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INTRODUCTION
We present a reduced basis Smagorinsky model. This model includes a non-linear eddy diffusion term that we have to treat in order to solve efficiently our reduced basis model. We

approximate this non-linear term using the Empirical Interpolation Method, in order to obtain a linearised decomposition of the reduced basis Smagorinsky model.
The reduced basis Smagorinsky model is decoupled in a Online/Offline procedure. First, in the Offline stage, we construct hierarchical bases in each iteration of the Greedy algorithm,

by selecting the snapshots which have the maximum a posteriori error estimation value. To assure the Brezzi inf-sup condition on our reduced basis space, we have to define a supremizer
operator on the pressure solution, and enrich the reduced velocity space. Then, in the Online stage, we are able to compute a speedup solution of our problem, with a good accuracy.
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THE REDUCED BASIS MODEL
We define the steady reduced basis Smagorinsky model as follows:
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(1)

where we are denoting νT (wN )|K = (CShK)2|∇wN|K
(x)|.

Defining the reduced space XN = YN ×MN , where YN is the reduced velocity space
and MN the reduced pressure space, we obtain the reduced variational problem{

Given µ ∈ D, find UN (µ) ∈ XN such that

A(UN (µ), VN ;µ) = F (VN ;µ) ∀VN ∈ XN

(2)

EMPRICAL INTERPOLATION METHOD
We denote g(µ) := g(x; wh(µ)) = |∇wh(µ)|(x). The finality of using the EIM is decou-

pling the µ-dependence of the spatial dependence of the function g(µ), i.e.,

g(µ) ≈
M∑
j=1

σj(µ)qj(x) (3)

We define a reduced EIM-space WM = span{q1, . . . , qM} by a Greedy procedure. We
also define a set of interpolation points TM = {x1, . . . , xM} that allows us, for each µ ∈ D,
solve the linear system

M∑
j=1

σj(µ)qj(xi) = g(xi; wh(µ)) i = 1, . . . ,M (4)

Thanks to the Empirical Interpolation Method, we are able to approximate the non-
linear Smagorinsky term in the following form

∑
K∈T

∫
K

(CShK)2|∇w|∇w : ∇v dΩ ≈
M∑
j=1

σj(µ)
∑
K∈T

∫
K

(CShK)2qj∇w : ∇v dΩ

GREEDY ALGORITHM

For the startup of the Greedy algorithm, we choose an arbitrary parameter value
µ1 ∈ D, and we compute the corresponding snapshot (u(µ1), p(µ1)). We choose the (k+1)-
th value of µ ∈ D as

µk+1 = arg max
µ∈D

∆k(µ), k = 1, . . . , N.

where ∆k(µ) is the a posteriori error estimator, which bounds the error between the FE
solution and the RB solution.

The reduced velocity-pressure spaces are defined by

MN = span{ξpk := p(µk), k = 1, . . . , N}

YN = span{ζv
k := u(µk), Tµp ξ

p
k, k = 1, . . . , N}

where Tµp : Mh → Yh is the inner pressure supremizer operator defined as

(
Tµp ,wh

)
= −

∫
Ω

(∇ ·wh)q dΩ, ∀w ∈ Yh (5)

By denoting as ∂1A(Uh, Vh;µ)(Zh) the directional derivative with respect the first vari-
able, in the directionZh ∈ Xh, we define the positive constants ρT and βN for the a posteriori
error bound as

|∂1A(U1
h , Vh;µ)(Zh)− ∂1A(U2

h , Vh;µ)(Zh)| ≤ ρT ‖U1
h − U2

h‖X‖Vh‖X‖Zh‖X

βN (µ) = inf
Zh∈Xh

sup
Vh∈Xh

∂1A(UN , Vh;µ)(Zh)

‖Zh‖X‖Vh‖X

The a posteriori error bound estimator is defined as

∆N (µ) =
βN (µ)

2ρT

[
1−

√
1− τN (µ)

]

where τN (µ) =
4εN (µ)ρT
βN (µ)2

, and εN (µ) is the dual norm of the residual.

NUMERICAL RESULTS
We solve the Smagorinsky RBM in a backward-facing step. We select Mmax = 73 basis for EIM, and Nmax = 17 basis for RBM.

Figure 1: RB solution for µ = 320

Data µ = 56 µ = 132 µ = 236 µ = 320
TFE 152.7s 508.7s 991.9s 1929.1s
Tonline 1.37s 1.55s 1.60s 1.60s
speedup 111 326 626 1204
‖uh − uN‖1/‖uh‖1 1.67 · 10−7 2.30 · 10−6 2.76 · 10−6 5.60 · 10−6

‖ph − pN‖1/‖ph‖1 7.92 · 10−8 8.57 · 10−7 7.13 · 10−6 1.98 · 10−5

Table 1: Computational time for FE and RB solutions, with the speedup and the error.
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(a) EIM Greedy convergence.

N
10 11 12 13 14 15 16 17

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

max
µ∈D

 τ
N

(µ)

max
µ∈D

 ∆
N

(µ)

(b) RBM Greedy convergence.
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(c) A posteriori error bound and relative error at N = Nmax
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