under certain conditions and that narM
presents an expression pattern similar to that of the nirA operon
and encodes a protein likely related to nitrate assimilation, we
inactivated both ORFs to test their possible role in nitrate assimi-
lation in Anabaena. An alr0613 mutant, strain CSE39, was con-
structed by deletion of most of its coding sequence (see Fig. 1 and
Materials and Methods for details). This mutant showed no al-
tered phenotype under any of a number of tested conditions, in-
cluding growth with different nitrogen sources and growth with
low levels of phosphate. In the Anabaena genome, three other
PsiE-like protein-encoding ORFs are present, namely, all4445,
alr1752, and all4381. It is possible that the presence in Anabaena of
Alr0613 homologs compensates for the lack of Alr0613, explain-
ing the phenotype of strain CSE39 (alr0613). On the other hand,
an inactivated version of narM was constructed by insertion of
gene cassette C.S3 (see Fig. 1 and Materials and Methods for de-
tails). One clone, denoted CSE38, in which no wild-type copies of
narM could be detected, was selected for further analysis.

The ability of strain CSE38 (narM::C.S3) to grow in liquid me-
dium using nitrate or nitrite as the nitrogen source was examined.
Because an Anabaena strain unable to utilize nitrate or nitrite may
produce heterocysts and grow fixing N2, the percentage of total
cells that were heterocysts was also examined. Tested as a control,
filaments of wild-type Anabaena and mutant CSE38 (narM)
grown in the absence of a source of combined nitrogen contained
9.80% and 9.12% heterocysts, respectively. Both wild-type
Anabaena and strain CSE38 (narM) grew in nitrite-containing
media, producing a low percentage of heterocysts (0.97% in the
wild type and 0.41% in the mutant). However, in nitrate-contain-
ing media, strain CSE38 (narM) was able to grow healthily but
produced heterocysts (9.20%), which was in contrast to the find-
ings for wild-type Anabaena, which produced only a few hetero-
cysts (0.88%) under these conditions. These results suggest that
strain CSE38 (narM) is impaired in nitrate assimilation but not in
nitrite assimilation and, additionally, that it is able to grow di-
azotrophically.

The nitrate reductase and nitrite reductase activities were then
determined. In contrast to wild-type Anabaena, strain CSE38
(narM) exhibited only basal levels of nitrate reductase activity un-
der all incubation conditions tested (Table 3). In addition, this
strain showed reduced levels of nitrite reductase activity, mainly in
nitrate-containing medium (5% of wild-type activity) but also to

FIG 3 RT-PCR analysis of expression of the narB to narM (alr0612 to alr0614)
region. (A) The gene region and Anabaena gene/ORF names (46) are depicted.
(B) Reverse transcription was carried out with the oligonucleotide primers
depicted as closed arrowheads in panel A and with RNA isolated from cells
grown with ammonium and incubated for 4 h in medium containing nitrate.
(Open arrowheads in panel A represent forward primers used for amplifica-
tion by PCR.) The positions of the primers used for amplification correspond
to the ends of the segments indicated in panel A, which are depicted in black,
indicating amplification by RT-PCR, or in gray, indicating no amplification.
Lanes � and �, RNA samples treated and RNA samples not treated with
RNase A, respectively; lanes p, plasmid pCSE139 used as the template for
amplification with the corresponding primers.
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some extent in nitrite-containing medium (62% of wild-type ac-
tivity). Thus, the inability of strain CSE38 (narM) to use nitrate as
a nitrogen source could result from the very low levels of nitrate
and nitrite reductase activities in this mutant. The very low levels
of nitrate reductase activity observed are consistent with the idea
that alr0614 represents the narM gene of Anabaena.

