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The sextic oscillator as ay-independent potential
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The sextic oscillator is proposed as a two-parameter solvglilelependent potential in the Bohr Hamil-
tonian. It is shown that closed analytical expressions can be derived for the energies and wave functions of the
first few levels and for the strength of electric quadrupole transitions between them. Depending on the param-
eters this potential has a minimum@t0 or at3>0, and might also have a local maximum before reaching
its minimum. A comparison with the spectral properties of the infinite square well ang‘tipetential is
presented, together with a brief analysis of the experimental spectrufE2atrdnsitions of thé**Ba nucleus.

DOI: 10.1103/PhysRevC.69.014304 PACS nunmd)er21.10.Re, 03.65.Ge

I. INTRODUCTION est in studying exactly solvabM(3, y) potentials. Most ef-

In the last few years there has been considerable interers ts have concentrated op-independent potentials, for

in looking for analytic solutions of the Bohr Hamiltonian which the most well-known example is the harmonic oscil-

hich d bes th lecti tion | lei in t fIator in the five-dimensional spaddl] and its extension
which describes the collective motion in nuclei in terms of, .. 1" - Jhtains a term proportional 1672 [12]. More re-

shape variablegg, ) [1]. This was initiated with the intro-  cony two more exactly solvablg-unstable potentials have
duction of the interacting boson mod€iBM) [2]. This  peen discussed: the Coulomb and the Kratzer poterjfig]s
model presents four different dynamical symmetries, eaclyere again the latter potential is an extension of the former
one associated with a well-defined nuclear Shape. The modﬁ{ the sense that it contains a term proportionmgta which
Hamiltonian provides a natural way of going from a phase tcformally changes the variable, the analog of thieangular
another one by changing systematically few parameters anghomentum of radial potentials in three spatial dimensions.
consequently, allows one to study shape phase transition$his formal changing of- introduces a minimum of the po-
Thus, the IBM phase diagram has been analyzed from diftentials at3>0 in both case$12,13. The bound solutions
ferent points of view3-7]. Specially important are the criti- of the harmonic oscillator and the Coulomb potentiged

cal points since in these situations structural changes occtineir extensionsare given in terms of generalized Laguerre
rapidly and it is difficult to design appropriate theoretical polynomials[14].

models. Recently, lachello has proposed a new dynamical Similar to the three-dimensional case, these examples, to-
symmetry for describing the critical point at the transition gether with the infinite square well, practically exhaust those
from spherical to deformeg-unstable shape$]. This sym-  exactly solvable potentials that containga” term. Here we
metry has been calleB(5) and is expected to occur in nuclei Propose another potential which has this property, and al-

in which theV(8, y) potential depends only on the vari- though it is not exactly solvable in the classical sense, it has
able. and it haé a relatively flat shape in tBevariable a number of features that make it an ideal potential to be

Around this critical point of the phase transition the potentialus’ed in the Bohr Hamiltonian. This is the sextic oscillator,

P b : hich belongs to the class of quasi-exactly solvable poten-
appearing in the Bohr Hamiltonian can be approximated by. . .
agﬁnfinitgsquare well in thg variable. In this cpaltose the Bohr lals [15]. These potentials have the property that their solu-

Hamiltonian can be solved exactly in terms of Bessel func-tlons can be obtained in closed form for a number of energy

tions, and various quantitative predictions can be obtaineg'gerl[values’ "be" forh'ghﬁ Ioweft fet\év vlaluesto_f thpl’lnCIp$|h_ .
for various spectroscopic propertiggtios of the excitation quantum number, which are aiso the Jowest In energy. 1his 1S
energies and(E2) transitions, on the basis of which one clearly sufficient for potentials appearing in the Bohr Hamil-

. tonian. It is rarely necessary to consider more than a few
can search for candidates for th€5) symmetry among nu- .
. . . levels with the same angular momentum, and these can be
clei. Lately, two other dynamical symmetrie&€5) [9] and

. " . o obtained from the lowest few solutions of the sextic oscilla-
Y(5) [.10] to des_cnbe the critical point at the transmqn from tor. Furthermore, the sextic oscillator has a more flexible
spherical to axially deformed shapes and from axially depane than other solvable potentials, as depending on its pa-
formed to triaxial shapes, respectively, have been propose ameters, it can have a minimum A£0 or at 8= B,,>0,

