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The focus of this Letter is on the activity of a network of neurons pairwise coupled by inhibitory
connections. Each neuron is represented by a two-dimensional map capable, when isolated, of a rich
variety of complex dynamical regimes. It is shown that the network exhibits a stimulus-dependent
sequential activation and inactivation of subgroups of neurons. This complex behavior is rather similar
to some spatiotemporal features observed in the first stages of the olfaction process in some insects and
suggests the possibility of large scale simulation of these processes by using reasonable computational

capabilities.
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The understanding of how the sensory world is repre-
sented in the electrical activity of the brain is one of the
fundamental tasks of neuroscience [1,2]. By now, it is
well known that the information coming from sensory
signals can be encoded into complex patterns of neuronal
activity: each stimulus is represented by a specific and
highly reproducible sequence of firing across some spe-
cific neurons [3,4]. To analyze the neuronal dynamics that
gives rise to the odor-encoding capabilities of some in-
vertebrates, networks of conductance-based model neu-
rons have been developed which show such patterns of
transient synchronization [5]. The aim of these studies
has been to reproduce as close as possible the experimen-
tal results and so, systems of a great number of differ-
ential equations have been used to model each one of the
neurons of the network. A price must be paid, however,
for the use of such a detailed model. The high dimension-
ality of the dynamical system as well as the strong non-
linear character of its equations are significant obstacles
for the understanding of the collective behavior of the
network.

In this and other similar cases, the use of a simplified
model of a neuron is advisable in order to be able to
identify possible dynamical mechanisms behind the
complex behavior of the whole network. Recently, the
concept of winnerless competition networks has been
introduced to investigate spatiotemporal encoding by an
assembly of neurons [6]. To explore this concept, a net-
work of FitzZHugh-Nagumo spiking neurons coupled by
time-dependent inhibitory interactions has been investi-
gated to reveal how input information can be efficiently
transformed into spatiotemporal firing patterns [6].

In this Letter the focus is on the behavior of a network
made of simpler neuronal units. Each neuron is repre-
sented by a two-dimensional map of the kind studied
recently by Rulkov [7]. Obviously, from the point of
view of neuroscience, this dynamical system is merely a
toy model but, nevertheless, it shows enough dynamical
complexity to mimic the characteristic behavior of more
involved neuron models. At the same time, it is simple
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enough to permit a detailed analysis of the mechanism
behind its remarkable encoding capabilities. By using this
model we have found spatiotemporal patterns of activa-
tion and inactivation of neuronal subgroups that are simi-
lar to the patterns obtained by using more complex
models of neuronal behavior [6]. When isolated,
each neuron in the network is described by the two-
dimensional map

Xer1 = f(xp v, (1)

Vir1 = Yk — plxg + 1) + oy, 2)

where w is a parameter setting the time scale of the y
variable. In what follows, we will take u = 0.001 so that
the characteristic time scales of both variables are widely
separated. The parameter o, represents the external input
acting on the neuron. In Eq. (1), f(x, y) is a function of the
form

yta(l—x71 x=0,
fxy) =1y +a, 0<x<a+y @O
-1, xX=a+ty,

where « is a characteristic parameter. In a neurobiolog-
ical context, x and y are the fast and slow dynamical
variables describing the behavior of the neuron and, in
particular, the fast variable represents the instantaneous
voltage across the neuron’s membrane.

Rulkov has shown that this map has basically three
dynamical regimes that are dependent on the values of
the parameters a and o [7]. Specifically, the neuron can
be silent or nonspiking (for small & and o), in a regime
of single spiking (for o, = 0) or in a spiking-bursting
regime, where the neuron fires bursts of closely spaced
spikes riding a slower wave. Let us consider this last case.
Because of the smallness of the parameter w, the evolu-
tion of the fast variable x can be analyzed by considering
the variable y as a slowly drifting control parameter. It
follows from Egs. (2) and (3) that the value of y remains
unchanged (y;; = y;) only if

© 2003 The American Physical Society 208102-1


https://core.ac.uk/display/132467376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VOLUME 91, NUMBER 20

PHYSICAL REVIEW LETTERS

week ending
14 NOVEMBER 2003

x=x,=—1+ o 4)

Notice that if x > x,, then the value of y slowly increases
upon iteration of the map, whereas if x <x,, then y
decreases under the same circumstances. On the other
hand, the functions giving the fixed points of the fast
map can be obtained directly from Eq. (2),

x:(1+y)i\/(l+y)2—4(a+y)