To discern whether the phenotype of strain CSE38 (narM) re-
sulted from inactivation of narM itself or from the effect that this
mutation has on nitrate reductase activity, we inactivated the ni-
trate reductase structural gene narB (ORF alr0612). A narB mu-
tant, strain CSE40, was constructed by removing an internal
588-bp fragment to generate an in-frame deletion of the gene (the
section encoding amino acid residues 222 to 417), thus minimiz-
ing possible polar effects on downstream genes (see Fig. 1 and
Materials and Methods for details). As expected, strain CSE40
(narB) produced heterocysts in cultures lacking combined nitro-
gen (9.12%) and in nitrate-containing media (9.15%) but not in
nitrite-containing media (0.21%), indicating its inability to use
nitrate specifically as a nitrogen source. Nitrate and nitrite reduc-
tase activities were measured in strain CSE40 (narB). As expected,
this strain presented negligible levels of nitrate reductase activity
(Table 3). On the other hand, similar to strain CSE38 (narM),
strain CSE40 (narB) showed decreased levels of nitrite reductase
activity, mainly in nitrate-containing medium (1% of wild-type
activity) but also somewhat in nitrite-containing medium (77% of
wild-type activity). These results suggest that the phenotype of
strain CSE38 (narM) resulted from the effect that the inactivation
of narM has on the development of nitrate reductase activity. Ad-
ditionally, these results indicate that a functional nitrate reductase
is required for attaining high nitrite reductase levels when nitrate
is present in the culture medium.

Nitrite reductase levels and nirA operon expression. To study
whether the reduced levels of nitrite reductase activity observed in
mutant strains CSE38 (narM) and CSE40 (narB) corresponded to
decreased amounts of the nitrite reductase protein, Western anal-
ysis was performed with polyclonal antibodies raised against
Anabaena nitrite reductase (see Materials and Methods for de-
tails). In cell extracts from filaments of wild-type Anabaena incu-
bated for 4 h under different nitrogen regimens, we detected a
band that was not present in an nirA mutant (not shown) and
whose levels were higher in nitrate- than in nitrite-containing me-
dia and the lowest in ammonium-containing media and in
media without combined nitrogen (Fig. 4). This band was not
present in cells from ammonium-containing established cultures
of Anabaena (Fig. 4, lanes t0). In strains CSE38 (narM) and CSE40
(narB), decreased levels of the nitrite reductase protein were
mainly observed in nitrate-containing media (Fig. 4). Therefore,

the decreased levels of nitrite reductase activity observed in these
mutants could correspond to low levels of nitrite reductase pro-
tein.

To investigate whether the low levels of nitrite reductase de-
tected in strains CSE38 (narM) and CSE40 (narB) resulted from
an altered expression of the nirA operon, Northern analyses were
carried out with probes for the nirA and narB genes. Hybridiza-
tions were performed with RNA isolated from filaments of wild-
type Anabaena, CSE38 (narM), and CSE40 (narB) grown in am-
monium and incubated in the presence of ammonium, nitrate,
nitrite, or no combined nitrogen for 4 h. In wild-type Anabaena, a
high level of expression of nirA took place in media without am-
monium in the presence of nitrate or nitrite; however, it was
higher in the presence of nitrate than in the presence of nitrite
(Fig. 5). In the narM and narB mutants (strains CSE38 and CSE40,
respectively), in contrast, a decreased level of expression of nirA
compared to that in the wild type was observed, mainly in the
presence of nitrate but also in the presence of nitrite. A similar
expression profile was obtained with a probe corresponding to the
5= end of narB (a fragment not deleted in CSE40; not shown).
These data indicate that the decreased levels of nitrite reductase
protein detected in strains CSE38 (narM) and CSE40 (narB) could
result from a decreased level of expression of the nirA operon.