The introduction of thé(5) symmetry renewed the inter- and in addition, it can also have a local maximum at

Bmax<ﬁmin-
The paper is structured as follows. In Sec. Il the Bohr
*Electronic address: levai@atomki.hu Hamiltonian is revised together with its solutions for
"Electronic address: pepe@nucle.us.es v-independent potentials. In Sec. Il the lowest energy solu-
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tions of the Bohr Hamiltonian for the sextic oscillator poten- lll. THE SEXTIC OSCILLATOR
tial are worked out. Section 1V is devoted to show the simple
use of the sextic oscillator as a flexibjeindependent poten-
tial. Finally, in Sec. V we present preliminary applications
and discuss future extensions.

The sextic oscillator with a centrifugal barrier is defined
[15] as

_ , (25-1/2(2s-312) | 1 )
Il. THE BOHR HAMILTONIAN FOR  7-INDEPENDENT H= dx2 2 b®~da(s+ >+ M) |x

X
POTENTIALS
+ 2abx + a8, (6)
Let us first consider that the Bohr Hamiltonian describing

the collective motion of a deformed nucleus in the five-yherex e [0,%) andM is a non-negative integer. This po-
dimensional space determined by tite Euler angles(i  tential is quasi-exactly solvable, which means that for any

=1,2,3 and the intrinsic8 and y variables is[1] non-negative integer value M, M+ 1 of its solutions can be
2 obtained in an algebraic way. Thannormalized solutions
h 19 J 1 J . J . .
H=- 3y— are written in the form

| gap” op” Fsinayay " ay
dn(X) = P(x®) (x®)5 Y4ex —Zx“—gxz), n=0,1,2, ...,

1 Q?

Y
a Sir12<'y— §7Tk>
where P, is a polynomial of orden. Obviously, normaliz-
In what follows we assume that the potential in Et). de-  ability requiresa=0, while a=0 reduces the problem to the

pends only on B, ie., V(B y)=U(B). For these exactly solvable harmonic oscillator.
y-independent potentials the wave functions can be separated The simplest solutions are obtained fgr=0 andM=1

into two parts, [15]. ForM :(0 o)nly one nodelesg.e., ground stafesolution
appears aE"=?=4bs, with the corresponding wave func-
VB, v, 6) = F(BD(y, 6), @ gon being ° > poneing
which satisfy the following differential equations:
2 (M=0) 2\s-1/4 =
¢ ()~ (X) p( S~ X> (8
_ N3yl + -2 =k \D(y, ) °
sin 3y (9 'y 1% .
Si n2<y— —7Tk> _
3 For M=1 two solutions appear, one nodeless and another

= AD(y, 6) with one node fox> 0. These correspond to the ground state
' and the first excited state, respectively, at ener@@%zl)
A=rr+3), 720.1,2 (3  =4bstA(s) andE}"=4bst).(s), where
( 19 9 \.(S) = 2b + 2(b? + 8a9)*? 9
o Bt ot U(B))f(ﬂ) = ef(B). (4)
BB ‘9'3 B are the roots of the equatior?—4b\—32as=0. The corre-
Here we have introducede=(2B/#)E and u(g)  sponding wave functions are
=(2B/h?)U(B). Note that ther values determine the allowed

angular momenta, too [16]. By setting ¢(8)=8%f(8) we (M=1) ~( A 2) 2\s-1/4 p(— a _9 2)
obtain an equation which has the form of a radial ¢ () ! SSX ()™ ex 4X4 X
Schrédinger equation (10
d2¢> (r+D(7+2)
o + T +U(B) |p= €. (5 and thex=\_(s) andA=)\.(s) choice has to be made for

=0 andn=1, respectively{15]. [Note thata=0 ands=0
Note that this is different from Eq6) in Ref.[8], in that it  imply A_(s)<0, so the polynomial part of Eq10) is node-
contains no linear derivative term due to the different defi-less] It has to be mentioned that the solutions =0 and
nition of ¢(B). This choice also implies that the factor cor- M=1 belong todifferentsextic potentials i is the same, as
responding to the3 volume element in the integration of the coefficient of the quadratic term is different then. We
functions of the typd(B) in Eq. (4) has been transferred to shall see, however, that with appropriate combinations of
the solutions of the type(B) in Eq. (5). Thus, in the inte- andM it is possible to solve sextic potentials that differ only
gration of these no factor arising from the volume elemenin the strength of the centrifugal term.

