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Abstract – We analyze the noise-induced synchronization between a collective variable
characterizing a complex system with a finite number of interacting bistable units and time-
periodic driving forces. A random phase process associated to the collective stochastic variable
is defined. Its average phase frequency and average phase diffusion are used to characterize the
phenomenon. Our analysis is based on numerical solutions of the corresponding set of Langevin
equations.
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Introduction. – Synchronization phenomena in
nonlinear systems have been widely studied in very
different contexts [1–3]. In complex nonlinear autonomous
systems with many interacting subunits, nonlinear
dynamics might lead to self-synchronization between
the individual elements. Noisy environments and exter-
nally applied time-periodic forces might also influence
synchronization. One might be interested on how noise
and driving forces affect the synchronization between
the different subunits, or the focus of interest might be
the noise-induced forced synchronization to the external
driving force of a suitably defined single collective variable
characterizing the system as a whole.
In the case of systems characterized by just a single

noisy dynamical variable subject to the action of a
deterministic external time-periodic signal, noise-induced
forced synchronization has been amply studied. With
an appropriate definition of a random phase process
associated to the response of the system, theories of
noise-induced forced synchronization have been developed
and analytical expressions for the quantities character-
izing the forced-synchronization mechanism have been
obtained [4–9]. The theory of forced synchronization in
a single variable system has also been extended to the
quantum regime of incoherent tunneling transitions in
driven dissipative systems [10]. Synchronization effects in
complex systems formed by arrays of excitable systems
and stochastic resonators have been analyzed in [3,11]. A
theory of synchronization in large arrays (N = 103–105)
of non-interacting bistable systems driven by a small

amplitude external force has been developed in [11] within
the limits of linear response theory. It describes the strong
enhancement of the synchronization mechanism for a
collective variable with respect to that of a single unit.
Numerical calculations by the same author shows the
same effect in an array of 102 excitable systems. In
this work, we find an analogous result for much smaller
arrays of interacting bistable units driven by strong, but
subthreshold forces, well beyond the limit where linear
response theory can be faithfully applied.
In this work, we consider a model describing a

finite set of N interacting bistable subsystems, each
of them characterized by a single degree of freedom
xi (i= 1, . . . , N), whose dynamics is governed by the
Langevin equations [12,13]

ẋi = xi−x3i +
θ

N

N∑
j=1

(xj −xi)+ ξi(t)+F (t). (1)

Here, the ξi(t)’s are Gaussian white noises with zero
average and 〈ξi(t)ξj(s)〉= 2Dδijδ(t− s), θ is the para-
meter defining the strength of the interaction between
subsystems, and F (t) = F (t+T ) is an external driving
force of period T . The amplitude of the driving force is
supposed to be large so that a linear response approxi-
mation of the dynamics is not adequate. Nonetheless, we
are interested in noise-induced synchronization, so the
driving amplitude is subthreshold in the sense that, in
the absence of noise, the external driving by itself cannot
induce the phenomenon.
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We focus our interest on a single global variable, rather
than on the variable characterizing an individual subsys-
tem. In a recent work, we have analyzed the phenomenon
of stochastic resonance associated to the global variable
of the same system [13,14]. In this work, we analyze the
phase process associated to the noise-induced jumps of
the global variable between its dynamical attractors.
Noise-induced forced synchronization between the global
variable and the driving force is characterized by the
behavior of the average phase frequency and the average
phase diffusion constant with the noise strength.

The random phase process, its average phase
frequency and the diffusion constant. – The variable
of interest is the collective output S(t) defined as

S(t) =
1

N

N∑
i=1

xi(t). (2)

In the limit N →∞, an asymptotically valid Langevin
equation for S(t) can be obtained from eq. (1) [15]. For
finite systems the validity of this Langevin equation is
questionable and we rely on the solution of the Langevin
equation for each xi to obtain information about the global
process S(t). For low noise strengths and driving forces
with sufficiently large periods, our numerical simulations
show that a random trajectory of S(t) contains essentially
small fluctuations around two values (attractors) and
random, sporadic transitions between them. For each
realization of the noise term, we then introduce a random
phase process, φ(t), associated to the stochastic variable
S(t) as follows. We refer to a “jump” of S(t) along a
trajectory, when a very large fluctuation takes the S(t)
trajectory from a value near an attractor to a value in the
neighborhood of the other attractor. We count N (α)(t),
the number of jumps in the α trajectory of the process
S(t) within the interval (0, t]. A trajectory of the phase
process is then constructed as

φ(α)(t) = πN (α)(t), (3)

so that φ(t) increases by 2π after every two consecutive
jumps.
The first two moments of the phase process are esti-

mated as

〈φ(t)〉= 1M
M∑
α=1

φ(α)(t), (4)

v(t) =
〈
[φ(t)]

2
〉
−〈φ(t)〉2

=
1

M
M∑
α=1

[
φ(α)(t)

]2
− 1

M2

[ M∑
α=1

φ(α)(t)

]2
, (5)

where,M is the number of generated random trajectories
(typically, 3000 trajectories for the results presented in
this work).

