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The sextic oscillator is proposed as a two-parameter solvableg-independent potential in the Bohr Hamil-
tonian. It is shown that closed analytical expressions can be derived for the energies and wave functions of the
first few levels and for the strength of electric quadrupole transitions between them. Depending on the param-
eters this potential has a minimum atb=0 or atb.0, and might also have a local maximum before reaching
its minimum. A comparison with the spectral properties of the infinite square well and theb4 potential is
presented, together with a brief analysis of the experimental spectrum andE2 transitions of the134Ba nucleus.
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I. INTRODUCTION

In the last few years there has been considerable interest
in looking for analytic solutions of the Bohr Hamiltonian
which describes the collective motion in nuclei in terms of
shape variables(b, g) [1]. This was initiated with the intro-
duction of the interacting boson model(IBM ) [2]. This
model presents four different dynamical symmetries, each
one associated with a well-defined nuclear shape. The model
Hamiltonian provides a natural way of going from a phase to
another one by changing systematically few parameters and,
consequently, allows one to study shape phase transitions.
Thus, the IBM phase diagram has been analyzed from dif-
ferent points of view[3–7]. Specially important are the criti-
cal points since in these situations structural changes occur
rapidly and it is difficult to design appropriate theoretical
models. Recently, Iachello has proposed a new dynamical
symmetry for describing the critical point at the transition
from spherical to deformedg-unstable shapes[8]. This sym-
metry has been calledEs5d and is expected to occur in nuclei
in which theVsb, gd potential depends only on theb vari-
able, and it has a relatively flat shape in theb variable.
Around this critical point of the phase transition the potential
appearing in the Bohr Hamiltonian can be approximated by
an infinite square well in theb variable. In this case the Bohr
Hamiltonian can be solved exactly in terms of Bessel func-
tions, and various quantitative predictions can be obtained
for various spectroscopic properties[ratios of the excitation
energies andBsE2d transitions], on the basis of which one
can search for candidates for theEs5d symmetry among nu-
clei. Lately, two other dynamical symmetriesXs5d [9] and
Ys5d [10] to describe the critical point at the transition from
spherical to axially deformed shapes and from axially de-
formed to triaxial shapes, respectively, have been proposed.

The introduction of theEs5d symmetry renewed the inter-

est in studying exactly solvableVsb, gd potentials. Most ef-
forts have concentrated ong-independent potentials, for
which the most well-known example is the harmonic oscil-
lator in the five-dimensional space[11] and its extension
which contains a term proportional tob−2 [12]. More re-
cently two more exactly solvableg-unstable potentials have
been discussed: the Coulomb and the Kratzer potentials[13].
Here again the latter potential is an extension of the former
in the sense that it contains a term proportional tob−2, which
formally changes thet variable, the analog of thel angular
momentum of radial potentials in three spatial dimensions.
This formal changing oft introduces a minimum of the po-
tentials atb.0 in both cases[12,13]. The bound solutions
of the harmonic oscillator and the Coulomb potentials(and
their extensions) are given in terms of generalized Laguerre
polynomials[14].

Similar to the three-dimensional case, these examples, to-
gether with the infinite square well, practically exhaust those
exactly solvable potentials that contain ab−2 term. Here we
propose another potential which has this property, and al-
though it is not exactly solvable in the classical sense, it has
a number of features that make it an ideal potential to be
used in the Bohr Hamiltonian. This is the sextic oscillator,
which belongs to the class of quasi-exactly solvable poten-
tials [15]. These potentials have the property that their solu-
tions can be obtained in closed form for a number of energy
eigenvalues, i.e., for the lowest few values of then principal
quantum number, which are also the lowest in energy. This is
clearly sufficient for potentials appearing in the Bohr Hamil-
tonian. It is rarely necessary to consider more than a few
levels with the same angular momentum, and these can be
obtained from the lowest few solutions of the sextic oscilla-
tor. Furthermore, the sextic oscillator has a more flexible
shape than other solvable potentials, as depending on its pa-
rameters, it can have a minimum atb=0 or atb=bmin.0,
and in addition, it can also have a local maximum at
bmax,bmin.