Since expression of the Anabaena nirA operon is dependent on
two specific positive-action regulatory factors, NtcB and CnaT,
expression of the genes encoding these regulators was also ana-
lyzed in strains CSE38 (narM) and CSE40 (narB). Expression pro-
files similar to those previously reported (22, 25) were found (not

TABLE 3 Nitrate reductase and nitrite reductase activities of Anabaena sp. strain PCC 7120 (wild type) and mutant strains CSE38 (narM) and
CSE40 (narB)a

Strain

Enzymatic activity (mU · mg of protein�1)

Nitrate reductase Nitrite reductase

Nitrate Nitrite N2 Ammonium Nitrate Nitrite N2 Ammonium

PCC 7120 73.6 	 9.0 46.1 	 5.2 8.5 	 1.3 7.2 	 1.1 19.9 	 1.6 6.9 	 1.7 0.2 	 0.4 
0.1
CSE38 
0.1 1.5 	 1.3 
0.1 0.5 	 0.8 1.0 	 0.6 4.3 	 0.4 
0.1 
0.1
CSE40 
0.1 
0.1 
0.1 
0.1 0.2 	 0.2 5.3 	 0.8 
0.1 
0.1
a Ammonium-grown cells were washed, resuspended in medium with the indicated source of nitrogen, and incubated for 4 h as described previously (10) for derepression
experiments, and enzymatic activities were then determined. The values shown are the means and standard deviations from two to four independent experiments.

FIG 4 Detection of nitrite reductase protein in Anabaena strains. (Top) West-
ern blot analysis with anti-NirA antibody and samples of strains PCC 7120,
CSE38 (narM), and CSE40 (narB) grown in ammonium-containing medium
(t0) or grown in ammonium-containing medium and incubated in medium
with the indicated source of combined nitrogen: nitrate (NO3

�), nitrite
(NO2

�), no combined nitrogen (�N), or ammonium (NH4
�). Lane P, size

markers. The arrow points to the nitrite reductase protein band. (Bottom)
Portion of the Coomassie blue-stained membrane used in panel A showing the
appropriate loading in all lanes.
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shown), indicating that the altered levels of nirA operon expres-
sion observed in strains CSE38 (narM) and CSE40 (narB) do not
result from an abnormal expression of the regulatory gene ntcB or
cnaT.

BACTH analysis of interactions between nitrate assimilation
proteins. For NarM of S. elongatus, a possible role in assembly of
the different cofactors (iron-sulfur center and molybdopterin
guanine dinucleotide) of nitrate reductase has been suggested
(11). Our results also suggest a role for NarM in the production of
a functional nitrate reductase in Anabaena. Additionally, in
Anabaena, as in S. elongatus, NirB could act as a scaffolding pro-
tein for nitrite reductase (9, 10). To test whether these protein
interactions are feasible, we used the bacterial two-hybrid
(BACTH) system, which permits a visual screening for protein
interactions on X-Gal-containing plates and a quantitative esti-
mation of such interactions by determining �-galactosidase levels
(40). Fusions of Anabaena NirB or NirA (nitrite reductase) to the
C termini of T18 and T25 (the two complementary fragments of
the catalytic domain of Bordetella pertussis adenylate cyclase), de-
noted T18-NirB, T18-NirA, T25-NirB, and T25-NirA, were pre-
pared. Whereas the results of all control tests with one of these
proteins and nonfused T25 or T18 were negative (�-galactosidase
activity above background levels was not produced), strong inter-
actions between NirB and itself and, especially, between nitrite
reductase and NirB were observed (Fig. 6). The nitrite reductase-
NirB interaction was observed independently of which of these
proteins was fused to T18 or T25, and these results corroborate the
previously proposed interaction between NirB and nitrite reduc-
tase (10).

To investigate possible interactions between NarB (nitrate re-
ductase) and NarM, fusions of NarM to the N or C terminus of
T18 (NarM-T18 and T18-NarM, respectively) and of NarB to the
N or C terminus of T25 (NarB-T25 and T25-NarB, respectively)
were prepared, and E. coli strains carrying the corresponding plas-
mid pairs and controls producing nonfused T25 or T18 were used
in �-galactosidase assays. All pairs including a plasmid producing

a nonfused T25 or T18 were negative, as expected (Fig. 6). In
contrast, although the interactions were weaker than those be-
tween nitrite reductase and NirB or than NirB self-interactions,
significant interactions between NarM and nitrate reductase
could be observed with the T18-NarM/NarB-T25 and NarM-T18/
NarB-T25 pairs but not when NarB was fused to the C terminus of
T25 (Fig. 6). No interaction of NarM with NirB or NirA was de-
tected, giving support to the specificity of the observed interac-
tions of NarM with nitrate reductase. The low levels of �-galacto-
sidase produced in the NarM/nitrate reductase tests might reflect
transient interactions between NarM and nitrate reductase, in
contrast to a more stable interaction that could take place between
NirB and nitrite reductase.

