
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection Lee Kong Chian School Of 
Business Lee Kong Chian School of Business 

9-2012 

Sell-order liquidity and the cross-section of expected stock Sell-order liquidity and the cross-section of expected stock 

returns returns 

Michael Brennan 

Tarun Chordia 

Avanidhar Subrahmanyam 

Qing TONG 
Singapore Management University, qingtong@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research 

 Part of the Corporate Finance Commons, and the Sales and Merchandising Commons 

Citation Citation 
Brennan, Michael; Chordia, Tarun; Subrahmanyam, Avanidhar; and TONG, Qing. Sell-order liquidity and the 
cross-section of expected stock returns. (2012). Journal of Financial Economics. 105, (3), 523-541. 
Research Collection Lee Kong Chian School Of Business. 
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/3232 

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research 
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email libIR@smu.edu.sg. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13246733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F3232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/629?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F3232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/646?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F3232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Electronic copy available at: http://ssrn.com/abstract=1396328

 

Sell-Order Liquidity and the Cross-Section of Expected Stock Returns 
 

Michael J. Brennana 

Tarun Chordiab 

Avanidhar Subrahmanyamc 

Qing Tongd 

March 8, 2012 

 
aAnderson School at UCLA, Manchester Business School, and King Abdulaziz University. 
bGoizueta Business School, Emory University 
cCorresponding author, Anderson School, UCLA, 110 Westwood Plaza, Los Angeles, CA 90095; 

Phone: +1 310 825-5355; Fax +1 310 206-5455; email: subra@anderson.ucla.edu. 
dSingapore Management University. 

JEL classification: G12, G14 

Keywords: Liquidity, asset pricing 

Abstract 

We estimate buy- and sell-order illiquidity measures (lambdas) for a comprehensive sample of 

NYSE stocks.  We show that sell-order liquidity is priced more strongly than buy-order liquidity 

in the cross-section of equity returns.  Indeed, our analysis indicates that the liquidity premium in 

equities emanates predominantly from the sell-order side.  We also find that the average 

difference between sell and buy lambdas is generally positive throughout our sample period.  

Both buy and sell lambdas are significantly positively correlated with measures of funding 

liquidity such as the TED spread as well option implied volatility. 
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1. Introduction 

 

The liquidity of an asset market refers to the ability of investors to buy and sell 

significant quantities of the asset, quickly, at low cost, and without a major price concession.  A 

series of market crises that were associated with major decreases in liquidity, including the crash 

of 1987, the Asian crisis of 1998, and the credit crisis of 2008, has focused the attention of 

market participants, regulators and researchers on liquidity in financial markets.  A major 

question is whether investors demand higher returns from less liquid securities.  Amihud and 

Mendelson (1986), Brennan and Subrahmanyam (1996), Brennan, Chordia, and Subrahmanyam 

(1998), Jones (2002), and Amihud (2002) all provide evidence that liquidity is an important 

determinant of expected returns.  More recently, following the finding of commonality in 

liquidity by Chordia, Roll, and Subrahmanyam (2000), Pastor and Stambaugh (2003) and 

Acharya and Pedersen (2005) relate systematic liquidity risk to expected stock returns.   

 

An important issue that arises in studies relating liquidity to asset prices and returns is the 

empirical proxy that is used for illiquidity.  The simplest proxy is the bid-ask spread, which is the 

difference between the price effects of a zero size buy and a zero size sell.  Other proxies relate 

the size of the trade to the size of the price movement (i.e., they measure the price impact of 

trades), while assuming that the price effects of buys and sells are symmetric.  This price impact 

approach finds theoretical support in the classic Kyle (1985) model, which predicts a linear 

relation between the net order flow and the price change.  Amihud (2002) proposes the ratio of 

absolute return to dollar trading volume as a measure of illiquidity.  In an alternative approach, 

Brennan and Subrahmanyam (1996) suggest measuring illiquidity by the relation between price 

changes and order flows, based on the analysis of Glosten and Harris (1988).  Pastor and 

Stambaugh (2003) measure illiquidity by the extent to which returns reverse after high trading 

volume, an approach based on the notion that such a reversal captures the impact of price 

pressures due to demand for immediacy.  Hasbrouck (2009) provides a comprehensive set of 

estimates of these and other measures of illiquidity, including the Roll (1984) measure. 
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All these measures presume a symmetric relation between order flow and price change.  

In contrast, we allow for an asymmetric relation and estimate separate buy and sell measures of 

illiquidity  (“lambdas”) for a large cross-section of stocks over a 26-year period, using a 

modified version of the Brennan and Subrahmanyam (1996) approach, which assumes that price 

responses are linear, and is an adaptation of the Glosten and Harris (1988) method.  Any 

differences in buy- and sell-order illiquidity measures and their associated return premia may 

cast light on the mixed results in studies of the relation between liquidity and the cross-section of 

expected stock returns.  For example, Brennan and Subrahmanyam (1996) find a negative 

relation between the bid-ask spread and expected returns, and Spiegel and Wang (2005) find no 

significant relation between expected returns and either bid-ask spreads or Amihud’s (2002) 

measure of liquidity, after controlling for trading activity measures such as share volume and 

turnover.  Thus, we look for evidence on the pricing of the buy- and sell-order illiquidity 

measures in the cross-section of expected stock returns.   

 

We find that sell-order illiquidity is priced more strongly in the cross-section of expected 

stock returns than is buy-order illiquidity.  This result continues to obtain after controlling for 

other known determinants of expected returns such as firm size, book-to-market ratio, 

momentum, and share turnover.   The finding is robust to the Fama and French (1993) risk 

factors as well as to the estimation of factor loadings conditional on macroeconomic variables 

and firm characteristics such as size and book-to-market ratio.   Finally, the pricing of sell-order 

illiquidity is also economically significant.  A one-standard-deviation change in the sell lambda 

results in an annual premium that ranges from 2.9% to 3.7%. 

 

We also study the time-series behavior of buy and sell lambdas and examine their cross-

sectional determinants.  We find reliable evidence that sell lambdas exceed buy lambdas.1  

Market-wide averages of buy and sell lambdas are significantly positively correlated with the 

TED spread (the spread between LIBOR (London Interbank Offer Rate) and U.S. Treasury bills) 

as well as with the implied market volatility measure, VIX, both of which have been used as 

                                                            
1   Chordia, Roll, and Subrahmanyam (2002) find that the relationship between daily market returns and aggregate 
market-wide order imbalances is asymmetric, in that a marginal increase in excess sell orders has a bigger impact on 
returns than a corresponding increase in buy orders.  In this paper we examine differential price impacts for buys 
and sells at the individual trade level, on a stock-by-stock basis. 
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measures of funding liquidity by Asness, Moskowitz, and Pedersen (2009). Cross-sectional 

determinants of buy and sell lambdas accord with those established earlier in the literature, and 

the time-series average of the cross-sectional correlations between the estimated buy and sell 

lambdas of individual securities is about 0.72. 

  

The remainder of the paper is organized as follows.  Section 2 presents the method for 

estimating the lambdas and describes the data.  Section 3 presents some time-series and cross-

sectional characteristics of the estimated lambdas.  Section 4 presents the average returns on 

portfolio sorts, while Section 5 describes the methodology and results of asset pricing regressions.   

Section 6 concludes. 

 
2. Empirical method and data for estimating lambdas 

 

We use intraday transactions data to estimate separate buy- and sell-order measures of 

illiquidity.  Specifically, we use a modification of the Brennan and Subrahmanyam (1996) model 

[which, in turn, is based on the Glosten and Harris (1988) approach] to estimate separate 

liquidity parameters for purchases and sales.  Let the order flow and price change at time t be 

denoted by tq  and Δpt, respectively.  Further, denote tD  to be the sign of the incoming order at 

time t (+1 for a buyer-initiated trade and -1 for a seller-initiated trade).  Allowing for different 

price responses to purchases and sales, we estimate: 

 

  buy  sell 1( 0) ( 0) ( ) ,t t t t t t t tp q q q q D D yα λ λ ψ −Δ = + > + < + − +  (1)         

           

and we refer to  buyλ  and  sellλ as the buy lambda and the sell lambda, respectively. The parameters 

of Eq. (1) are estimated each month for each stock using ordinary least squares, treating yt as an 

error term (full details appear in the Appendix).   

 

Our formulation assumes that there is a zero quantity bid-ask spread, ψ, as well as a price 
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schedule with different slopes for buying and selling.   In general, as Glosten and Harris (1988), 

Subrahmanyam (1991), Madhavan and Smidt (1991), and, more recently, Comerton-Forde, 

Hendershott, Jones, Moulton, and Seasholes (2010) suggest, this slope can arise from 

information considerations, inventory issues, or both.  There is also an issue as to whether 

differential buy and sell lambdas permit manipulation by exploiting differential price impacts for 

buying and selling orders of the same size (Huberman and Stanzl, 2004).  Such manipulation, 

however, is curtailed by the zero quantity spread, which ensures that manipulation yields zero 

profits for order sizes below a certain threshold.  We propose that for large order sizes, 

presumably from large traders, strategic considerations would allow for an equilibrium degree of 

manipulation that would preserve the sell-buy lambda differential.  

 

Our sample for estimation includes common stocks listed on the NYSE in the period 

January 1983 through December 2008.  To be included in the asset pricing tests which are 

described below, a stock has to satisfy the following criteria: (i) its return in the current month 

and over at least the past 12 months be available from CRSP (Center for Research in Securities 

Prices), (ii) sufficient data be available to calculate market capitalization and turnover, and (iii)  

data be available on the Compustat tapes to calculate the book-to-market ratio as of December of 

the previous year. To avoid extremely illiquid stocks, we eliminate from the sample, stocks with 

month-end prices less than one dollar.  The following securities are also eliminated from the 

sample since their trading characteristics might differ from ordinary equities: American 

Depository Receipts, shares of beneficial interest, units, companies incorporated outside the U.S., 

Americus Trust components, closed-end funds, preferred stocks, and real estate investment trusts.  

This screening process yields an average of 1,442 stocks per month.  Transactions data are 

obtained from the Institute for the Study of Security Markets (ISSM) (1983--1992) and the Trade 

and Quote (TAQ) data sets (1993--2008), and are transformed using procedures described in the 

Appendix.  The resulting data are used to estimate Eq. (1). 

 

In the next section, we present summary statistics on the estimated lambdas.  We also 

analyze how these illiquidity measures covary with previously identified determinants of 
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liquidity in the time-series as well as the cross-section. 

 

3. Characteristics of the estimated lambdas 

 

In this section, we examine the summary statistics, and time-series and cross-sectional 

determinants of the buy and sell lambdas. 