The paper is structured as follows. In Sec. II the Bohr
Hamiltonian is revised together with its solutions for
g-independent potentials. In Sec. III the lowest energy solu-
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tions of the Bohr Hamiltonian for the sextic oscillator poten-
tial are worked out. Section IV is devoted to show the simple
use of the sextic oscillator as a flexibleg-independent poten-
tial. Finally, in Sec. V we present preliminary applications
and discuss future extensions.

II. THE BOHR HAMILTONIAN FOR g-INDEPENDENT
POTENTIALS

Let us first consider that the Bohr Hamiltonian describing
the collective motion of a deformed nucleus in the five-
dimensional space determined by theui Euler anglessi
=1, 2, 3d and the intrinsicb andg variables is[1]

H = −
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In what follows we assume that the potential in Eq.s1d de-
pends only on b, i.e., Vsb, gd=Usbd. For these
g-independent potentials the wave functions can be separated
into two parts,

Csb, g, uid = fsbdFsg, uid, s2d

which satisfy the following differential equations:
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Here we have introduced e=s2B/"2dE and usbd
=s2B/"2dUsbd. Note that thet values determine the allowed
angular momentaJ, too f16g. By settingfsbd=b2fsbd we
obtain an equation which has the form of a radial
Schrödinger equation

−
d2f

db2 + S st + 1dst + 2d
b2 + usbdDf = ef. s5d

Note that this is different from Eq.s6d in Ref. f8g, in that it
contains no linear derivative term due to the different defi-
nition of fsbd. This choice also implies that the factor cor-
responding to theb volume element in the integration of
functions of the typefsbd in Eq. s4d has been transferred to
the solutions of the typefsbd in Eq. s5d. Thus, in the inte-
gration of these no factor arising from the volume element
has to be included. The complete solution of the problem
implies the solution of Eq.s3d, too; this was solved in Ref.
f16g.

III. THE SEXTIC OSCILLATOR

The sextic oscillator with a centrifugal barrier is defined
[15] as

H = −
d2

dx2 +
s2s− 1/2ds2s− 3/2d

x2 + Fb2 − 4aSs+
1

2
+ MDGx2

+ 2abx4 + a2x6, s6d

wherexP f0, `d and M is a non-negative integer. This po-
tential is quasi-exactly solvable, which means that for any
non-negative integer value ofM, M +1 of its solutions can be
obtained in an algebraic way. Thesunnormalizedd solutions
are written in the form

fnsxd = Pnsx2dsx2ds−1/4expS−
a

4
x4 −

b

2
x2D, n = 0, 1, 2, . . . ,

s7d

wherePn is a polynomial of ordern. Obviously, normaliz-
ability requiresaù0, while a=0 reduces the problem to the
exactly solvable harmonic oscillator.

The simplest solutions are obtained forM =0 andM =1
[15]. For M =0 only one nodeless(i.e., ground state) solution
appears atE0

sM=0d=4bs, with the corresponding wave func-
tion being

f0
sM=0dsxd , sx2ds−1/4expS−

a

4
x4 −

b

2
x2D . s8d

For M =1 two solutions appear, one nodeless and another
with one node forx.0. These correspond to the ground state
and the first excited state, respectively, at energiesE0

sM=1d

=4bs+l−ssd andE1
sM=1d=4bs+l+ssd, where

l±ssd = 2b ± 2sb2 + 8asd1/2 s9d

are the roots of the equationl2−4bl−32as=0. The corre-
sponding wave functions are

fn
sM=1dsxd , S1 −

l

8s
x2Dsx2ds−1/4expS−

a

4
x4 −

b

2
x2D ,

s10d

and thel=l−ssd and l=l+ssd choice has to be made forn
=0 andn=1, respectivelyf15g. fNote thataù0 and sù0
imply l−ssdø0, so the polynomial part of Eq.s10d is node-
less.g It has to be mentioned that the solutions forM =0 and
M =1 belong todifferentsextic potentials ifs is the same, as
the coefficient of the quadratic term is different then. We
shall see, however, that with appropriate combinations ofs
andM it is possible to solve sextic potentials that differ only
in the strength of the centrifugal term.