The instantaneous phase frequency is easily determined
from the time derivative of 〈φ(t)〉. After a sufficiently large
number of periods of the driving force, n, the system
forgets its initial preparation, but the instantaneous phase
frequency is still a function of time. Then, we define a
cycle average phase frequency Ωph by averaging the instan-
taneous phase frequency over a period of the external
driving [7,10],

Ωph =
1

T

∫ (n+1)T
nT

dt
d〈φ(t)〉
dt

=
〈φ [(n+1)T ]〉− 〈φ(nT )〉

T
.

(6)

Similarly, the cycle average phase diffusion coefficient
is evaluated from the instantaneous slope of the variance
v(t) as [7,10],

Dph =
1

T

∫ (n+1)T
nT

dt
d〈v(t)〉
dt

=
v [(n+1)T ]− v (nT )

T
.

(7)

In previous works, approximate anlytical expressions for
these two quantities have been derived for the N = 1
problem in the classical [4,7,9,16] and quantum cases [10].
Those expressions cannot be applied to the collective
variable of an N -particle problem, as a closed Langevin
or Fokker-Planck equation for S(t) for a finite-size system
does not exist. Thus, we will rely on numerical solutions
of the Langevin equations, eq. (1), for the estimation of
the average phase frequency and diffusion coefficients in
eqs. (6) and (7). The numerical method used to solve the
Langevin dynamics has been detailed in [17].

Results. – We have analyzed the forced-
synchronization phenomenon for the collective variable
S(t) for several values of the coupling strength, θ, the noise
strength, D, and two types of periodic forces: sinusoidal
forces (F (t) =A cosΩt) and rectangular forces (F (t) =A
(F (t) =−A) if t∈ [nT/2, (n+1)T/2) with n even (odd)).
In fig. 1 we depict the behavior of the average phase

frequency, Ωph, and diffusion constant, Dph, obtained
from numerical simulations. The external driving force
is taken to be sinusoidal with A= 0.3 and Ω= 0.01. In
the absence of noise, the variable S(t) does not jump
between the attractors. Thus, for these parameter values,
the external driving is subthreshold and we have noise-
induced effects. It is clear from the picture that, even for
a single subsystem, N = 1, forced synchronization exists
as there is a range of noise values for which Ωph matches
the external frequency, Ω, and the diffusion constant is
rather small, with a minimum around D≈ 0.02. As we
discused previously in [7], these numerical results agree
very well with the analytical expressions reported in [7].
For a set of N = 10 independent subsystems (θ= 0), forced
synchronization for the collective variable is very much
enhanced with respect to that observed in a single-particle
variable. The matching between the driving frequency and
the average phase frequency extends over a very large
range of noise values, for which the corresponding diffusion
constant is very much reduced. It should be pointed out
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Fig. 1: The behavior of the average phase frequency, Ωph, and
the phase diffusion constant, Dph, with the noise strength, D,
for a sinusoidal driving term with A= 0.3 and Ω= 0.01 and
several values of the interaction strength θ.
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Fig. 2: The behavior of the average phase frequency, Ωph, and
the phase diffusion constant, Dph, with the noise strength, D,
for a rectangular driving term with A= 0.3 and fundamen-
tal frequency Ω= 0.01 and several values of the interaction
strength θ.