 

3.1. Summary statistics 

 

Table 1 presents descriptive statistics on the buy and sell lambdas.2   Motivated by the 

evidence in Chordia, Roll, and Subrahmanyam (2001) that illiquidity is greater in down markets, 

we present the statistics separately for months in which the current or previous month’s value-

weighted market return is positive and in which it is negative.   We consider the previous 

month’s return because the market stress created by a sell-off during a particular month could 

persist beyond that month if market makers face delays in unloading excess inventories.3   

 

Panel A of Table 1 shows that for the full sample, the mean sell lambda exceeds the mean 

buy lambda by about 7%.  A simple difference-in-means test of equality of the lambdas, 

assuming independence within the sample, yields a t-statistic in excess of 20.  The mean value of 

the sell lambda is about 0.006 (scaled up by 103).  Thus, a 1,000-share sell order has a price 

impact of 1000*0.006*10-3 ≅ $0.01 per share, which is reasonable.   The median lambda is 

smaller than the mean indicating some skewness.  In our asset pricing analysis, we use lambda-

based portfolio sorts as well as linear regression analysis to ensure our results are not affected by 

the distributional properties of the lambdas.  Panel B shows that both buy and sell lambdas are 

higher in months in which the market return is negative, suggesting that the price impact is 

higher during periods of market stress.   This finding holds for the sell lambda even when the 

market return is negative in the previous month, as opposed to the current month (Panel C).  For 

                                                            
2   For brevity, we focus on the lambdas and not the fixed cost component, ψ, as the latter component has already 
been analyzed in earlier work such as Brennan and Subrahmanyam (1996), and because our central contribution is to 
examine the asymmetric effects of buy and sell lambdas on asset prices.  Statistics for ψ are available upon request.     
3   Hasbrouck and Sofianos (1993) and Madhavan and Smidt (1993) show that inventory autocorrelations of NYSE 
specialists are positive and persistent over long lags suggesting slow inventory adjustments. 
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a considerable majority of stocks (about 60%) the lambdas are significant at the 5% level or 

better.    

 

In Panel D of Table 1, we provide the mean sell and buy lambdas for portfolios sorted by 

firm size (market capitalization) as of the end of the previous month.  Within each size quintile, 

the sell lambda exceeds the buy lambda.  In absolute terms, the difference in lambdas is higher 

for the smaller firm quintiles suggesting that liquidity problems are larger for the smaller stocks.    

Overall, the positive sell/buy lambda differential is not restricted to any specific size quintile but 

appears to be pervasive in the cross-section.   

 

In Fig. 1, Panel A, we plot the time-series of the value-weighted monthly averages of 

daily buy and sell lambdas (using market capitalizations at the end of the previous month as 

weights).    The lambdas track each other closely over time, though the sell lambda generally 

remains above the buy lambda and rises considerably above the buy lambda on a few occasions 

(notably around the crash of 1987 and around 1992).  Consistent with the evidence in Chordia, 

Roll, and Subrahmanyam (2001), lambdas have declined over time so that liquidity has increased. 

Panel B of Fig. 1 presents time-series plots of the average equally weighted sell and buy lambdas 

which exhibit the same general pattern seen in Panel A. We note that the equally weighted 

average lambdas exceed the value-weighted lambdas, reflecting the association between liquidity 

and firm size. 

 

We present the plot of the difference between value- and equally weighted buy and sell 

lambdas in Fig. 2, Panel A.  The difference generally remains positive throughout the sample, 

and has increased for the equally weighted version in recent years.  To control for the level of the 

sell and buy lambdas, in Panel B of Fig. 2 we present the difference in the lambdas scaled by the 

average of the buy and sell lambda.  This scaling ensures that the difference in the lambdas does 

not depend mechanically on the level of lambda.   This scaled value-weighted differential has 

remained fairly stationary over time, ranging from 5% to 10%, peaking at the higher levels 

around 1992--1993 and towards the end of the sample period that encompasses the recent 
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financial crisis.  However, the equally weighted scaled differential has increased markedly in the 

latter part of the sample period.   This implies a recent widening of the sell-buy lambda 

differential in the smaller companies.  Overall, Fig. 2 indicates that there is a meaningful 

difference between sell and buy illiquidity, and market-wide sell illiquidity is generally greater 

than buy illiquidity. 

 

  Asymmetric price impacts have been considered in many previous studies.  With a few 

exceptions, the early literature on block trades and/or institutional trades finds that buy-side 

impacts exceed sell-side impacts.  Thus, Kraus and Stoll (1972) and Gemmill (1996) find a 

bigger impact of buy blocks relative to sell blocks, and  Chan and Lakonishok (1993, 1995) show 

that buy trades of a sample of large institutions have a bigger impact than sell trades.   More 

recently, Frino, Bjursell, Wang, and Lepone (2008) demonstrate a similar finding for large trades 

by outside customers in four Australian financial futures markets. Kalay, Sade, and Wohl (2004) 

study  all orders placed at the opening auction on the Tel Aviv Stock Exchange and find that buy 

trades have a bigger impact than sell trades.  On the other hand, Holthausen, Leftwich, and 

Mayers (1987) show that blocks executed on a “downtick” have a bigger total price impact than 

blocks executed on an “uptick”4  and Keim and Madhavan (1996) find that “upstairs” sell  orders 

(i.e., large orders executed via negotiation off the exchange floor) have a larger total impact than 

their buy-side counterparts.  More recently, using data on trades by a Dutch pension fund, Bikker, 

Spierdijk, and van der Sluis (2007) also find that the price impact of institutional sells exceeds 

that of buys.   

 

Michayluk and Neuhauser (2008) use three months of data (January of 1999, 2000, and 

2001) for all trades in 100 Internet and technology firms and find that ask depths exceed bid 

depths, and effective spreads for sell orders exceed those for buy orders for 1999 and 2000, 

which is consistent with sell orders being more costly than buy orders.  However, a measure of 

the price impact (the absolute price move subsequent to a trade at the bid or ask) shows no 

significant differences across buy and sell sides.  Saar (2001) presents a theoretical model of 

asymmetric price impact in which the price impact of buys by institutional investors  exceeds 

                                                            
4   Holthausen, Leftwich, and Mayers (1990) use transactions data to measure price impact of block trades (unlike 
their 1987 paper, which uses closing prices).  Their findings show that the asymmetry between price impacts of 
blocks executed on upticks and downticks narrows considerably when such data are used. 
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that of sells, except that after  a long run-up in the price of the security, the asymmetry will be 

reduced and may even be reversed.  The argument is that institutional buying is more likely to be 

informative than institutional selling because of short-selling constraints.  After a stock price run-

up, the stock is held by so many institutions that the costs of short-selling decline, as does the 

asymmetry.      Chiyachantana, Jain, Jiang, and Wood (2004) show that the empirical difference 

between the price impacts of institutional buys and sells varies across bull and bear markets.  

They show that in 1997 and 1998, institutional buy orders have greater impacts than sell orders, 

whereas in 2001, the opposite is true.5  

 

 The preceding empirical studies generally span either a subset of orders (block 

trades/institutional trades) and/or a limited sample period [the maximum time span is eight years 

from 1985 to 1992 in Keim and Madhavan (1996)].  Our study differs from earlier ones by 

covering a large cross-section of stocks and considering virtually all orders over a time span of 

more than 25 years.  Our empirical results indicate that for this sample, sell-side price impacts 

exceed buy-side ones.   

 

3.2. Correlations 

 

Panel A of Table 2 reports the time-series averages of the cross-sectional correlations 

between the lambda estimate and both the Amihud (2002) illiquidity measure and the quoted and 

effective spreads. The Amihud measure is calculated as the monthly average of the ratio of the 

daily absolute return to daily dollar volume.  Quoted and effective spreads are monthly averages 

of all observations for each stock, extracted from the transactions data. 

 

The correlation between estimated buy and sell lambdas is about 0.72.  The correlations 

of both the spread measures and the Amihud illiquidity measure with the lambdas are positive.   

                                                            
5   Commenting on these findings, Hu (2009) argues that sell-side and buy-side institutional costs depend on whether 
pre-trade, during-trade, and post-trade benchmark prices are used to measure trading costs.  For example, in rising 
markets, execution prices will tend to be above the pre-trade price, leading to an apparent increase (decrease) in 
buying (selling) costs.   For post-trade measures, the opposite will be true.  For measures based on during-trade 
benchmark prices (like the value-weighted average price), such biases will not apply.  Note that in our case, the sell-
side lambda remains above the buy-side lambda virtually throughout the sample period, which encompasses bear as 
well as bull markets.  This suggests that the considerations of Hu (2009) do not drive the sell-buy lambda 
asymmetry.   
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However, while the quoted and effective spreads have a correlation of about 0.5 with the 

lambdas, the correlation of the Amihud illiquidity measure with the lambdas is only about 0.19.   

This suggests that the Amihud measure and the lambdas capture different facets of illiquidity. 

  

Brunnermeier and Pedersen (2009) and Brunnermeier, Nagel, and Pedersen (2008) argue 

that market liquidity is likely to be positively related to funding liquidity, which affects the 

ability of dealers to finance their inventory. One measure of funding illiquidity is the TED spread, 

the difference between the three-month LIBOR and the three-month Treasury bill rate.  

Specifically, the TED spread may proxy for counterparty risk, which, when elevated, can lead to 

funding illiquidity.  To explore whether the measures of market illiquidity vary with the TED 

spread, we compute time-series correlations between market-wide average illiquidity measures 

and the TED spread. The market-wide illiquidity measures are calculated as the value-weighted 

averages of the individual stock measures each month, and the TED spread is the month-end 

value obtained from public data sources. 6   The correlations are reported in Panel B of Table 2.   

The time-series correlation between the two market-wide average lambdas is 0.998, which 

suggests a common time-varying determinant.  Their correlations with the quoted spread and the 

Amihud measure are, respectively, 0.894 and 0.891.  All five measures of illiquidity are 

positively correlated with the TED spread which confirms the theoretical prediction of 

Brunnermeier and Pedersen (2009). The highest correlations are with the two lambdas (around 

0.45), while the lowest is with the average Amihud measure (0.29).  It is likely that these 

correlations are high because of the long-term increase in liquidity over time.  In our time-series 

regressions we will control for the time trend. 