FIG 5 Expression of the nirA gene in strains PCC 7120 (wild type), CSE38
(narM), and CSE40 (narB). Hybridization assays were carried out using RNA
isolated from cells grown with ammonium and incubated for 4 h in medium
containing nitrate (NO3

�), nitrite (NO2
�), ammonium (NH4

�), or no com-
bined nitrogen (�N). The signals obtained were normalized with respect to
those obtained with a probe of the rnpB gene. Data are in reference to the level
of nirA expression for PCC 7120 in nitrate, which is considered 100%, and
summarize the results of two to four experiments with independent cultures.

FIG 6 BACTH assays of interactions between Anabaena nitrate assimilation
proteins. The interactions of the proteins fused to the adenylate cyclase T18
and T25 fragments cloned in E. coli were measured as the amount of �-galac-
tosidase activity in liquid cultures as described in Materials and Methods and
expressed as nanomoles of ONP per milligram of protein per minute. The
protein fused to the N or the C terminus of T18 or T25 is indicated in each case
(N terminus, protein-T18 or protein-T25; C terminus, T18-protein or T25-
protein). The number of independent clones analyzed for each plasmid com-
bination is shown in parentheses. An E. coli strain containing plasmids pro-
ducing nonfused T18 and T25 was used as a general negative control and
showed activity of 10.65 	 1.45 nmol ONP mg protein�1 min�1 (mean 	 SD).
Controls with each T18 or T25 fusion protein and nonfused T25 or T18 were
also run. All negative controls together rendered a value of 10.14 	 1.33 nmol
ONP mg protein�1 min�1 (mean 	 SD). The vertical dotted line marks this
background activity. Error bars reflect SDs (only when the number of assays
indicated in parentheses was �2). *, the difference between the activity ob-
tained with the indicated plasmid pair and the combined activity from all
negative controls was significant at a P value of 
0.01, as assessed by the
Student t test.
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DISCUSSION

Nitrate assimilation gene clusters including structural and regula-
tory genes are frequently found in cyanobacteria, and these gene
clusters frequently contain an operon, the nirA operon, that con-
sists of the structural genes for nitrite reductase, a nitrate trans-
porter, and nitrate reductase. Here we have shown by Northern
analysis that transcription of the nirA operon in Anabaena can
extend to include ORF alr0613, which appears to be coexpressed
with the nirA operon, at least when the Anabaena cells are incu-
bated in the presence of nitrate. Indeed, RT-PCR analysis con-
firmed the coexpression of alr0613 and alr0612 (narB). Regarding
alr0614 (narM), this gene exhibits an expression pattern similar to
that shown by the nirA operon, but its coexpression with alr0612
(narB) and alr0613 could not be confirmed by RT-PCR. The cor-
related expression of narM and the nirA operon is discussed in the
next paragraph. Nonetheless, a certain level of expression of
alr0613 and narM appears to take place independently of the nirA
operon, as observed in strain CSE36, in which transcription of the
nirA operon is blocked at the level of nrtB (Fig. 2). Possible tran-
scription start sites are located 29 bp upstream from the start
codon of alr0613 and 48 bp upstream from the start codon of
narM (41).