7 , x=0). (5

This expression defines the stable (s) and unstable (u)
branches of slow motion across the phase space. These
branches have been plotted in Fig. 1. The dynamics of the
system in the bursting regime can be analyzed in terms of
the parameter o. If the fixed point x;, = —1 + o is on
the stable branch, then the neuron is in a silent state. On
the other hand, when x, is on the unstable branch, as
shown in Fig. 1, the neuron is in the bursting regime.
Notice that the slow motion along the stable branch of
fixed points corresponds to the last part of the interburst
intervals. This slow motion ends at the point where stable
and unstable branches of fixed points meet and disappear.
There, the phase point must jump to the spiking branch
(not shown in Fig. 1). In doing so, the line x = x; is
crossed from below and y will subsequently decrease
slowly as the phase point carries out the spiking part of
the cycle. The burst ends at a homoclinic bifurcation that
takes place at the crossing of the unstable branch with the
line x = —1 [7]. On reaching this point, the phase point
must jump back to the stable branch, where y slowly
increases with time, thus leading the phase point to
move along s and making the whole process to restart
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FIG. 1. Stable (s) and unstable (z) branches of the slow

dynamics of one isolated neuron plotted on the phase plane
(y, x). The parameters are « = 6 and o, = —0.25. The tem-
poral evolution of the phase point during the time course of a
burst is also depicted to illustrate the discussion carried out in
the text.
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itself. In Fig. 1 one of these bursts has been superimposed
to the bifurcation diagram of the fast subsystem to illus-
trate the structure of the bursting oscillation.

Let us address the main topic of this Letter by consid-
ering a network of neurons described by the following set
of N coupled maps

A= ey, (6)

b =0 = b 1) + o, (7)
N

0-(”) = O-E)n) - Z gn,m(xgcm) - I/), (8)
m=1

where n = 1,2, ..., N. Notice that, in principle, the ex-
ternal input Uf)") can be different for different neurons in
the network. Part of the whole input acting on each
neuron comes from its couplings to other units in the
network. Here, the coefficient g, ,, gives the action on
neuron n coming from neuron m. As the parameter v is
chosen to be smaller than the minimum value of all the
x("), the effect of the rest of the neurons on the dynamics
of each one of them is purely inhibitory. In Fig. 2
we present the architecture of a network of nine
neurons whose synchronizing behavior is going to be
explored next.

Let us consider that the stimulus acting on each neuron
is identical, that is, let us take 0'(()") = o for all n. The
behavior of one coupled neuron can be analyzed by using
the same argument employed for the isolated case. Let us
consider, for example, the behavior of neuron 1. Its
branches of stable and unstable fixed points are still given
by Eq. (5) but now, the constancy of y!) during the fast
time scale leads to the condition

fcf) =—14+0)— (xf) - v), 9)

FIG. 2. The structure of a neural network with some neurons
being connected through purely inhibitory synapses. Notice
that g, ,, # gm.»- The directional connections explicitly drawn
by means of solid dots correspond to g, ,, = 1.0. All the other
terms in Eq. (8) take values g, ,, = 0.
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instead of that given by Eq. (4). Now, the value of x(!) at
which y" remains unchanged is no longer stationary but
oscillates in time due to the motion of the variable x®
and, in particular, it can be driven from the unstable to
the stable branch of fixed points or vice versa. For some
fixed values of ¢, each burst of neuron 2 can drive £ to
cross the stable branch s and then, neuron 1 is pushed to
its silent regime. On the contrary, when neuron 2 is in the
interval between two bursts, £ is driven to cross the
unstable branch u and thus neuron 1 enters its fast spiking
regime. Indeed, as we can see in Fig. 3, neuron 1 fires
during the last part of the silent phase of neuron 2, that is,
when the phase point of this last neuron is moving along
its stable branch of fixed points. Notice that, when driven
to excitation, neuron 1 must fire the burst entirely even if
the driving provided by neuron 2 returns to subthreshold
values. This argument explains why the successive bursts
of neurons 1 and 2 are forced to take place at different
times. Obviously, this same analysis applies to neurons
driven by two or more inhibitory inputs although in those
cases the behavior can be more complex due to the ex-
istence of closed feedback loops among the neurons.
Thus, the degree of overlapping among the different
bursts depends critically on the detailed architecture of
the network.