 
3.3.  Macro determinants of  average buy and sell lambdas 
   

To explore the determinants of overall market liquidity as measured by the lambdas, we 

regress the value-weighted average lambdas on variables which may be expected to affect 

liquidity: (i) the TED spread, (ii) the contemporaneous market return, (iii) the ratio of the number 

of stocks with a positive return to that with a negative return, (iv) a measure of aggregate 

volatility, namely, the implied option volatility index, VIX, and (iv) a linear time-trend. The 

                                                            
6   http://www.federalreserve.gov/releases/h15/data.htm and http://www.bba.org.uk, for the three-month Treasury 
bill rate and the three-month LIBOR, respectively. 
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TED spread is simply a measure of funding liquidity, as described in the previous subsection.   

The second and third variables are used as measures of market stress.  Indeed, Chordia, Roll, and 

Subrahmanyam (2001) show that bid-ask spreads are higher when market returns are low.   

Brunnermeier and Pedersen (2009) as well as Anshuman and Viswanathan (2005) argue that 

market drops reduce the value of market makers’ collateral and lead to a sharp decrease in the 

provision of liquidity.   This implies that lambdas should be higher in down markets and in 

markets where stocks with negative returns outnumber those with positive returns.  Liquidity 

measures should depend on ex ante expected volatility because this quantity is positively related 

to the market makers’ inventory risk, which justifies the inclusion of VIX.  The trend term 

accounts for the decline in the aggregate lambdas shown in Fig. 1. 

 

The coefficient estimates from the time-series regressions for buy and sell lambdas as 

dependent variables appear in Panel A of Table 3.  To capture serial correlation and 

heteroskedasticity, we present t-statistics computed using Newey-West corrected standard errors.  

Both buy and sell lambdas are increasing in the TED spread, which is consistent with the notion 

that the TED spread is a measure of funding liquidity. The lambdas are also strongly and 

positively related to VIX, as expected. The up/down variable and market returns, however, are 

not significant.  As expected, the trend variable is negative and highly significant. 7 

 

Panel B of Table 3 analyzes the time-series determinants of the difference between sell 

and buy lambdas, for both the unscaled and the scaled lambda differential: the latter is the 

difference between the buy and sell lambdas scaled by the average of the buy and sell lambdas.   

The TED spread is negatively related to the unscaled lambda differential with a p-value of 0.12, 

indicating that the spread between sell and buy lambdas narrows when the TED spread is high. 

However, the insignificant coefficient on the scaled difference suggests that the impact of the 

TED spread on the unscaled difference is dwarfed by its impact on the level of the lambdas.   

VIX is significant for the unscaled differential, suggesting that the difference between sell and 

buy lambda widens during periods of high implied volatility.  However, once again, the impact 
                                                            
7   We experiment with other macroeconomic variables as well.  The swap spread is not significant, possibly because 
it is available only from 2000 onwards.  The term spread and the T-bill yield are both negatively related to buy and 
sell lambdas.  Since the term spread declines prior to a recession, this suggests that lambdas are elevated as the 
economy turns down.  Also, T-bill yields are higher during expansions suggesting that lambdas decrease during 
expansionary periods. 
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of VIX on the difference between the lambdas is overwhelmed by its impact on the level of the 

lambdas.  The result for the market return is similar.  The coefficient on the market return is 

negative and significant only for the unscaled differential.  This is consistent with the notion that 

sell lambdas rise by more than buy lambdas during periods of selling pressure that strain market 

maker inventories, and also accords with the findings of Bikker, Spierdijk, and van der Sluis 

(2007), as well as those of Frino, Bjursell, Wang, and Lepone (2008).  Finally, note that the 

coefficient on the time trend for the unscaled (scaled) lambda differential is negative (positive). 

This suggests that the sell lambda declines more than the buy lambda over time.  However, both 

the lambdas decline significantly over time. 

 

3.4. Cross-sectional determinants of buy and sell lambdas 

 

To analyze firm-specific determinants of the lambdas, we estimate a simultaneous system 

of equations for the lambdas, analyst following, institutional holdings, and trading volume as 

measured by turnover.    The system is motivated by Brennan and Subrahmanyam (1995), who 

argue that lambda, and the number of analysts following a stock, and trading activity are 

endogenous variables and estimate a system of equations for these variables.  Moreover, 

institutions are likely to be more active in the more liquid stocks that are followed by many 

analysts and are likely to increase turnover and attract analysts to stocks they hold. We therefore 

estimate the following system: 

λKi = a2 + b2σ(R)i + c2 Log(Pi) + d2 Log(Insti) + e2 Log(1+Analysti) + f2 Log(Insideri)  

                                +  g2 Log(Sizei) + h2 Turni + vi,                           (2) 

 Log(1+Analysti) = a3 + b3 σ(R)i + c3 Log(Pi) + d3 Log(Insti) + f3 λKi + ∑g3jIndij    

        + h3 Log(Sizei) + k3 Turni + wi,                                            (3) 

       Turni =  a4 + b4 λKi + c4 Log(Pi)   + d4 Log(Sizei) + e4 Log(1+Analysti) + ωi,      (4) 

       Log(Insti) =  a5 + b5 λKi + c5 Betai+ d5 S&Pi + e5 Log(1+Analysti) + ζi,              (5) 

where λK ={λbuy, λsell, and λsell – λbuy }; σ(R) is the standard deviation of daily returns calculated 

each month; P is the stock price; Inst represents the percentage of shares held by institutions; 

Analyst denotes the number of analysts following a stock; Insider represents the percentage of 
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shares held by insiders; Size is the market capitalization; Turn represents the monthly share 

turnover; Beta represents the market beta of the stock with respect to the CRSP value-weighted 

index, estimated monthly as per the approach of Fama and French (1992), S&P represents an 

indicator variable denoting S&P 500 index membership, and Indj (j=1,…,5) represents five 

industry dummies obtained from Kenneth French’s  Web site. 

 

The equation system is motivated as follows.  First, it is reasonable to assume that our 

instruments, the price, size, beta, and industry, as well as index membership, are exogenous since 

they describe inherent properties of companies which are not dependent on liquidity, trading 

activity, analyst coverage, and institutional holdings.  Our first equation, which is motivated by 

earlier work on the bid-ask spread (Benston and Hagerman, 1974; Branch and Freed, 1977; Stoll, 

1978), models the lambda as a function of: volatility measured by the monthly standard deviation 

of daily returns, the logarithm of the closing price as of the end of the month, the logarithm of 

the market capitalization as of the end of the month, and monthly share turnover.  Volatility 

affects inventory risk, and share turnover captures the simple notion that active markets tend to 

be deeper.  The price level controls for scale.   As Chordia, Roll, and Subrahmanyam (2000) 

point out, a $10 stock will not have the same bid-ask spread as a $1,000 stock even if they have 

otherwise similar attributes.  All else equal, we expect high-priced stocks to have both high bid-

ask spreads and high lambdas.    The size variable captures the notion that large, visible firms 

would attract more dispersed ownership and hence may be more liquid.   

 

In addition to the preceding variables, we use three variables to capture information 

production: the logarithm of one plus the number of analysts (obtained from I/B/E/S – 

Institutional Brokers’ Estimate System) making one-year earnings forecasts on the stock, the 

logarithm of the percentage of shares held by institutions, and the logarithm of the percentage of 

shares held by insiders.  Using our transformation of analyst following allows us to include firms 

that have no I/B/E/S analysts providing forecasts.  Brennan and Subrahmanyam (1995) use a 

similar measure in considering the role of analysts as information producers.  Further, Chiang 

and Venkatesh (1988) consider the role of insiders in determining the bid-ask spread, given the 
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assumption that inside ownership is the channel through which private information gets 

conveyed to the market.  Also, the role of institutions as information producers has been 

analyzed in Sarin, Shastri, and Shastri (1999).   

 

In Eq. (3), the number of analysts following a stock is modeled as a function of the 

institutional holding and the trading volume as measured by turnover because it is likely that 

analysts follow stocks with high trading volume and high institutional holdings.  Price and size 

are also used as explanatory variables because, in general, analysts follow larger stocks.  The 

price impact measures and the monthly return volatility are also included because analysts are 

less likely to follow illiquid stocks.   In Eq. (4), turnover is modeled as a function of firm size, 

price, analyst following, and the price impact measures because larger, more liquid stocks with 

high analyst following are likely to have higher turnover.  Finally, in Eq. (5) holdings are 

modeled as a function of beta, S&P 500 membership, and analyst following.  Beta is included 

because Barry and Brown (1985) and Klein and Bawa (1976, 1977) argue that the measured 

betas of securities with low information flows would be higher, and that this would influence the 

holdings of such securities.  S&P 500 membership is also likely to influence institutional 

holdings because of the prevalence of indexation to the S&P 500 (Fabozzi and Molay, 2000).  

Finally, analyst following is included because institutions are likely to be attracted to stocks 

more widely followed by analysts. 

 

The cross-sectional regression equations in (2)–(5) are estimated jointly each month by 

three-stage-least-squares.  The average sample size is 593.  The time-series averages of the 

coefficients for the lambda equations are presented in Table 4.8  The reported t-statistics are 

computed from the time-series of the coefficient estimates using Newey-West (1987, 1994) 

standard errors.  The results are mostly consistent with prior conjectures, and the determinants of 

buy and sell lambdas are quite similar.   Thus, Panels A and B of Table 4 show that both the buy 

and sell lambdas are positively related to volatility, and negatively related to share turnover.  

Consistent with the role of the price level as a scale factor, its coefficient is positive.  The 

coefficient of insider holdings, another measure of information asymmetry, is not significant.  

                                                            
8   Estimates for the other equations are not reported for brevity but are available upon request. 
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Perhaps a better measure of information asymmetry would be insider trading rather than insider 

holdings, but data on insider trading are not available for an extended cross-sectional and time-

series sample.  The percentage of shares held by institutions is negatively related to lambda, 

which appears to be inconsistent with the role of institutions as information producers.  However, 

this result may arise because more institutions may imply greater competition between 

institutions using correlated information, and hence a lower lambda, as argued by Brennan and 

Subrahmanyam (1995) for analyst following.  These cross-sectional results for the buy and sell 

lambdas are similar to those obtained for the bid-ask spread (see, for instance, Chordia, Roll, and 

Subrahmanyam, 2000). 

 

It is also of interest to examine cross-sectional determinants of the sell-buy lambda 

differential.  To this end, Panel B of Table 4 presents the results when the unscaled and scaled 

differences in lambdas (i.e., the variables used in Table 3, Panel B) are, in turn, used in place of 

the buy and sell lambdas in the estimation.   The lambda differential is negatively related to 

analyst following and institutional holding.  The coefficient on the stock price is positive and 

significant for the unscaled differential suggesting that the sell lambda increases by more than 

the buy lambda as price increases.   However, the scaled difference between the sell and the buy 

lambda is unrelated to price suggesting that the impact of price on the average lambda is larger 

than the impact on the differential. 

