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Aging in the one-dimensional Ising model
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Abstract. – We study the zero-temperature limit of the one-dimensional Ising model with
nearest-neighbor interactions and Glauber dynamics. An exact evolution equation is derived for
the spin-spin two-time correlation functions following an instantaneous quench from equilibrium
at low temperature. In the limit of long waiting times the correlations become independent of
the distance and reduce to the autocorrelation function, which exhibits aging, i.e. it decays over
a time which scale with the waiting time.

The dynamics of glasses exhibits a very rich phenomenology characterized by slow relaxation
and aging effects. The term aging is used in this context to indicate that the relaxation of
the system depends on its history. More precisely, it refers to the property that two-time
correlation functions C(t, t′) are not invariant under time translation even in the limit of large
age t′ of the system, i.e. they depend both on the time interval τ = t − t′ and t′. The
time t′ is usually referred to as the waiting time and denoted by tω. Experimentally, aging
phenomena have been extensively observed in the context of spin glasses below the transition
temperature [1]. Also, most of the phenomenological theories [2], [3] and simple models [4]-[9]
proposed trying to understand the physical origin of aging deal with spin glasses, although very
recently the phenomenon has also been studied in non-disordered systems [10], [11]. For some
mean-field models, analytical expressions for the correlation functions showing the presence of
aging have been derived [4], [11]. This is also the case for some simple domain-growth problems
reviewed in ref. [12].

The purpose of this paper is to study the existence of aging in the one-dimensional Ising
model with nearest-neighbor interactions and Glauber dynamics [13]. This is a model with
short-range interactions and, nevertheless, simple enough to allow an exact analytical treat-
ment in many situations. In particular, we will see that it is possible to obtain the asymptotic
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behavior which is relevant to identify aging effects, providing information about the role played
by spatial correlations in aging in simple lattice systems. Besides, it has already been shown
that the system presents many of the characteristic features of glassy dynamics, both when
relaxing at constant temperature and when submitted to thermal cycles [14]. Finally, let us
mention that the dynamics of some more complex systems is related to that of Ising models.
For instance, it has been proved that a one-dimensional chain of particles with anharmonic and
competing interactions reduces to the one-dimensional Ising model with Glauber dynamics in
the low-temperature region under certain conditions [15]. In summary, the Ising model provides
the simplest system to study glassy relaxation beyond the mean-field approximation.

Let us mention that Koper and Hilhorst [16] have studied an Ising chain with randomly
temperature-dependent couplings, from which the Ising model is obtained by an appropriate
transformation of the spin variables. At low temperatures they found a time regime where the
behaviour of the system was identified by the authors as showing aging affects. Nevertheless,
not real aging effects are present in the Ising model an any temperature T > 0. For long
waiting times, one-time quantities reach their equilibrium values and two-time correlations
reduce to equilibrium correlations, where time translation invariance holds.

Since the one-dimensional Ising model does not present any transition except in the limit
of zero temperature, we will focus our aging analysis on the behavior of time correlations
at that temperature. A similar situation is found in some of the mean-field models which
have been studied [11]. At T = 0 the all-up and all-down spin states are absorbing states.
Nevertheless, the system does not present true ergodicity breaking, since both absorbing states
are accessible from any initial configuration. It must be noticed that aging is associated to
weak ergodicity breaking (WEB), i.e. to the property that the system needs an infinite time
to explore the accessible region of phase space [3]. Nevertheless, it is important to note that
it is not necessary to have activated mechanisms as the one used in [3] to have WEB [8], [17].

To get explicit expressions for the two-time correlation functions, we have to specify the
initial state of the system. We will consider that the system is in equilibrium at a low
temperature when it is instantaneously quenched to T = 0 at tω = 0. It is then possible
to introduce a continuum space description for both the time-dependent spatial correlations
and the two-time correlations. The former are needed as initial conditions for solving the
equation for the latter. Both set of functions obey, over a slow time scale, pure diffusion
equations, which can be solved analytically. In the limit of large age of the system, the
spatial dependence of the two-time spin-spin correlation functions disappears, so that all of
them collapse into the spin autocorrelation function. Furthermore, they depend on time only
through the ratio τ/tω and aging effects show up.