has to be included. The complete solution of the problem The normalization of the wave functions can also be
implies the solution of Eq(3), too; this was solved in Ref. given in closed form. For this one has to evaluate integrals of
[16]. the type
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* a
| = f erxp<— —x*- bx2> 5k .
0 2 2 M=1,1=1
L A+ e (PP b B
—§F< 5 )a( exp| 41 |D-evie| L5 @4 M=0,1=3 6 4" 3" 0" 0" M=1,1=0
(1) EaL &=2 _
= +
M=0,7=2 4 2
1 (A+1 A+1 1 b? & ’
=_T|—|(2a <—A+1>’4u<—, —;—), 12 5ot -
2 ( 2 >( ) 4 22 12 ;; 2
whereD,(2) is the parabolic cylinder function and(«, 8;2) EJ/ 1L M=1, =1 o |
is one of the forms of the confluent hypergeometric function
[14]. .
Larger values ofM can also be considerge.g., forM ok M=1,1=0 2 .
=2 three different solutions are obtained for the three roots =1
of a cubic algebraic equation fan, butM=0 andM=1 are

sufficient for our purposes in this paper. A complete study
including more solutions, explicit closed forms for the nor-  FIG. 1. Schematic typical spectrum for the sextic oscillator with
malization factors, and applications to actual nuclei is underindication of the relevant quantum numbers.
way.
g this possibility after analyzing qualitatively the spectrum and
the potential shapes.

IV. APPLICATION AS A v-INDEPENDENT POTENTIAL Let us analyze the spectrum obtained in a simple case.
Taking M=1 we obtain, as explained in the preceding sec-
tion, two solutions forr=0 (one with no nodex}=0, and the
other one with one node=1). In the notation introduced in
Ref.[8] the label¢ is ourn+1. Thus the two solutions of Eq.
(10) with s=5/4 are="(8) with n=0 and 1 and corre-

s+M+2=2(7+2M+%) =c=const. (13)  spond tog .=y o and ¢z ;= ¢, o, respectively, in Ref[8]

. . i i o notation. Inspecting the energy eigenvalues, the correspond-
With this the sextic qscnlator H_am|lt0n|an can be brought toing energies areE;(M=1, T:O)=E1,0:7b—2(b2+10a)1’2
the form of Eq.(4) with u(B) being +u} and EM=1,7= O)=E2’0=7b+2(b2+10a)1’2+u5, re-

u™(B) = (b2 - 4ac™) B2 + 2abB* + a2° + 7, (14) spectively. Th_e same potential is. obtained.by takMgO

_ o S - andr=2. In_thls case we have a single solution, E).with

where the |nde>q-r=J_f is ]nclgded to'dlstmgwsh the potenual s=9/4, ¢g‘"—°)(5) with no nodes, and with energ§,(M
for even/oddr’s, which is slightly different as explained be- =g, 7=2)=9+Uuj. This corresponds tg, ,=¢; , in the no-

low. In Eq. (14) c™ are the constants obtained in E#3) for  (ation of Ref.[8]. A similar analysis can be performed for the
even/odd values of and we have introduced a constaigt  sojutions with oddr values. ForM=1 there are two solu-
for convenience, as will be discussed below. tions with =1, Eq.(10) with s=7/4, which corresponds to
Equation (13) implies that increasing/decreasirid by b:.=¢11and . .= b, for n=0 andn=1, respectively. The
one unit has to come with decreasing/increasiny two  corresponding  energy eigenvalues — af, = 9b—2(b>
units. Thus, once the values of tlia, b) parameters are +14a)Y2+u; and E, 1:9b+2(b2+14a)1’2+u5.' Again the

fixed, the sequence ofM,7) values (K, 0), (K-1, 2); same potential is obtained f=0 and r=3. In this case
(K-2,4),... correspond to solutions of E(L4) with ¢"=3  there is a single solution with no nodes, E&) with s
+K. In the same way, the sequence @, 7) values =11/4, which corresponds tg, ; and has an energg, 5