 

Overall, the determinants of buy and sell lambdas accord with previous findings on the 

determinants of illiquidity.9  To this point, however, we have been concerned only with the time-

series and cross-sectional properties of buy and sell lambdas.  In the following two sections we 

address how the buy and sell lambdas affect the return premium demanded by investors. 

 

4.  Returns on portfolio sorts 

 

                                                            
9   To address the issue that the lambdas and the sell-buy lambda differential may be affected by stock returns (a 
stock with negative returns may have greater sell-side price impact because of inventory pressures caused by a lack 
of buyers), we include the current and lagged returns in the equation for lambda.  These return variables, however, 
are not significant, suggesting that cross-sectional variations in the level of lambda and the difference in sell and buy 
lambdas are not explained by differences in realized returns. 
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Before reporting the results of regressions relating average returns to the lambdas, we 

report mean returns for the portfolios formed by sorting the component stocks into quintiles each 

month according to the estimated buy and sell lambdas, in turn.    We present the subsequent 

months’ average excess returns as well as the Capital Asset Pricing Model (CAPM) and Fama 

and French (1993) intercepts (alphas) for these value-weighted portfolios in Table 5 (the weights 

are computed using market capitalization as of the end of the previous month).   The intercepts 

are those from the time-series regression of the quintile portfolio returns on the excess market 

return and the three Fama-French factors. 

 

We find that excess returns and alphas increase monotonically with the lambda quintile 

except in one case (quintiles 4 and 5 for the buy lambda).   The differences in excess returns and 

alphas between the extreme lambda quintiles are all positive and significant at the 5% level. The 

Fama-French alpha for the high lambda portfolio exceeds that of the low lambda portfolio by 40 

basis points per month for the buy lambda sort and by 56 basis points for the sell lambda sort.10  

The return spread of about 6.7% per year between the extreme sell lambda portfolios (based on 

the last column) is economically significant. 

 

The results in Table 5, of course, do not shed light on the differential effects of buy and 

sell lambda on risk-adjusted expected stock returns.  To explore this, we sort stocks first into 

quintiles by buy lambdas and then sort within each quintile into five portfolios by sell lambdas. 

Panel A of Table 6 reports the average excess returns and the Fama-French alphas for the high 

sell lambda minus the low lambda quintile portfolios for each buy lambda quintile.  Thus, we 

examine the return differential across the extreme sell lambda quintile portfolios while holding 

buy lambdas constant.  The differences in both excess returns and the Fama-French alphas 

between the highest and lowest sell lambda portfolios are positive in all cases and significant at 

the 5% level or better in three out of the five cases.   The alpha differential between the extreme 

sell-lambda quintiles ranges from 20 to 49 basis points per month across the five buy lambda 

groups.  We also perform a reverse sequential sort in which we sort first into quintiles by sell 

lambdas and then form five portfolios within each quintile by buy lambdas.  Panel B of Table 6 

                                                            
10   Brennan and Subrahmanyam (1996) find about a 55 basis point return differential across their extreme lambda 
portfolios (see their Table 4), which is comparable to our corresponding magnitudes. 
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reports the average excess returns and Fama-French alphas for the high buy lambda minus the 

low buy lambda quintile portfolios for each sell lambda quintile.  In contrast to the results 

reported in Panel A, the spread between the extreme buy lambda portfolios is insignificant in 

every case and in three out of the five cases, the point estimate is negative.  Thus, the results 

suggest that there is a premium associated with sell-order illiquidity even after controlling for the 

effect of buy-order illiquidity, but there is no evidence of a premium for buy-order illiquidity 

after controlling for sell-order illiquidity.    

 

  A potential concern is that the compensation for lambda is simply a manifestation of a 

return effect related to firm size, since smaller firms have higher lambdas (Panel D of Table 1 

and Panel A of Table 4) and have been shown to earn higher returns (Banz, 1981).  To 

distinguish between the effects of lambda and firm size, we sort stocks into 25 portfolios first by 

firm size and then by sell lambda.  The results in Panel C of Table 6 show that within each size 

quintile, the difference in Fama-French alphas between between the high and low sell lambda 

quintiles are positive.  While the (risk-adjusted) return differential between the extreme sell 

lambda quintiles is larger for smaller firms, it is present in all firm size quintiles.  Our evidence 

therefore points to a role for sell lambda over and above that of firm size in predicting stock 

returns.  

 

We perform additional sorts by two other characteristics known to influence the cross-

section of stock returns, namely, the book/market ratio (Fama and French, 1992) and a 

momentum variable; namely, the past seven- to 12-month return (Jegdeesh and Titman, 1993).  

Results from these sorts appear in Panels D and E.  In each of these panels, the return differential 

across extreme sell lambda portfolios is significant in four of five cases.  Overall, the results 

point to a robust return premium for stocks with high values of the sell lambda. 

 

5. Asset pricing regressions 

 

This section presents the results of asset pricing regressions that aim to investigate 
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differential pricing of buy and sell lambdas.  We first introduce our method, and then present the 

main results, followed by some robustness checks. 

 

5.1. Methodology 

 

Our cross-sectional asset pricing tests follow Brennan, Chordia, and Subrahmanyam 

(1998) and Avramov and Chordia (2006), who test factor models by regressing risk-adjusted 

returns on firm-level attributes such as size, book-to-market, turnover, and past returns.  We first 

regress the excess return on stock j, (j=1,..,N) on asset pricing factors, Fkt, (k=1,..,K), allowing 

the factor loadings, βjkt, to vary over time  as a function of firm size and book-to-market ratio, as 

well as macroeconomic variables. The conditional factor loadings of security  are modeled as:  

βjkt-1=βjk1+βjk2 zt-1+βjk3 Sizejt-1+βjk4 BMjt-1 ,                                (6) 

where 1jtSize −  and BMjt-1  are the market capitalization and the book-to-market ratio at time 1t − , 

and 1tz −  denotes a vector of macroeconomic variables: the term spread, the default spread, and 

the T-bill yield. The term spread is the constant maturity yield differential between Treasury 

bonds with more than ten years to maturity and T-bills that mature in three months. The default 

spread is the yield differential between bonds rated Baa and Aaa by Moody’s.     

 

The dependence of factor loadings on size and book-to-market is motivated by the 

general equilibrium model of Gomes, Kogan, and Zhang (2003), who justify separate roles for 

size and book-to-market as determinants of beta.  In particular, firm size captures the component 

of a firm's systematic risk attributable to growth options, and the book-to-market ratio serves as a 

proxy for the risk of existing projects.  The inclusion of business-cycle variables is motivated by 

the evidence of time-varying risk–-viz. Rosenberg and Marathe (1976) and Ferson and Harvey 

(1991).  

 

In the empirical analysis, the factor loadings βjk(t) are modeled using three different 

specifications: (i) an unconditional specification in which βjk(t) = βjk , (constant betas), (ii) a 
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conditional specification in which loadings depend only on firm-level characteristics, βjk2 = 0, 

and (iii) a model in which loadings depend only on macroeconomic variables, i.e., βjk3 =βjk4 = 0.  

 

We subtract the component of the excess returns that is associated with the factor 

realizations to obtain the risk-adjusted returns, Rjt
*:  

∑
=

−−−=
K

k
jkjktFtjtjt FRRR

1
1

* β .        (7) 

The risk-adjusted returns are then regressed on the equity characteristics: 

 

 ∑
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− ++=
M

m
jtmjtmttjt eZccR

1
20

* ,   (8)         

                     

where βjkt-1 is the conditional beta estimated by a first-pass time-series regression over the entire 

sample period.11 2mjtZ − is the value of characteristic m for security j at time t-2,  and M is the 

total number of characteristics. This procedure ensures unbiased estimates of the coefficients, cmt, 

without the need to form portfolios, because the errors in estimation of the factor loadings are 

included in the dependent variable. Ang, Liu, and Schwarz (2008) also argue in favor of using 

individual stock betas because forming portfolios shrinks the dispersion in betas and leads to 

higher asymptotic standard errors of risk premia estimates.  Note that we lag all characteristics 

by at least two months.   This is because bid-ask effects and thin trading could affect our results 

if one-period lagged characteristics are correlated with lagged bid-ask spreads (Jegadeesh, 1990; 

Brennan, Chordia, and Subrahmanyam, 1998). 

 

The standard Fama-MacBeth (1973) estimators are the time-series averages of the 

regression coefficients, tc$ . The standard errors of the estimators are traditionally obtained from 

the variation in the monthly coefficient estimates. We correct the Fama-MacBeth (1973) 

standard errors using the approach in Shanken (1992) to allow for error in the estimation of 

factor loadings in the first-pass regression.  

 

                                                            
11   Fama and French (1992) and Avramov and Chordia (2006) show that using the entire time-series to compute the 
factor loadings gives results that are qualitatively similar to those obtained from using rolling regressions.   
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Based on well-known determinants of expected returns in Fama and French (1992), 

Jegadeesh and Titman (1993), and Brennan, Chordia, and Subrahmanyam (1998), the firm 

characteristics included in the cross-sectional regressions are the following:  

(i) SIZE: measured as the natural logarithm of the market value of the firm’s equity as of the 

second-to-last month,  

(ii)  BM: the ratio of the book value of the firm’s equity to its market value of equity, where 

the book value is calculated according to the procedure in Fama and French (1992), 

measured as of the second-to-last month, 

(iii) TURN: the logarithm of the firm’s share turnover, measured as the trading volume 

divided by the total number of shares outstanding, both measured at the end of the 

second-to-last month,  

(iv) RET2--3: the cumulative return on the stock over the two months ending at the beginning 

of the previous month,  

(v) RET4--6: the cumulative return over the three months ending three months previously,  

(vi) RET7--12: the cumulative return over the six months ending six months previously, 

(vii) the buy and sell lambdas, λbuy and λsell, as of the second-to-last month. 

 

Under the null hypothesis of exact factor pricing, the coefficients of all of these 

characteristics should be indistinguishable from zero in the cross-sectional regressions 

represented by Eq. (8).  Significant coefficients point to lacunae in the factor-pricing model.  

Brennan, Chordia, and Subrahmanyam (1998) find that the predictive ability of size, book-to-

market, turnover, and past returns is unexplained by typical factor-pricing models.  In this paper, 

we explore whether buy lambdas and sell lambdas capture elements of expected returns that are 

not captured by the factor-pricing models using both conditional and unconditional versions of 

factor loadings.12   Since Datar, Naik, and Radcliffe (1998) interpret turnover as a measure of 

liquidity, the challenge is to determine whether the lambda measures have a significant influence 

on expected returns after accounting for the effect of turnover.  