The energy of the one-dimensional Ising model is given by

H(σ) = −J
∑
i

σiσi+1, (1)

where σ = {σi}, σi = ±1 is the spin at site i, and J is a positive coupling constant. The
time evolution of the system is assumed to be described by a master equation with Glauber’s
dynamics [13]. The conditional probability p1|1(σ, t|σ

′, t′) of finding the system in state σ at
time t, given it was in state σ′ at time t′ ≤ t, obeys the equation

∂

∂t
p1|1(σ, t|σ

′, t′) =
∞∑

i=−∞

[
Wi(Riσ)p1|1(Riσ, t|σ

′, t′)−Wi(σ)p1|1(σ, t|σ
′, t′)

]
. (2)

Here Riσ denotes the configuration obtained from σ by flipping the i-th spin, and Wi(σ) is
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the transition rate for that flip,

Wi(σ) =
α

2

[
1−

γ

2
σi(σi−1 + σi+1)

]
, (3)

where α is a positive constant defining the natural time scale of the evolution, and γ =
tanh(2J/kBT ), kB being the Boltzmann constant. Equation (2) has to be solved with the
initial condition p1|1(σ, t

′|σ′, t′) = δσ,σ′ . In the following we will be interested in the time
evolution of the system at T = 0, for which eq. (3) becomes

W
(0)
i =

1

2

[
1−

1

2
σi(σi−1 + σi+1)

]
. (4)

We have defined the unit of time by α = 1. Then, the transition rates do not vanish in the limit
T → 0, indicating that the system can evolve in this zero-temperature limit. On the other

hand, W
(0)
i vanishes for those spins i which are parallel to both of their nearest neighbours,

i.e. transitions leading to an increase of the energy are forbidden.
The quantities we will focus on are the spin-spin two-time correlation functions Ai,j(t, t

′)
defined by

Ai,j(t, t
′) ≡

∑
σ

∑
σ′

σiσjp1|1(σ, t|σ
′, t′)p(σ′, t′), (5)

for t ≥ t′. In the above expression we have introduced the one-time probability distribution
p(σ, t), which also obeys eq. (2), but the initial condition p(σ, 0) must now be specified. For
t = t′, eq. (5) reduces to

Ai,j(t, t) =
∑

σiσjp(σ, t) ≡ Bi,j(t), (6)

where the last equality defines the spatial correlations Bi,j(t).
At any temperature T 6= 0, the distribution p(σ, t) tends to the equilibrium form in the limit

of large t, and the correlations Ai,j(t, t
′) depend on time only through the difference τ = t− t′

for t′ →∞. The age of the system is given by the waiting time tω ≡ t′ passed before starting
to measure the two-time correlations. A hierarchy of equations for Ai,j(τ |tω) ≡ Ai,j(tω+τ, tω)
at T = 0 is obtained from the master equation,

∂

∂τ
Ai,j(τ |tω) = −Ai,j(τ |tω) +

1

2
Ai−1,j(τ |tω) +

1

2
Ai+1,j(τ |tω). (7)

To solve this equation we need the initial condition Ai,j(0|tω) = Bi,j(tω). Again, a hierarchy
of equations for these correlations is obtained by taking moments in the master equation. For
i 6= j one gets

∂

∂tω
Bi,j(tω) = −2Bi,j +

1

2
(Bi−1,j +Bi+1,j +Bi,j−1 +Bi,j+1). (8)

Of course, Bi,j must verify the boundary condition Bi,i(tω) = 1 for all i and tω , while the
initial condition will follow from the initial distribution p(σ, 0). As discussed above, we suppose
that the system is in equilibrium at a temperature T before being instantaneously quenched
to T = 0 at tω = 0. Therefore, the initial spatial correlations are those of equilibrium at a
temperature T , namely

Bi,j(0) = η|i−j|, (9)

where η = tanh(J/kBT ) ≤ 1. From the form of eqs. (7)-(8) and the above initial condition it
follows that both Bi,j and Ai,j depend on i and j only through the distance |i− j|. Then, it is
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convenient to define fn(τ |tω) = Aj+n,j(τ |tω) and gn(tω) = Bj+n,j(tω). Now, we will use that T
lies in the low-temperature region, defined by the condition L� 1, where L−1 ≡ − ln η ≥ 0 is
the equilibrium correlation length. In this case, gn(0) = exp[−|n|/L] is a very smooth function
of n and it is useful to introduce a scaled length x as

x =
n

L
. (10)

Then, expansion of eq. (8) neglecting terms of order L−4 yields

∂

∂s
g(x, s) =

∂2

∂x2
g(x, s), (11)

where s is a slow time scale defined by s = L−2tω and g(x, s) = gn(tω). The initial and
boundary conditions for eq. (11) are

g(x, 0) = e−|x|, g(0, s) = 1. (12)

The above continuum space limit for the equations of the spatial correlations implies a similar
limit for the two-time correlation functions. For large L it is found that

∂

∂ζ
f(x, ζ|s) =

1

2

∂2

∂x2
f(x, ζ|s), (13)

with ζ = L−2τ and f(x, ζ|s) = fn(τ |tω). The initial condition for this equation is

f(x, 0|s) = g(x, s). (14)

A continuous space equation for the equilibrium spin-spin time correlation function in the
one-dimensional Ising model with Glauber dynamics at low temperatures has been previously
derived [18]. The main difference between eq. (13) and the one obtained in ref. [18] is that
the latter contains, in addition to the diffusion term, a purely relaxational contribution. This
contribution does not appear here since we are considering the time evolution of the correlations
at T = 0, and the elementary processes which are responsible for the relaxational term have
zero probability at this temperature.

