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INTRODUCTION

We present a reduced basis Smagorinsky model. This model includes a non-linear eddy diffusion term that we have to treat in order to solve efficiently our reduced basis model. We
approximate this non-linear term using the Empirical Interpolation Method, in order to obtain a linearised decomposition of the reduced basis Smagorinsky model.

The reduced basis Smagorinsky model is decoupled in a Online/Offline procedure. First, in the Offline stage, we construct hierarchical bases in each iteration of the Greedy algorithm,
by selecting the snapshots which have the maximum a posteriori error estimation value. To assure the Brezzi inf-sup condition on our reduced basis space, we have to define a supremizer
operator on the pressure solution, and enrich the reduced velocity space. Then, in the Online stage, we are able to compute a speedup solution of our problem, with a good accuracy.

THE REDUCED BASIS MODEL

We define the steady reduced basis Smagorinsky model as follows:
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where we are denoting vr(Wy )|, = (Cshk)?|[Vwy, ()],
Defining the reduced space X = Yy x My, where Yy is the reduced velocity space
and My the reduced pressure space, we obtain the reduced variational problem

 Given i € D, find Uy (u) € Xy such that
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GREEDY ALGORITHM

For the startup of the Greedy algorithm, we choose an arbitrary parameter value
p1 € D, and we compute the corresponding snapshot (u(u1), p(¢1)). We choose the (k+1)-
th value of 1 € D as

Hik+1 :argmal(Ak(:u)? k:]-??N
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where Ag(u) is the a posteriori error estimator, which bounds the error between the FE
solution and the RB solution.
The reduced velocity-pressure spaces are defined by

My =span{&, :=p(px), k=1,...,N}

Y = span{(y := u(u), T)E;,

where T/' : My, — Y}, is the inner pressure supremizer operator defined as

k=1,...,N}

(Tlﬁ‘,wh) = — / (V : Wh)q df), VYw ey, (5)
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EMPRICAL INTERPOLATION METHOD

We denote g(u) := g(z; wr(p)) = |Vwy(w)|(x). The finality of using the EIM is decou-
pling the p-dependence of the spatial dependence of the function g(u), i.e.,

(3)

We define a reduced EIM-space Wj; = span{qi,...,qn} by a Greedy procedure. We
also define a set of interpolation points T, = {x1, ...,z } that allows us, for each . € D,
solve the linear system

Zaj(u)qg'(:vz-) =g(zi;Wa(p) t=1,....M (4)

Thanks to the Empirical Interpolation Method, we are able to approximate the non-
linear Smagorinsky term in the following form
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By denoting as 01 A(Uy, Vi,; 1) (Z1,) the directional derivative with respect the first vari-
able, in the direction Z;, € X}, we define the positive constants pr and Sy for the a posteriori
error bound as

01 AUy, Vs 1)(Zn) — 00 AUR, Vi ) (Z)| < prl|U, = Uglix [Vallx (| 25l x
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The a posteriori error bound estimator is defined as
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where 7 (@) = ,and ey () is the dual norm of the residual.

NUMERICAL RESULTS
We solve the Smagorinsky RBM in a backward-facing step. We select M.« = 73 basis for EIM, and Ny,,x = 17 basis for RBM.

Figure 1: RB solution for p = 320

Data 1= 56 1= 132 1= 236 1= 320
TrE 152.7s 508.7s 991.9s 1929.1s
Tontine 1.37s 1.55s 1.60s 1.60s
speedup 111 326 626 1204
lup, —uy||i/|lunlli | 1.67-1077 2.30-107% 2.76-107% 5.60-107°
Ipn —onlli/llpelli | 7.92-1078%  857-1077 7.13-107% 1.98.107°

Table 1: Computational time for FE and RB solutions, with the speedup and the error.
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(a) EIM Greedy convergence.
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