 

5.2. Results 
                                                            
12   We use unscaled versions of buy and sell lambdas to ensure that the asset pricing results do not pick up the 
consequences of scaling, as opposed to the effect of lambdas.  However, scaling the lambda by the market price 
leaves the qualitative conclusions unchanged (results available from the authors). 
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We now present the results of monthly cross-sectional Fama-MacBeth regressions of 

risk-adjusted returns on firm characteristics, i.e., estimates of Eq. (8).  Results are presented 

when returns are adjusted for risk using both unconditional and conditional factor loadings.  For 

each of our factor model specifications, we report the time-series averages of the monthly cross-

sectional regression coefficients and the associated Shanken (1992) corrected t-statistics. 

 

Table 7 reports results for the case in which the Fama-French risk factors are used to 

calculate risk-adjusted returns.  The results are qualitatively similar when the excess market 

return is used as the single risk factor.   The coefficients of both buy and sell lambdas are 

positive and significant when they are separately included in the regression. However, the 

statistical significance of the buy lambda disappears (and the absolute coefficient reduces by 

about 85--90%) when the sell lambda is included in the regression.13  On the other hand, the sell 

lambda remains highly significant in the presence of the buy lambda and its coefficient is little 

changed by the inclusion of the buy lambda in the regression.  The use of conditional betas in 

calculating the risk-adjusted returns has no qualitative effect on these results. These findings 

imply that the effect of lambda in the cross-section of expected stock returns emanates 

completely from the sell lambda, as opposed to the buy lambda. 14    

 

We also find that the longest-term momentum variable is significant, confirming the 

well-known momentum effect of Jegadeesh and Titman (1993).  Turnover is negatively 

associated with risk-adjusted returns, which is consistent with the evidence of Datar, Naik, and 

Radcliffe (1998) as well as that of Brennan, Chordia, and Subrahmanyam (1998).  That the 

coefficients of the sell lambda are positive and significant in the presence of turnover suggests 

that turnover and the lambdas pick up complementary aspects of liquidity.  For example, 

                                                            
13  We address the illiquidity-induced bias in asset pricing tests mentioned by Asparouhova, Bessembinder, and 
Kalcheva (2010) by conducting the two tests recommended by these authors in their paper.  First, we perform a 
version of the Table 7 regression with mid-quote returns, using the last bid-ask quote matched to a transaction 
during a day.  Second, we perform weighted-least-squares regressions, using the prior period’s gross return as 
weights.  The results survive the alternative methods, and are available upon request. 
14   To ensure that our results survive potential asymmetries in momentum across positive and negative return states, 
we split up the three momentum variables into six variables, two each capturing positive and negative return states.  
The results are qualitatively unaltered in this alternative return specification. 
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turnover is a measure of the average time to turn around a position, while lambdas measure the 

price impact of a trade.15 

 

In Table 8, we add the Amihud (2002) illiquidity measure and the log of the stock price 

as explanatory variables in the cross-sectional regressions. Falkenstein (1996) argues that firms 

with low prices are often in financial distress, and this may be reflected in their earning higher 

expected returns, as shown by Miller and Scholes (1982).   Also, Berk (1995) observes that price 

will be related to returns under improper risk-adjustment, because riskier firms would tend to 

have lower price levels and also earn higher expected returns.   Further, low-priced, illiquid firms 

could be associated with high lambdas, so that our lambda measure could be picking up a price 

level effect.  To address the potential relation between prices and lambdas, we include the 

logarithm of the two months’ prior closing price as an explanatory variable.  Further, we add the 

Amihud measure of illiquidity in our regressions to test whether the lambda measures capture 

facets of illiquidity that are not captured by this existing illiquidity measure.   

 

Table 8 shows that high-priced stocks have lower expected returns and illiquid stocks as 

measured by the Amihud measure have higher expected returns.16  These results are robust to the 

choice of conditioning variables.  Further, in the presence of the stock price variable, larger firms 

have higher expected returns over our 1983--2008 sample period.  Also, the effect of turnover on 

risk-adjusted returns is weaker when the price variable and Amihud measure of illiquidity are 

included in the regression, especially when the factor loadings are conditioned on 

macroeconomic variables.  Most importantly, the coefficient on the sell lambda continues to be 

positive and significant.   Indeed, the coefficient is larger than in Table 7.  The coefficient on the 

buy lambda remains insignificant in the presence of the sell lambda. 

                                                            
15   Kyle (1985, p. 1316), inspired by Black (1971), states the following:  

“Market liquidity” is a slippery and elusive concept, in part because it encompasses a number of 
transactional properties of markets.  These include “tightness” (the cost of turning around a position over a 
short period of time), “depth” (the size of an order flow innovation required to change prices a given 
amount), and “resiliency” (the speed with which prices recover from a random uninformative shock).”  

It is reasonable to propose that that lambda captures the second aspect of liquidity, and turnover the first one.  Pastor 
and Stambaugh (2003) capture the third (resiliency) aspect of liquidity.  To allay concerns about omitted risk factors, 
in alternative robustness checks (available upon request), we augment the factor model by the liquidity factor of 
Pastor and Stambaugh (2003) as well as the momentum factor (UMD).  We find that the coefficients of the sell 
lambda are not materially affected by this augmentation. 
16   The fixed cost component, ψ, does not play a significant role in asset pricing; results are available upon request. 
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In sum, the impact of the sell lambda on risk-adjusted returns dominates that of the buy 

lambda using either conditional or unconditional models for factor loadings, and irrespective of 

whether loadings are conditioned on macroeconomic variables or size/book-market.  Thus, the 

pricing of sell illiquidity appears to be a robust phenomenon in the cross-section of stock returns. 

To assess the economic magnitude of the premium for sell lambda, consider the relevant 

coefficients in the last row of Table 8.  The coefficients in this row range from 0.25 to 0.31.   

Relating these to the summary statistics in Panel A of Table 1, we find that a one-standard-

deviation change in sell lambdas implies an annual sell lambda premium that ranges from 2.9% 

to 3.7%.  This is material.  The return required as compensation for sell illiquidity is not only 

statistically significant but also economically significant. 

 

5.3. Additional robustness checks 

 

We perform further tests to ensure robustness of the results.  First, from Table 2, the 

grand time-series, cross-sectional correlation between buy and sell lambdas is 0.72, which is high.  

To mitigate concerns about multicollinearity, we estimate a specification where we include the 

average of and the difference between the sell and buy lambdas as independent variables.  

Results appear in Table 9 for the unconditional model (they are qualitatively similar for other 

models).  As can be seen, there is both a baseline effect of the average lambda, and an 

incremental effect of the difference between sell and buy lambdas in that both variables are 

positive and significant.  This confirms the additional premium required for the sell lambda. 

 

Eleswarapu and Reinganum (1993) argue that the premium for the bid-ask spread is 

almost entirely realized in the month of January.  To ascertain if there is a similar January 

seasonal effect in the premium for sell lambda, we regress the time-series of Fama-MacBeth 

coefficients (i.e., the reward per unit sell lambda as in column 3 of Table 8) on a constant plus a 

dummy for the month of January.  The coefficient on the dummy variable is positive but has a t-

statistic of 1.25, indicating that the premium for sell lambda does not exhibit a January seasonal.   
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Next, Bessembinder and Venkataraman (2010) indicate that the accuracy of the Lee and 

Ready (1991) trade signing algorithms has not been assessed in the post-decimalization (i.e., 

post-December 2000) period, which is characterized by a dramatic increase in the frequency of 

trades and quote updates.  Since our sell-buy lambda estimation relies on the Lee and Ready 

algorithm to separate trades into buys and sells, we re-estimate the Table 8 regressions dropping 

all months from January 2001 onwards.  This results in a loss of 108 sample months but even in 

this regression, the sell lambda remains significant with a t-statistic of 2.3 whereas the buy 

lambda is insignificant (full results are available from the authors on request). 

 

As a final robustness check, we now turn to the issue of whether the differential pricing 

of sell and buy lambdas extends to the case where the price response is computed with respect to 

the unexpected order flow, as opposed to the total order flow.  The idea here is to capture the 

market maker response to the unanticipated portion of the order flow, which may more reliably 

represent the trades of newly informed agents.  To address this issue, we use transactions data to 

compute a variant of the measure developed by Sadka (2006) and also used in Korajczyk and 

Sadka (2008).  Specifically, in Eq. (8) of Sadka (2006),17 we decompose the unexpected order 

flow (ελ,t) into buy and sell components in a manner identical to our Eq. (4), and then estimate 

the buy and sell lambda separately for each stock over our sample period.  These lambdas are 

then used in an asset pricing regression of the type in Table 8.  Results appear in Table 10.18  As 

can be seen, the results are qualitatively similar.  Both the buy and sell lambdas are positive and 

significant when included separately, but when included together, the significance of the buy 

lambda disappears.  The coefficient magnitudes are very similar to the ones in Table 8.  Thus, 

overall, our results present compelling evidence that the liquidity premium in equity markets is 

determined predominantly by sell-order illiquidity.   

 

6. Conclusion 
                                                            
17   Sadka (2006) uses the residuals from an AR(5) model to compute the unexpected order flow.  We follow his 
procedure to compute the order flow innovations.    
18   The difference between the average sell and buy lambdas over the entire sample period is about 15%, the same 
order of magnitude as in Table 1, Panel A, and is statistically significant.  We also follow Sadka (2006,  p. 315) in 
separately dummying out the effects of block trades (proxied by orders that exceed 10,000 shares), so that the 
lambdas in Table 10 adjust for the effects of large trades. Again, for conciseness, we present results only for the 
unconditional asset pricing model.  
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Previous studies of the effect of liquidity on asset pricing have used measures of liquidity 

that assume that trading costs are symmetric for purchases and sales.  We estimate buy and sell 

order measures of price impact (“lambdas”) for a large cross-section of stocks over 26 years. 

Averages of individual stock sell and buy lambdas co-move with the TED spread which is a 

measure of funding illiquidity. We also find that the cross-sectional determinants of buy and sell 

lambdas are similar, and that sell lambdas tend to exceed buy lambdas.   

 

We examine the differential effects of buy and sell lambdas on the cross-section of 

expected stock returns.  We find that sell illiquidity is priced far more strongly in the cross-

section of expected stock returns than is buy illiquidity.  These findings obtain in two-way 

portfolio sorts of buy and sell lambdas, and are also apparent in Fama-MacBeth cross-sectional 

regressions after controlling for risk, and for other well-known determinants of expected returns.  

The evidence supports the notion that the pricing of liquidity emanates almost entirely from the 

sell lambdas.  Furthermore, the compensation for sell illiquidity in the cross-section of stock 

returns is not only statistically significant, but also economically material. 