(K, 1),(K-1,3,(K-2,9),... correspond to solutions of Eq. =11b+ug. In Fig. 1 a schematic spectrum is shown with
(14) with c‘:§+K. Consequently, the potential fareven indication of the relevant quantum numbers. In Fig. 2 the
and r-odd states is slightly different due to the fact that thecorresponding wave functions with the notatig¢p, are pre-
coupling coefficienb?-4ac* of the quadratic term is differ- sented.

ent in the two cases due to the choicesdbandc™ that are Now we analyze the different potential shapes that can be
necessary to separate ther1)(7+2)872 term in a uniform  produced by different election of parameters in Eiy).
way. This situation can be handled using different strategiedz=rom Eq.(14) we find that the shape of the potentigl(3)
One possibility is settinguyz=u,=0 and considering depends on the sign &f-4ac™ andb, which sets the coef-
b?>10a, which minimizes the deviation of the quadratic ficients of the quadratic and quartic terniBhe coefficient of
terms compared to the quartic and sextic terms. Another poshe leading sextic term is always positiv&/henb?>4ac™
sibility is introducing a relative energy shift between theand b>0 hold [i.e., for b>2(ac™?], the potential has a
7-even andr-odd potentials by settingy andu, such thatthe  minimum at =0 and it increases monotonously with
potential minima are at the same energy. We shall discus#/hen b?<4ac™, irrespective of the sign ob [i.e., for

In order to cast Eq(6) in a form similar to Eq.(5) we
have to writex=8 ands=(7/2)+ 5/ 4 (remember that=0).
In order to keep the quadratic term at a constant védnee
the a, b parameters are fix¢dve also have to prescribe
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FIG. 2. Wave functions with the notatiog, . for the case of
potential parametera=40 000 ancb=200.

—-2(ac?<b<2(ac™?], a minimum appears foB>0,
while for b>>4ac™ andb< 0 [i.e., forb<-2(ac™)'?, first a
maximum appears and then a minimumg@ascreases. In all
three cases the exact location of the extremal ggican be
obtained from the real and positive solutions of

(B2 = %[- 2b+ (b?+ 12ac™) 2. (15)

Due to the relatively small difference @i andc™, the ~-even
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FIG. 4. Excitation energieE;T= E¢,—E1,0with a=40 000 fixed
as a function ob (left pane) and withb=200 fixed as a function of
a (right pane).

B=0, so they coincide ifi;=u, holds. Forb< 2(ac™? we
car(; equate the minima af'(8) and u™(B) if we setu;=0
an

Up = (b? = 11a)(Bp)” - (b - 138)(Bp)* + 2abl(By)* - (Bo)*]
+a(By)° - (Bo)°], (16)

where 87 are obtained from Eq.15) with the choice of the

“+” sign. With this the two potentials have their minima at
the same energy, but they take on different values at the
origin. lllustrations of the possible potential shapes are dis-
played in Fig. 3. Obviouslyu, in Eq. (15) also has to be
added to the energies of theodd potential. Figure 4 shows
the relative position of the energy levets , as eithera or b

is varied and the other parameter is kept at a fixed value.

and7-odd potentials have the same types of extrema at about The electric quadrupole transition rates can also be deter-

the sameB, except for some peculiar combinationsaoénd

mined analytically by calculating the matrix elements of the

b. Assuming that there are no complications of this kind, wetransition operatof8,11]

can now return to the question of renormalizing the minima

of the meven and rodd potentials. Forb>2(ac™)?,
=+, — the minima of the two potentials will g anduj at

2x10 1

—
ob

<

u'(B), u'(B) (arbitrary units)

£S
T

10 a=40000 T a=40000
b=1000 b=200
. | . 1 . 1
0 0.1 020 0.1

FIG. 3. Potentialar*(8) (full line) andu™(B) (broken ling for
a=40 000, andb=1000(left pane), b=200 (middle panel, andb

TE? = tay, = tA[DZycos y+ 27(DZ, + DZ. sin y].
(17)

The radial integrals that appear in tBevariable in the ma-
trix elements off®? can again be determined using Etfl).

3

a=40000, b=200 Expt.