that, in this and subsequent figures, the fact that a “range”
of D values shows up in the plots, for which Dph seems
to be constant, is due to the lack of machine precision to
compute very small numbers. It is safe to say that for the
noise values in those ranges, the phase diffusion constant
is zero, and that the collective variable jumps every half-
period of the driver without skipping any change in sign
of the applied force.
The results for a rectangular input force with an ampli-

tude A= 0.3 and fundamental frequency Ω= 0.01 are
shown in fig. 2. The behaviors of Ωph and Dph with the
noise strength for the different sets of parameter values is
qualitatively similar to the one observed in fig. 1 for a sinu-
soidal driving. Quantitatively, for a rectangular driving,
the noise-induced forced synchronization is enhanced with
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Fig. 3: The behavior of the average phase frequency, Ωph, and
the phase diffusion constant, Dph, with the noise strength, D,
for a rectangular driving term with A= 0.1 and Ω= 0.01.
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Fig. 4: The behavior of the average phase frequency, Ωph, and
the phase diffusion constant, Dph, with the noise strength, D,
for a rectangular driving term with A= 0.3 and Ω= 0.1.

respect to that observed with a sinusoidal input with the
same amplitude and fundamental frequency, as indicated
by the wider range of D values for which frequencies
match.
We have analyzed the influence of increasing the driving

fundamental frequency or decreasing the external ampli-
tude. In fig. 3 we depict the results obtained for Ωph and
Dph for a rectangular input with A= 0.1 and Ω= 0.01,
with N = 10 interacting subsystems with θ= 0.5. Compar-
ison with the corresponding results in fig. 1 indicates that
synchronization for this smaller-amplitude driving is much
weaker than for the larger-amplitude case. Not only the
noise range for which the average phase frequency matches
the external frequency is reduced, but the dip in the phase
diffusion constant plot is much less pronounced.
In the next figure (fig. 4), we plot the results of

our simulations for a rectangular input with A= 0.3
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(the same as in fig. 1) and Ω= 0.1, with N = 10 interacting
subsystems with θ= 0.5. The increase in the fundamental
driving frequency with respect to the value used in fig. 1
leads also to a reduction of the noise range for which noise-
induced forced synchronization is optimal. Nonetheless,
the dip in the Dph vs. the noise strength seems to be of
the same order of magnitude as observed for the lower-
frequency case depicted in fig. 1.
Noise-induced forced synchronization is due to the

modification by the applied force of the intrinsic noisy
dynamics of the set of bistable systems. Noise itself
makes the collective variable jumps between attractors
with a certain probability distribution. The external force
tilts the potential surface such that every half-period,
jumps towards one attractor are much favored against the
ones towards the other one. Thus, the external driving
greatly modifies this distribution by forcing the jumps to
be coherent with the periodicity of the external driving.
In the absence of interactions between the subsystems,
θ= 0, the central limit theorem applies and, consequently,
the collective variable fluctuations are expected to be
much reduced with respect to those present in the N = 1
case. The probability distribution of the collective variable
is very narrowly centered around the attractor favored by
the sign of the driving force every half-period. Therefore,
as long as the noise strength is large enough to induce
jumps every half-period, the number of jumps in a given
time interval will match almost exactly the number of
times that F (t) changes its sign during the same time
interval. Increasing the noise beyond some value makes
the jumps more and more independent of the periodic
tilting induced by the driving force and destroys the
matching between the number of jumps and the number
of half-periods. Nonetheless, the matching will remain
effective for a much wider range of D values than in
the N = 1 case, as the effective noise for the dynamics
of the global variable is not gauged simply by D but
by D

N
. For θ �= 0, the central limit theorem does not

apply. One should expect a weakening of the forced
synchronization mechanism with respect to the θ= 0 case,
due to the change in the potential energy relief brought
up by the interaction term. As θ gets large compared
with the driver amplitude, the tilting effect of the driving
becomes relatively less important and there will be a slight
mismatch between the number of jumps and the number
of half-periods for noise values for which synchronization
in the θ= 0 case was almost perfect. As the value of θ is
increased, this results in a small increase in the minimum
noise value at which synchronization sets in, as observed
in figs. 1 and 2. This reduces slightly the range of D values
within which the matching of Ωph and Ω is optimal.
Large amplitudes and long driving periods provide

potential surfaces which remain tilted during a time

interval long enough for the noise-induced jumps of the
subsystems variables to happen almost simultaneously
every half-period of the driver. A weakening of noise-
induced forced synchronization is then expected as the
driving amplitude and/or the driving period decrease, as
seen in figs. 3 and 4.
In conclusion, we have numerically demonstrated the

phenomenon of noise-induced forced synchronization in
finite arrays of bistable systems. The synchronization of
the collective variable is much enhanced with respect to
the one observed for a single bistable unit. Interactions
between the subunits do not destroy this coherent effect.
Driving forces with short periods and small amplitudes
tend to weaken drastically the phenomenon.
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