 

Our results suggest topics for additional exploration.  For example, it would be 

interesting to ascertain whether the asymmetry between sell and buy illiquidity extends to other 

markets, such as those for index options and futures.  Whether derivatives markets yield a 

liquidity premium largely from the sell-side also is an interesting question.  Exploration of these 

issues is left for future research. 
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Appendix.  Estimation of buy and sell lambdas 
 

Let tm denote the expected value of the security, conditional on the information set, at 

time t, of a market maker who observes only the order flow, tq , and a public information 

signal, ty .  Similar to Glosten and Harris (1988), we assume that tm  evolves according to 

  

 1 ,t t ttm m q yλ−= + +   (9)      

                                                                  

where λ is the (inverse) market depth parameter and ty  is the unobservable innovation in the 

expected value due to the public information signal.  

 

We let tD  denote the sign of the incoming order at time t (+1 for a buyer-initiated trade 

and -1 for a seller-initiated trade). Given the order sign tD , denoting the fixed component of 

transaction costs by ψ , and assuming competitive risk-neutral market makers, the transaction 

price, tp  can be written as  

 t t tp m Dψ= + . (10) 

 

Using Eqs. (9), (10), and 1 1 1t t tp m Dψ− − −= + , the price change, tpΔ , is given by  

 

 1( )t t t t tp q D D yλ ψ −Δ = + − + . (11) 

 

We modify Eq. (11) to allow for different price responses to purchases and sales: 

 

  buy  sell 1( 0) ( 0) ( ) ,t t t t t t t tp q q q q D D yα λ λ ψ −Δ = + > + < + − +  (12)         

           

and we refer to  buyλ  and  sellλ as the buy lambda and the sell lambda, respectively.    
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The estimation procedure uses intraday transactions data that are filtered as follows.  First, 

data were purged for one of the following reasons: trades out of sequence, trades recorded before 

the open or after the closing time,19 and trades with special settlement conditions (because they 

might be subject to distinct liquidity considerations).  Second, we omit the overnight price 

change to avoid contamination of the price change series by dividends, overnight news arrival, 

and special features associated with the opening procedure. Third, to correct for reporting errors 

in the sequence of trades and quotations, we delay all quotations by five seconds during the 

1983--1998 period.  Given the generally accepted decline in reporting errors in recent times (see, 

for example, Madhavan et al., 2002; as well as Chordia, Roll, and Subrahmanyam, 2005), after 

1998, no delay is imposed in the 1999 to 2008 period.   

 

To avoid obvious keypunching errors in the transactions database, we apply the Chordia, 

Roll, and Subrahmanyam (2001) filters to the transaction data by deleting quotes and matched 

transactions that satisfy the following conditions:20 

1. Quoted spread > $5 

2. Effective spread/Quoted spread > 4.0 

3. Relative effective spread/Relative quoted spread > 4.0 

4. Quoted spread/Transaction price > 0.4. 

These filters removed fewer than 0.02% of all transaction records. 

 

Each month, from January 1983 to December 2008, buy lambdas and sell lambdas for 

each stock are estimated by running the regression in Eq. (12), i.e., Eq. (1) in the main text.  All 

filtered transactions during a relevant month are used for estimation.  This procedure yields a 

panel of buy and sell lambdas over the sample period.  The price change is in dollars per share 

and quantities are in shares so the lambdas are measured in dollars per share, while the fixed cost 

                                                            
19   The closing time was taken to be 4:05 p.m. and not the regular closure time of 4:00 p.m. since it is common for 
regular transactions to be reported up to five minutes after closing time. 
20   In the conditions, the effective spread is the absolute distance between the transaction price and the mid-point of 
the matched quote.  The relative spreads are the raw spreads divided by the mid-point of the matched bid and ask 
quotes. 
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component, ψ, is measured in dollars. To remove spurious results due to outliers, in each month 

buy and sell lambdas greater than the cross-sectional 0.995 fractile or less than the 0.005 fractile 

are set equal to the 0.995 and the 0.005 fractile values, respectively.  These final estimates are 

used throughout the paper. 
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Table 1  
Summary statistics 
  This table shows buy lambda and sell lambda statistics over the 1983--2008 sample period. The lambdas are 
estimated for each stock each month as price impact measures in a regression of price changes on signed orders, 
allowing for separate terms for buys and sells, and are scaled up by 103.  The table reports the number of 
observations, mean, standard deviation, and the percentage of buy/sell lambda with t-statistics (using Newey-West 
standard errors) greater than 1.96.  Panel A shows full sample results. Panel B and Panel C show the results when 
market monthly excess value-weighted returns are negative and positive.  Panel D sorts the buy and sell lambdas by 
market.   
 

Panel A: All 
 Obs.  25% Median 75% Mean Std. dev. %(t>1.96) 

Buy lambda 443,788  0.0008 0.00204 0.00527 0.00519 0.00961 59% 

Sell lambda 443,788  0.0009 0.00257 0.00571 0.00555 0.00978 62% 

H0: Buy=Sell 
p-value 

   <0.0001        

 
 

Panel B: Sorted by market return at time t 
 Mkt(t)<0 Mkt(t)>0 
 Mean Std. dev. %(t>1.96) Mean Std. dev. %(t>1.96) 

Buy lambda 0.00530 0.00981 59% 0.00513 0.00948 59% 

Sell lambda 0.00567 0.00994         63% 0.00548 0.00967 62% 

H0: Buy=Sell 
p-value 

<0.0001   <0.0001   

 
 

Panel C: Sorted by market return at time t-1 
 Mkt(t-1)<0 Mkt(t-1)>0 
 Mean Std. Dev. %(t>1.96) Mean Std. Dev. %(t>1.96) 

Buy lambda 0.00519 0.0960 59% 0.00520 0.00961 59% 

Sell lambda 0.00564 0.0989 62% 0.00549 0.00970 62% 

H0: Buy=Sell 
p-value 

<0.0001   <0.0001   

 
 

Panel D: Sorted by firm size 
 Small Size 2 Size 3 Size 4 Large 

Buy lambda 0.00888 0.00744 0.00494 0.00289 0.00197 

Sell lambda 0.00937 0.00788 0.00540 0.00310 0.00216 

H0: Buy=Sell 
p-value 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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Table 2  
Correlations of lambdas with other illiquidity measures 
  This table presents time-series correlations and averages of the cross-sectional correlations of lambdas with 
alternative measures of illiquidity.  The lambdas are estimated for each stock each month as price impact measures 
in a regression of price changes on signed orders, allowing for separate terms for buys and sells.   Panel A shows the 
time-series averages of the cross-sectional correlations between buy lambda, sell lambda, the Amihud  illiquidity 
measure, the quoted spread, and the effective spread.  Panel B  reports time-series correlations between the value-
weighted monthly cross-sectional averages of buy lambda, sell lambda, Amihud measure, the quoted spread, the 
effective spread, and a measure of funding illiquidity, the TED spread.  The Amihud illiquidity measure is computed 
for each stock as the monthly average of the daily absolute return divided by the daily dollar trading volume.  The 
TED spread is computed as the difference between the three-month LIBOR and the three-month Treasury bill rate.    
The sample period is 1983 to 2008. 
 
 
Panel A:  Time-series averages of cross-sectional correlations 
 
 Buy lambda Sell lambda Quoted spread Effective spread 
Sell lambda 0.716    
Quoted spread 0.491 0.498   
Effective spread 0.446 0.442 0.751  
Amihud illiquidity  0.186 0.178 0.032 0.038 
 

 
 
 
Panel B: Time-series correlations between value-weighted monthly cross-sectional averages  
 
 Buy lambda Sell lambda Quoted spread Effective spread Amihud illiquidity 
Sell lambda 0.998     
Quoted spread 0.894 0.860    
Effective spread 0.864 0.893 0.985   
Amihud illiquidity 0.894 0.891 0.818 0.846  
TED spread 0.453 0.450 0.335 0.299 0.292 
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Table 3 
Time-series regressions 
  This table presents coefficient estimates from time-series regressions using value-weighted monthly cross-sectional 
averages of buy lambda, sell lambda, the average of the buy and sell lambdas, and the lambda differential as 
dependent variables.  The lambdas are estimated for each stock each month as the price impact measures in a 
regression of price changes on signed orders, allowing for separate terms for buys and sells, and are scaled up by 103.    
The explanatory variables are a measure of funding illiquidity, the TED spread, computed as the difference between 
the three-month LIBOR and the three-month Treasury bill rate, the contemporaneous and lagged NYSE Composite 
index returns, the ratio of the number of stocks with a positive return to that with a negative return during the current 
month, the implied volatility index VIX, and a time trend. Since VIX is not available for every month in the sample, 
we use a variable that equals VIX when available and zero when VIX is missing.  In Panel B, the last two columns 
present results when the dependent variable is the difference between sell and buy lambdas scaled by the average of 
buy and sell lambdas. Coefficients are multiplied by 1,000 (10,000) in Panel A (B), and t-statistics are calculated 
using Newey-West standard errors.  The sample period is 1983 to 2008. 
 
Panel A: Buy and sell lambdas as dependent variables 
 

 Buy lambda as the 
dependent variable 

Sell lambda as the 
dependent variable 

Average lambda as the 
dependent variable 

 Mean coefficient 
 

t-Statistic
 

Mean coefficient
 

t-Statistic
 

Mean coefficient 
 

t-Statistic
 

Intercept 2.667 19.19 2.920 21.35 2.794 20.71 
TED spread (t) 0.316 3.69 0.267 2.86 0.292 3.23 
Market Return (t) -1.852 -1.25 -2.490 -1.57 -2.171 -1.42 
Market Return (t-1) 1.023 1.49 0.462 0.56 0.743 1.06 
Up/Down Ratio (t) 0.055 1.22 0.068 1.32 0.061 1.25 
VIX 0.021 6.10 0.025 6.69 0.023 6.30 
Time trend -0.012 -23.11 -0.013 -22.72 -0.012 -22.92
Adjusted R-square 0.554  0.565  0.569  
 
 
 
Panel B:  Sell lambda minus buy lambda as the dependent variable 
 

 Unscaled difference Scaled difference 

 Mean coefficient 
 

t-Statistic 
 

Mean coefficient 
 

t-Statistic 
 

Intercept 2.535 5.28 337.366 2.60 
TED spread (t) -0.496 -1.68 -83.092 -1.01 
Market return (t) -6.387 -2.06 -679.195 -0.90 
Market return (t-1) -5.601 -1.59 -995.173 -1.74 
Up/Down ratio (t) 0.131 1.57 11.769 0.52 
VIX 0.037 2.57 3.318 0.80 
Time trend -0.008 -5.04 1.921 3.96 
Adjusted R-square 0.146  0.136  
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Table 4 
Cross-sectional determinants of buy and sell lambdas 
  This table presents the results of monthly regressions for determinants of lambdas.  The lambdas are estimated for 
each stock each month as price impact measures in a regression of price changes on signed orders, allowing for 
separate terms for buys and sells, and are scaled up by 103.  Return std is the monthly standard deviation of daily 
returns.  Price is the closing price.  Inst holding is the percentage of shares held by institutions.  Analyst is the 
number of I/B/E/S analysts making one-year earnings forecasts.  Insider holding is the percentage of shares held by 
insiders.  Size is market capitalization as of the end of the month.  Turnover is the monthly share turnover.  Three-
stage-least-squares estimation is carried out each month for the equation system that allows for the endogeneity of 
illiquidity, analyst following, turnover, and institutional holdings.  Time-series coefficient averages and Newey-
West (1987, 1994) corrected t-statistics are reported. The sample period is 1983 to 2008. 
 