E (MeV)

FIG. 5. The energy spectrum and the strength of some electric

=-1000 (right pane). The lowest energy level appears in these quadrupole transitions calculated wisét=40 000 andb=200 (left

potentials atg; (=4633.57, 73.35, and -9366.43, respectively.

pane) and the corresponding data f6¥Ba (right pane).
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TABLE |. Ratios of some energy eigenvaluess and electric quadrupole transition strengths from the sextic oscillasA®ide0,b
=200, the infinite square welB], and theB* potential[19], together with the experimentally observed quantities'fdBa.

E(412) E(03,0 E(61,9 B(E2;41 27 1) B(E2;2; 021 1) B(E2;0[ 521 )

E(21) E(21) E(21) B(E2;21 ;010 B(E2;2{ 1,010 B(E2;2] 1010
Sextic oscillator 2.39 3.68 3.70 1.70 1.03 2.12
E(5) 2.20 3.03 3.59 1.68 0.86 2.21
e 2.09 2.39 3.27 1.82 1.41 2.52
134Ba (expt) 2.31 3.57 3.65 1.5618) 0.42(12

In order to obtain theotal matrix elements, one has to cal- less obvious for the ratio of tH&(E2) values: here the sextic
culate also the components dependingy@and the Euler oscillator and the infinite square well seem to yield similar
angles 6. This can be done following the techniques de-ratios, while the numbers obtained from t8& potential are
scribed in Ref[16]. These parts introduce certain selectionsystematically higher. This might be due to the fact that the
rules not only for the angular momenta, but also for sextic oscillator potential goes to infinity steeper than e
potential, so the asymptotic behavior of its wave functions
can be closer to that of the wave functions of the infinite
square well. Comparing the results with the experimental
In order to compare the main characteristics of the sexticlata for'3Ba we can conclude that, at least in this case, the
oscillator as ay-unstable potential with those of other poten- sextic oscillator allows a better approximation than the other
tials of this kind, we present calculations for a particularessentially parameter-free potentials. We expect that this con-
value of the parametera=40 000 andb=200. These num- clusion will be general due to the flexible nature of the sextic
bers were chosen such that the resulting energy spectrupotential whose shape is governed by two parameters. In fact
approximates that of th€“Ba nucleus, the first candidate for this potential can be used not just at the critical point but it
E(5) symmetry[17]. We stress that our aim is not to repro- can be useful to model the full shape phase transition from
duce the experimental data, rather to get a qualitative picturgpherical to deformeg-unstable nuclei by changing the pa-
about the general performance of the model. The potentiakgmetersa andb.
u*(B) are displayed in the middle panel of Fig. 3, while the  Before closing, we mention some aspects of the sextic
energy eigenva]ues are shown in F|g 5, together with th@SCi”atOI' that mlght give further help in the analysis of nu-
corresponding experimental energy levels. Figure 5 als&lei near critical points. First, we note that with=2 in Eq.
shows the calculated and the experime®@t?2) values for ~ (6) the analysis can be extended to further states, su.ch as
transitions between the energy levels. Note that electri®®is $15 P22 $23 ¢30 and ¢z, Second, the potential
quadrupole transitions which changéy more than one unit Shape which contains both a local maximum and a minimum
are zero if we use the transition operatds), but finite ~ at/8>0 might be useful in the description of nuclei with the
B(E2) strengths can be obtained if we apply terms of thesO-calledX(5) symmetry, which is thought to occur in the
next order(see, e.g., Ref18]). shape phase transition between the spherical and the axially
In Table | we summarize the ratio of the most importantdeformed domairi9]. Third, there are further quasi-exactly
energy eigenvalues and those of the most characteristolvable potentials both with confining and nonconfining
B(E2) transition rates obtained from the sextic oscillator withnature [15], which can also be considered in the Bohr
parametera=40 000,b=200, the infinite square well poten- Hamiltonian.
tial [8], and the numerically solved* potential[19] together
with the corresponding experimental values féBa, when-
ever available. It is seen that the energy ratios corresponding This work was supported by the OTKA Grant No. T37502
to theE(5) symmetry systematically fall between the values(Hungary and by the Spanish MCyT under Project No.
of the 8% potential and the sextic oscillator. The situation is BFM2002-03315.

V. DISCUSSION
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