The solution of eq. (11) can be easily found for any of the standard procedures and it reads

g(x, s) = 1−
2

π

∫ ∞
0

dk
sink|x|

k(1 + k2)
exp

[
−sk2

]
. (15)

Next, eq. (13) is solved with this initial condition. Again, it is straightforward to obtain

f(x, ζ|s) = 1−

(
2

ζπ3

)1/2 ∫ ∞
−∞

dy

∫ ∞
0

dk
sink|x|

k(1 + k2)
exp

[
−sk2 −

(x− y)2

2ζ

]
. (16)

This is an exact equation for the spin-spin two-time correlation function at T = 0 following an
instantaneous quench from equilibrium at a very low temperature. In order to identify aging
effects, we take the limit of large waiting times, i.e. we formally consider s→∞. At the same
time, we keep z ≡ ζ/s finite. In this limit, eq. (16) leads to

f(x, ζ|s)→ φ(z) = 1−

(
2

π3

)1/2 ∫ ∞
∞

du

∫ ∞
0

dv
sin v|u|

v
exp

[
−
v2

z
−
u2

2

]
. (17)

The integrals in this expression can be evaluated [19], yielding

φ(z) =
2

π
arcsin

(
2

2 + z

)1/2

. (18)
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Fig. 1. – Spin time autocorrelation function f0(τ |tω) as a function of τ/tω for different values of the
waiting time tω at zero temperature. The solid line is the asymptotic result in the infinite waiting
time limit, eq. (18).

Therefore, for large tω the correlation function goes, after a short transient time, as φ(z =
τ/tω), i.e. its decay rate is inversely proportional to tω. This is the signature of aging effects,
as discussed at the beginning of this paper. Similar scaling behaviours in the large tω limit
have been obtained in some mean-field models [3], [5], although some significant deviations
have also been observed [4], [7]. Moreover, the fact that the right-hand side of eq. (18) does
not depend on x indicates that all the spin-spin two-time correlations have collapsed onto the
spin autocorrelation function. That means that spatial correlations play no role at all in the
observed aging effects. Besides, as a function of z, φ(z) presents an algebraic long tail, namely,

φ(z) =
23/2

π
z−1/2, (19)

for z � 1, which indicates the presence of weak long-term memory [4], [20] in the system.
As a test of the above results, we have carried out Monte Carlo simulation of the Ising

model at T = 0, using the Bortz, Kalos, and Lebowitz algorithm [21]. In fig. 1 the spin time
autocorrelation function f0(τ |tω) is plotted as a function of τ/tω for different values of the
waiting time, tω = 10n with 0 ≤ n ≤ 4. The number of spins in the simulation was N = 5000
and the shown curves have been averaged over 1000 runs. The temperature at which the
system was equilibrated before doing the quench to T = 0 is kBT/J = 2/3, which corresponds
to a correlation length L ' 10. Therefore, the curves correspond to scaled waiting times s
between 10−2 and 102. Also plotted is the theoretical prediction given by eq. (18). It is seen
that the agreement is already very good for tω = 1000, i.e. s = 10.

A simple asymptotic analysis shows that in the limit of z small, eq. (18) can be accurately
approximated by the stretched exponential

φ(z) ' exp

[
−

√
2

π
z1/2

]
. (20)

This expression is characteristic of slow relaxation. Although the description of the relaxation
provided by eqs. (19) and (20) reminds the two-regime picture proposed by Bouchaud [3] in the
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context of disordered systems, the relationship between the parameters describing the initial
and final part of the relaxation is different in both models. Also, it is important to realize the
range of validity of eq. (20) as derived here. It holds in the limits tω →∞, τ →∞, τ/tω → 0.

To summarize, the relaxation of the one-dimensional Ising model with Glauber dynamics at
T = 0 has been exactly solved. Relaxation takes place through purely diffusive processes which
are responsible for slow relaxation and aging. Finally, let us stress that the Ising model as
formulated here does not have energy barriers separating the states (which could be introduced
in the factor α appearing in eq. (3) [14]). Therefore, glassy behaviour is due to the entropic
contribution to the free-energy barriers. From this point of view, the Ising model is similar to
the mean-field model introduced by Ritort [11].
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