Panel A: Buy and sell lambdas  
 
 Buy lambda  Sell lambda  

 Mean coefficient t-Statistic Mean coefficient t-Statistic 

Intercept 0.0200 9.18 0.0280 9.66 

Return std 0.0580 4.08 0.0762 6.21 

Log (price) 0.0052 14.06 0.0059 18.23 

Log (inst holding) -0.0010 -2.43 -0.0023 -4.92 

Log (1+analyst) -0.0005 -1.23 -0.0006 -1.50 

Log (insider holding) -0.0001 -1.21 -0.0000 -0.91 

Log (size) -0.0023 -11.21 -0.0025 -12.01 

Turnover -0.0018 -4.26 -0.0020 -4.84 

 
Panel B: Sell lambda minus buy lambda 
 
 Unscaled difference  Scaled difference 

 Mean coefficient t-Statistic Mean coefficient t-Statistic 

Intercept 0.0040 1.62 0.3210 1.49 

Return std 0.0164 1.56 0.8422 1.73 

Log (price) 0.0006 6.09 0.0070 1.02 

Log (inst holding) -0.0010 -2.16 -0.0951 -1.99 

Log (1+analyst) -0.0003 -2.03 -0.0588            -2.32 

Log (insider holding) 0.0000 1.29 0.0004 0.60 

Log (size) -0.0000 -0.31 -0.0070 -1.02 

Turnover -0.0001 -0.14 -0.0589 -1.80 
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Table 5  
Returns to buy/sell lambda portfolios 
  The table reports value-weighted excess returns, as well as risk-adjusted returns (alpha) calculated using the CAPM 
and Fama-French three factors.  Quintiles are formed monthly based on buy lambda (Panel A) or sell lambda (Panel 
B) in the previous month.   The lambdas are estimated for each stock each month as price impact measures in a 
regression of price changes on signed orders, allowing for separate terms for buys and sells.  Stocks with low (high) 
buy/sell lambda are in quintile 1 (5). The difference in returns between the high and the low buy/sell lambda 
portfolios are also reported, along with t-statistics in parentheses. Returns are expressed in percent per month. The 
sample period is 1983 to 2008. 
 
 

 %Excess returns %Alphas 
(CAPM) 

%Alphas 
(FF) 

Panel A: Buy lambda portfolios 
1 0.39 -0.00 -0.12 
2 0.48 0.04 -0.04 
3 0.78 0.30 0.21 
4 0.76 0.30 0.20 
5 0.80 0.38 0.28 
    

5--1 0.40 (2.70) 0.38 (2.37) 0.40 (3.00) 
Panel B: Sell lambda portfolios 

1 0.32 -0.07 -0.20 
2 0.59 0.16 0.07 
3 0.75 0.29 0.20 
4 0.80 0.34 0.24 
5 0.84 0.43 0.36 
    

5--1 0.52 (3.35) 0.51 (3.11) 0.56 (4.13) 
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Table 6  
Returns to double-sort portfolios 
  The table reports value-weighted excess returns, as well as risk-adjusted returns (alpha) using the Fama-French 
three-factor model.  In Panel A, quintile portfolios are formed monthly based on buy lambda and within each 
portfolio, quintiles are formed based on sell lambda in the previous month.  The sorting order is reversed in Panel B.   
Panel C presents results for portfolios first sorted by market capitalization, then by sell lambda. Panel D reports 
results for portfolios sorted first by book-to-market ratio (BM) and then by sell lambda.  Panel E reports results for 
portfolios sorted first by returns over the six-month period ending six  months prior to the date of portfolio formation 
(Ret7--12) and then by sell lambda. The lambdas are estimated  for each stock each month as price impact measures 
in a regression of price changes on signed orders, allowing for separate terms for buys and sells.   The difference in 
returns between the high and the low sell lambda (buy lambda in Panel B) portfolios are reported, along with t-
statistics in parentheses. The sample period is 1983 to 2008. 

Panel A: Sort by buy lambda, then sell lambda Panel B: Sort by sell lambda, then buy lambda 
 Sell lambda 5--1  Buy lambda 5--1 
 %Excess return %FF alpha  %Excess return %FF alpha 

Low buy lambda  0.22 (1.01) 0.20 (1.16) Low sell lambda 0.18 (0.70) 0.12 (0.27) 
Buy lambda 2 0.42 (2.42) 0.37 (2.05) Sell lambda 2 -0.00 (-0.01) -0.13 (-0.70)
Buy lambda 3 0.44 (2.57) 0.40 (2.46) Sell lambda 3 -0.15 (-1.29) -0.25 (-1.64)
Buy lambda 4 0.45 (2.53) 0.49 (2.70) Sell lambda 4 -0.21 (-1.24) -0.23 (-1.34)

High buy lambda  0.18 (0.90) 0.29 (1.40) High sell lambda 0.10 (0.49) 0.10 (0.48) 
 

Panel C: Sort by size, then sell lambda Panel D: Sort by  BM, then sell lambda 

 Sell lambda 5--1  Sell lambda 5--1 
 %Excess return %FF alpha  %Excess return %FF alpha 

Small 0.85 (2.59) 1.33 (4.30) Low book/market 0.48 (2.02) 0.45 (2.17) 
Size 2 0.72 (3.06) 1.05 (4.78) BM 2 0.27 (1.55) 0.13 (0.82) 
Size 3 0.19 (1.23) 0.42 (2.66) BM 3 0.47 (2.52) 0.39 (2.21) 
Size 4 0.38 (2.30) 0.58 (3.55) BM 4 0.44 (2.41) 0.56 (3.23) 
Large 0.52 (3.02) 0.55 (3.23) High book/market 0.60 (2.54) 0.64 (2.83) 

 

Panel E: Sort by Ret7--12, then sell lambda 

 Sell lambda 5--1 
 %Excess return %FF alpha 

Low Ret7--12 1.03 (3.40) 1.20 (4.25) 

Ret7--12 2 0.51 (2.67) 0.48 (2.63) 

Ret7--12 3 0.65 (3.42) 0.60 (3.51) 

Ret7--12 4 0.52 (2.85) 0.57 (3.31) 

High Ret7-12  0.31 (1.29) 0.32 (1.36) 
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Table 7  
Fama-MacBeth regression estimates with Fama-French risk factors 
  This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates.  
“Unscaled” columns indicate that the dependent variable is the excess return risk-adjusted using the Fama-French 
(1993) factors. “Size+BM” columns indicate that the dependent variable is the excess return risk-adjusted using the 
Fama-French (1993) factors with loadings scaled by size and book-to-market ratio.  “Term+Def+Tbill” columns 
indicate that the term spread, the default spread, and the T-bill yield are used as scaling variables. Size represents the 
logarithm of market capitalization in billions of dollars. BM is the logarithm of the book-to-market ratio with the 
exception that book-to-market ratios greater than the 0.995 fractile or less than the 0.005 fractile are set equal to the 
0.995 and the 0.005 fractile values, respectively. TURN represents turnover. RET2--3, RET4--6, and RET7--12 are 
the cumulative returns over the second through third, fourth through sixth, and seventh through twelfth months prior 
to the current month, respectively.  Buy and sell lambdas are estimated for each stock each month as price impact 
measures in a regression of price changes on signed orders, allowing for separate terms for buys and sells, and are 
scaled up by 103.   In column 1, buy lambda is used as additional independent variable; in 2 sell lambda is used; in 3 
both buy and sell lambda are included as independent variables. t-Statistics in parentheses use standard errors as per 
Shanken (1992).  All coefficients are multiplied by 100.  The sample period is 1983 to 2008. 
 
 

 

 [1] [2] [3]  [1] [2] [3] [1] [2] [3] 
 

Unscaled Unscaled Unscale
d 

 Size+B
M Size+BM Size+BM Term+Def+

Tbill 
Term+Def+

Tbill 
Term+Def+

Tbill 
Intercept 0.029 0.084 0.054   0.076 -0.023 -0.069 0.040 0.025 0.023 
 (0.54) (0.20) (0.12)  (0.29) (-0.06) (-0.18) (1.17) (0.73) (0.65) 
           
SIZE -0.049 -0.042 -0.039  -0.035 0.028 -0.025 -0.044 -0.035 -0.033 

 (-1.82) (-1.49) (-1.39)  (-1.49) (-1.16) (-1.01) (-1.91) (-1.52) (1.42) 

           
BM 0.049 0.048 0.049  -0.007 -0.008 -0.007 0.041 0.039 0.041 
 (1.27) (1.23) (1.28)  (-0.21) (-0.24) (-0.20) (1.10) (1.05) (1.11) 
           
TURN -0.279 -0.264 -0.261  -0.241 -0.228 -0.221 -0.215 -0.201 -0.196 
 (-5.21) (-4.97) (-4.85)  (-4.69) (-4.46) (-4.29) (-4.32) (-4.05) (3.93) 
           
RET2--3 0.518 0.505 0.494  0.446 0.431 0.420 0.123 0.102 0.112 
 (1.40) (1.36) (1.33)  (1.27) (1.23) (1.20) (0.29) (0.24) (0.21) 
           
RET4--6 0.538 0.502 0.504  0.578 0.542 0.544 0.302 0.266 0.276 
 (1.87) (1.76) (1.77)  (2.01) (1.89) (1.89) (1.10) (0.97) (0.99) 
           
RET7--12 0.753 0.730 0.731  0.761 0.737 0.732 0.605 0.578 0.567 
 (3.64) (3.53) (3.54)  (4.09) (3.96) (3.93) (3.53) (3.38) (3.37) 
           