The correlated expression of narM and the nirA operon could
hypothetically reflect the fact that the nirA operon includes narM,
with processing of the nirA operon transcript producing an inde-
pendently detectable narM transcript showing the same expres-
sion pattern as the nirA operon. Alternatively, transcription com-
ing from alr0613 could promote expression from the narM
promoter, thus leading to a coordinated expression of narM with
the nirA operon. Cooperation in transcription has been proposed
for the activation of two downstream promoters in a zinc-respon-
sive operon of Anabaena (42) and might be based on antiroad-
block mechanisms in transcription (43). Finally, the similar pat-
tern of expression observed for narM and the nirA operon could
involve the regulation of independent promoters by the same set
of transcription factors. No binding site for NtcA or NtcB could,
however, be identified in the sequences just upstream from
alr0614 (narM).

Whereas ORF alr0613 does not appear to be necessary for ni-
trate assimilation under laboratory conditions in Anabaena,
alr0614 represents the narM gene of Anabaena, which is necessary
to develop nitrate reductase activity. Because a cyanobacterial
narB gene alone provides E. coli with nitrate reductase activity
(44), NarM does not appear to be a catalytic subunit of nitrate
reductase. Instead, NarM appears to support the maturation of
NarB (11). The coordinated expression of narM and the nirA
operon would ensure the simultaneous production of NarM
and the nitrate reductase enzyme, NarB, thus facilitating func-
tional interactions between the two proteins, which may in-
volve transient protein-protein interactions, as suggested by
BACTH analysis.

The coordinated expression of narM and the nirA operon ob-
served in Anabaena is in contrast to the situation in S. elongatus, in
which narM is constitutively expressed at low levels (11). This may
be related to the nitrate-dependent induction of the nirA operon,
which is more stringent in Anabaena than in S. elongatus (see the
introduction). In Anabaena, the nitrite reductase protein (NirA)
and NirB are required to keep a low level of expression of the nirA
operon in the absence of nitrate or nitrite (10). Here we have

found that the two proteins interact strongly in BACTH analysis,
confirming their joint role in nitrate assimilation, which could
involve stable interactions between the two proteins under certain
conditions. We have also observed that a functional nitrate reduc-
tase, which requires both the narB and narM genes to be pro-
duced, is needed to attain high levels of expression of the nirA
operon in the presence of nitrate or nitrite. The requirement for
narB and narM is, however, more stringent in the nitrate- than in
the nitrite-dependent induction of the nirA operon (Fig. 5), which
can also be clearly visualized in the production of the nitrite re-
ductase protein (Fig. 4) and activity (Table 3). Hence, nitrite re-
sulting from nitrate reduction (catalyzed by nitrate reductase) is a
likely inducer of the nirA operon. This is consistent with the pro-
posed role of nitrite in induction of the nirA operon involving
NtcB in S. elongatus cells treated with L-methionine-D,L-sulfoxi-
mine (20). Exogenously added nitrite is, however, a poorer in-
ducer of the nirA operon than nitrite produced inside the cells by
a functional nitrate reductase (Table 3 and Fig. 5). This could
result from a toxic effect of nitrite, but the possibility that an
additional effector(s) related to the nitrate reductase reaction is
involved in induction can also be raised. On the other hand, the
basis for the requirement of narB and narM for attaining maximal
levels of nitrite-dependent expression of the nirA operon (Fig. 5) is
unknown.

In summary, we have shown that Anabaena bears a narM gene
that is transcribed in a coordinated manner with the nirA operon
and that narM, along with the nitrate reductase structural gene
narB, is needed to produce nitrate reductase activity. Both narB
and narM are also needed for nitrate-dependent induction of the
nirA operon, suggesting that nitrite is an inducer. As previously
shown (10), this nitrate/nitrite effect on the expression of the ni-
trate assimilation operon appears to involve a negative transcrip-
tional effect of nitrite reductase (which also requires NirB) when
there is no nitrite in the cytoplasm. The putative interactions
NirA/NirB and NarB/NarM were tested here with the BACTH
system, which has shown a strong interaction between nitrite re-
ductase (NirA) and NirB and a weak interaction, perhaps indica-
tive of transient interactions, between nitrate reductase (NarB)
and NarM.
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