As a whole, the network acts as a dynamical system
having different regimes. If o is small enough, all neu-
rons decay to their resting state after an initial transient.
When the constant (tonic) stimulus is increased, some
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FIG. 3. Sequence of bursts generated by neurons 1 and 2

under the action of a suprathreshold stimulus of constant
intensity. In @, neuron 2 is moving slowly along its stable
branch of fixed points. Just a little earlier, in d, it has induced
the firing of neuron 1 through the inhibitory coupling. Notice
that, once started, the firing of neuron 1 must perform the
whole burst even if neuron 2 returns quickly to subthreshold
values. This leads to a small overlapping of the bursts fired by
both neurons near the instant labeled b.
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groups of neurons start the synchronous firing of spikes,
whereas others perform only a small slow-wave oscilla-
tory behavior associated with the interburst time scale.
When the stimulus is further increased until it reaches a
given threshold (o = —0.85), all the neurons in the net-
work start firing successive bursts of spikes. In Fig. 4 we
present some bursts produced by a suprathreshold stimu-
lus acting on all the neurons with the same intensity and
timing. As we can observe, the network develops a spa-
tiotemporal pattern of firing that amounts to the transient
activation and inactivation of four different assemblies of
neurons. In fact, neurons labeled 1 and 9 fire in synchrony
and will be considered as assembly A. The same occurs
with neurons labeled 2, 3, 7, and 8 (assembly B) and with
neurons labeled 4 and 6 (assembly C). Assembly D in-
cludes only the neuron labeled 5. The activity of all the
neurons belonging to the same assembly is synchronous
not only at the level of bursts but also at the level of
individual spikes. Notice that, in spite of the links con-
necting only neighboring neurons, the different assem-
blies can include also the not neighboring units. Thus, the
existence of inhibitory couplings induces a global struc-
ture on the whole network.

The lowest signal depicted in Fig. 4 is the average of
the spike trains fired by all the neurons belonging to the
network

N
(FP), = N~' > . (10)
n=1

As we can see, this last signal seems to present a periodic
variation with a characteristic frequency. However, this

Neurons
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FIG. 4. Spike trains generated by the neurons of the network
under the action of a suprathreshold stimulus of constant
intensity. The stimulus is delivered to all neurons at n =
2000, and it consists in a sudden elevation of o from —2.0
to 0.0, all the neurons being stimulated in the same way. The
plot labeled FP has been obtained by averaging the instanta-
neous values of all the spike trains.
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FIG. 5. The structure of the field potential oscillation as
a consequence of the transient activation and inactivation
of the four assemblies of neurons following the sequence
D-A-B-C-D-A-.... Each spike train in the figure represents
one assembly of neurons firing synchronously. The contribution
of each assembly to the FP signal depends on the number of
neurons that constitute the assembly. The FP signal in this plot
has been scaled up by a factor of 3 in order to depict more
clearly its characteristic features.

signal is not exactly periodic in all its details due to
variability displayed by the different bursts fired by
each neuron. As the value of o is increased, the fre-
quency of the bursts displayed by the field potential (FP)
oscillation defined by Eq. (10) also increases, thus provid-
ing a kind of rate coding. The detailed form of this
oscillatory FP signal comes from the transient overlap-
ping of the successive bursts coming from the different
assemblies. In Fig. 5 we can observe a close-up view of
the temporal development of the firing across the network.
Notice that during some epochs, the only contribution to
the FP oscillation comes from the activity of a single
assembly, and thus the global output of the network is
synchronized by the thythm of one of its subgroups. In
other epochs the FP oscillation results from the weighted
contributions of one, two, or even three different assem-
blies. It is clear that the whole temporal structure of the
network’s output will also depend on the location and
intensity of the inputs. When stimulated differently, the
synchronous activity found under identical driving no
longer appears, and consequently the number of assem-
blies as well as the succession of bursts becomes altered
with respect to the case of homogeneous stimulation.
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The use of a simplified, yet far from trivial, neuron
model has allowed us to build a winnerless competition
network in which transient activation and inactivation of
some groups of neurons appear as a consequence of pair-
wise inhibitory couplings between them. According to
previous results obtained by using more complex model
neurons, these transient local patterns seem to be generic
in networks having deterministic trajectories connecting
fixed points and limit cycles in the state space of the
whole system. The model studied in this Letter proves
that dynamical encoding appears also in networks where
the dynamical complexity of each neuron model has been
considerably reduced.

For these networks, the nature of the synchronization
allows the different stimuli to be dynamically encoded by
specific and reproducible sequences of firing coming from
different assemblies of neurons across the network, a
property that can be used to perform discrimination tasks.
The simplicity of the model neuron used in this work
allows a detailed analysis of the mechanisms behind the
dynamical behavior of the network and, furthermore, it
will permit the modeling and implementation of large
networks (with hundreds of neurons, for example) by
using a reasonable computing capacity.
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