Buy 
lambda 

13.729 
(2.86)  -1.911 

(-0.92)  14.917 
(2.78)  -1.939 

(-0.41) 
13.239 
(2.83)  -1.533 

(-0.96) 
           
Sell 
lambda  19.814 

(3.75) 
20.941 
(3.95)   22.135 

(4.11) 
22.321 
(4.27)      20.106 

(3.91) 
21.283 
(4.12) 
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Table 8  
Fama-MacBeth regression estimates with Fama-French risk factors, including the logarithm of the price level and 
the Amihud (2002) measure of illiquidity as controls 
  This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates.  
“Unscaled” columns indicate that the dependent variable is the excess return risk-adjusted using the Fama-French 
(1993) factors. “Size+BM” columns indicate that the dependent variable is the excess return risk-adjusted using the 
Fama-French (1993) factors with loadings scaled by size and book-to-market ratio.  “Term+Def+Tbill” columns 
indicate that the term spread, the default spread, and the T-bill yield are used as scaling variables. Size represents the 
logarithm of market capitalization in billions of dollars. BM is the logarithm of the book-to-market ratio with the 
exception that book-to-market ratios greater than the 0.995 fractile or less than the 0.005 fractile are set equal to the 
0.995 and the 0.005 fractile values, respectively. TURN represents turnover. RET2--3, RET4--6, and RET7--12 are 
the cumulative returns over the second through third, fourth through sixth, and seventh through twelfth months prior 
to the current month, respectively.  PRICE is logarithm of stock price. Amihud represents Amihud measure of 
illiquidity. Buy and sell lambdas are estimated for each stock each month as price impact measures in a regression of 
price changes on signed orders, allowing for separate terms for buys and sells, and are scaled up by 103.   In column 
1, buy lambda is used as additional independent variable; in 2 sell lambda is used; in 3 both buy and sell lambda are 
included as independent variables. t-Statistics in parentheses use standard errors as per Shanken (1992).  All 
coefficients are multiplied by 100. The sample period is 1983 to 2008. 

 [1] [2] [3]  [1] [2] [3] [1] [2] [3] 
 

Unscaled Unscaled Unscaled 
 

Size+BM Size+BM Size+BM Term+Def+
Tbill 

Term+Def+
Tbill 

Term+Def+
Tbill 

Intercept -0.132 -0.157 -0.167   -0.115 -0.137 -0.148 -0.133 -0.159 -0.169 
 (-3.87) (-4.44) (-4.76)  (-3.66) (-4.27) (-4.61) (-4.30) (-5.00) (-5.29) 
           
SIZE 0.089 0.115 0.127  0.066 0.088 0.102 0.078 0.105 0.116 
 (2.79) (3.47) (3.69)  (2.21) (2.87) (3.19) (2.59) (3.36) (3.57) 
           
BM 0.065 0.063 0.064  0.012 0.011 0.011 0.061 0.060 0.061 
 (1.71) (1.67) (1.67)  (0.33) (0.32) (0.32) (1.72) (1.70) (1.70) 
           
TURN -0.159 -0.133 -0.122  -0.138 -0.115 -0.102 -0.152 -0.126 -0.116 
 (-2.67) (-2.23) (-2.00)  (-2.44) (-2.04) (-1.77) (-2.67) (-2.21) (-1.99) 
           
RET2--3 0.624 0.624 0.621  0.512 0.508 0.508 0.289 0.287 0.285 
 (1.77) (1.78) (1.76)  (1.52) (1.52) (1.51) (0.83) (0.83) (0.82) 
           
RET4--6 0.755 0.740 0.743  0.747 0.729 0.734 0.507 0.493 0.495 
 (2.51) (2.46) (2.47)  (2.67) (2.60) (2.62) (1.77) (1.74) (1.73) 
           
RET7--
12 0.874 0.859 0.858  0.854 0.841 0.839 0.732 0.717 0.715 

 (4.40) (4.33) (4.31)  (4.68) (4.61) (4.59) (4.04) (3.96) (3.94) 
           
Amihud 0.617 0.637 0.631  0.581 0.597 0.596 0.603 0.618 0.619 
 (5.84) (5.97) (5.91)  (5.38) (5.52) (5.51) (5.62) (5.83) (5.79) 
           
PRICE -0.171 -0.191 -0.209  -0.113 -0.116 -0.138 -0.126 -0.138 -0.148 
 (-1.64) (-1.79) (-1.90)  (-1.27) (-1.22) (-1.50) (-1.37) (-1.19) (-1.53) 
           
Buy 
lambda 

20.481 
(4.86)  4.245 

(0.81) 
 26.503 

(5.47)  5.022 
(0.96) 

25.347 
(5.25)  3.333 

(0.64) 
           
Sell 
lambda  29.169 

(5.77) 
26.886 
(5.32)      30.837 

(5.89) 
27.405 
(5.53)  29.825 

(5.51) 
25.037 
(5.12) 
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Table 9  
Fama-MacBeth regression estimates with Fama-French risk factors, including the logarithm of the price level and 
the Amihud (2002) measure of illiquidity as controls, and the the average lambda and the difference between sell 
and buy lambdas 
  This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates.  
The dependent variable is the excess return risk-adjusted using the Fama-French (1993) factors.  Size represents the 
logarithm of market capitalization in billions of dollars. BM is the logarithm of the book-to-market ratio with the 
exception that book-to-market ratios greater than the 0.995 fractile or less than the 0.005 fractile are set equal to the 
0.995 and the 0.005 fractile values, respectively. TURN represents turnover. RET2--3, RET4--6, and RET7--12 are 
the cumulative returns over the second through third, fourth through sixth, and seventh through twelfth months prior 
to the current month, respectively.  PRICE is logarithm of stock price. Amihud represents Amihud measure of 
illiquidity. Buy and sell lambdas are estimated for each stock each month as price impact measures in a regression of 
price changes on unexpected signed orders using the Sadka (2006) method, allowing for separate terms for buys and 
sells, and are scaled up by 103.   In column 1, the difference between sell and buy lambda is used as an independent 
variable; in 2 the above variable is used along with the average of the buy and the sell lambda.  t-Statistics in 
parenthesis use standard errors as per Shanken (1992).  All coefficients are multiplied by 100.  The sample period is 
1983 to 2008. 

 [1] [2] 
Intercept -0.741 -0.167  
 (-2.22) (-4.76) 
   
SIZE 0.022 0.127 
 (0.84) (3.69) 
   
BM 0.068 0.064 
 (1.78) (1.67) 
   
TURN -0.220 -0.122 
 (-3.97) (-2.00) 
   
RET2--3 0.612 0.621 
 (1.73) (1.76) 
   
RET4--6 0.736 0.743 
 (2.44) (2.47) 
   
RET7--12 0.880 0.858 
 (4.42) (4.31) 
   
Amihud 0.621 0.631 
 (5.50) (5.91) 
   
PRICE -0.015 -0.209 
 (-0.16) (-1.90) 
   
Average 
lambda 

 31.131 
(4.66) 

   
Sell-Buy 
lambda 

21.101 
(4.49) 

11.321 
(3.21) 
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Table 10  
Fama-MacBeth regression estimates with Fama-French risk factors, including the logarithm of the price level and 
the Amihud (2002) measure of illiquidity as controls, and buy and sell lambdas computed using the Sadka (2006) 
measure of unexpected order flow 
  This table presents the time-series averages of individual stock cross-sectional OLS regression coefficient estimates.  
The dependent variable is the excess return risk-adjusted using the Fama-French (1993) factors.  Size represents the 
logarithm of market capitalization in billions of dollars. BM is the logarithm of the book-to-market ratio with the 
exception that book-to-market ratios greater than the 0.995 fractile or less than the 0.005 fractile are set equal to the 
0.995 and the 0.005 fractile values, respectively. TURN represents turnover. RET2--3, RET4--6, and RET7--12 are 
the cumulative returns over the second through third, fourth through sixth, and seventh through twelfth months prior 
to the current month, respectively.  PRICE is logarithm of stock price. Amihud represents Amihud measure of 
illiquidity. Buy and sell lambdas are estimated for each stock each month as price impact measures in a regression of 
price changes on unexpected signed orders using the Sadka (2006) method, allowing for separate terms for buys and 
sells, and are scaled up by 103.   In columns 1, buy lambda is used as additional independent variable; in 2 sell 
lambda is used; in 3 both buy and sell lambda are included as independent variables. t-Statistics in parenthesis use 
standard errors as per Shanken (1992).  All coefficients are multiplied by 100.  The sample period is 1983 to 2008. 

 [1] [2] [3] 
Intercept -0.711 -0.831 -0.887 
 (-2.09) (-2.43) (-2.54) 
    
SIZE 0.019 0.025 0.026 
 (0.54) (0.90) (0.91) 
    
BM 0.066 0.067 0.066 
 (1.74) (1.77) (1.73) 
    
TURN -0.229 -0.216 -0.213 
 (-4.15) (-3.89) (-3.83) 
    
RET2--3 0.616 0.633 0.631 
 (1.74) (1.79) (1.78) 
    
RET4--6 0.744 0.749 0.747 
 (2.46) (2.47) (2.46) 
    
RET7--12 0.881 0.873 0.829 
 (4.43) (4.39) (4.36) 
    
Amihud 0.610 0.609 0.605 
 (5.42) (5.38) (5.36) 
    
PRICE -0.020 -0.110 -0.125 
 (-0.03) (-1.07) (-1.19) 
    
Sadka buy 
lambda 

18.177 
(2.86) 

 3.896 
(1.18) 

    
Sadka sell 
lambda 

 24.075 
(3.37) 

21.625 
(2.74) 
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Fig. 1. Buy lambda and sell lambda.   This figure shows the trend in the value-weighted (Panel A) and equally 
weighted (Panel B) buy lambdas and sell lambdas over the 1983--2008 sample period.  The lambdas are estimated 
for each stock each month as price impact measures in a regression of price changes on signed orders, allowing for 
separate terms for buys and sells, and are scaled up by 103.      
 
 
 

 
 
 
 
 
 



47 

 

 

 

 

Fig. 2. The difference between buy and sell lambdas. This figure plots the difference between the value-weighted 
and equally weighted buy lambdas and sell lambdas in Panel A.  Panel B presents the difference between the value-
weighted and equally weighted buy lambdas and sell lambdas scaled by the average of the buy and sell lambdas.  
The lambdas are estimated as price impact measures in a regression of price changes on signed orders, allowing for 
separate terms for buys and sells, and are scaled up by 103.    The sample period is 1983--2008. 
 
Panel A: Difference level 
 
 

 
 
 
 
 
Panel B: Difference scaled by the average of buy and sell lambdas 
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