The normalization of the wave functions can also be
given in closed form. For this one has to evaluate integrals of
the type

G. LÉVAI AND J. M. ARIAS PHYSICAL REVIEW C 69, 014304(2004)

014304-2



I sAd ; E
0

`

xAexpS−
a

2
x4 − bx2D

=
1

2
GSA + 1

2
Da−sA+1d/4expS b2

4a
DD−sA+1d/2S b

a1/2D
s11d

=
1

2
GSA + 1

2
Ds2ads−A+1d/4USA + 1

4
,

1

2
;
b2

2a
D , s12d

whereDpszd is the parabolic cylinder function andUsa, b;zd
is one of the forms of the confluent hypergeometric function
f14g.

Larger values ofM can also be considered(e.g., for M
=2 three different solutions are obtained for the three roots
of a cubic algebraic equation forl), but M =0 andM =1 are
sufficient for our purposes in this paper. A complete study
including more solutions, explicit closed forms for the nor-
malization factors, and applications to actual nuclei is under-
way.

IV. APPLICATION AS A g-INDEPENDENT POTENTIAL

In order to cast Eq.(6) in a form similar to Eq.(5) we
have to writex=b ands=st/2d+ 5/4 (remember thattù0).
In order to keep the quadratic term at a constant value(once
the a, b parameters are fixed) we also have to prescribe

s+ M + 1
2 = 1

2st + 2M + 7
2d ; c = const. s13d

With this the sextic oscillator Hamiltonian can be brought to
the form of Eq.s4d with usbd being

upsbd = sb2 − 4acpdb2 + 2abb4 + a2b6 + u0
p, s14d

where the indexp=± is included to distinguish the potential
for even/oddt’s, which is slightly different as explained be-
low. In Eq. s14d cp are the constants obtained in Eq.s13d for
even/odd values oft and we have introduced a constantu0

p

for convenience, as will be discussed below.
Equation (13) implies that increasing/decreasingM by

one unit has to come with decreasing/increasingt by two
units. Thus, once the values of thesa, bd parameters are
fixed, the sequence ofsM, td values sK, 0d, sK−1, 2d,
sK−2, 4d, . . . correspond to solutions of Eq.(14) with c+= 7

4
+K. In the same way, the sequence ofsM, td values
sK, 1d, sK−1, 3d, sK−2, 5d, . . . correspond to solutions of Eq.
(14) with c−= 9

4 +K. Consequently, the potential fort-even
andt-odd states is slightly different due to the fact that the
coupling coefficientb2−4ac± of the quadratic term is differ-
ent in the two cases due to the choices forc+ andc− that are
necessary to separate thest+1dst+2db−2 term in a uniform
way. This situation can be handled using different strategies.
One possibility is setting u0

+=u0
−=0 and considering

b2.10a, which minimizes the deviation of the quadratic
terms compared to the quartic and sextic terms. Another pos-
sibility is introducing a relative energy shift between the
t-even andt-odd potentials by settingu0

+ andu0
− such that the

potential minima are at the same energy. We shall discuss

this possibility after analyzing qualitatively the spectrum and
the potential shapes.

Let us analyze the spectrum obtained in a simple case.
Taking M =1 we obtain, as explained in the preceding sec-
tion, two solutions fort=0 (one with no nodes,n=0, and the
other one with one node,n=1). In the notation introduced in
Ref. [8] the labelj is ourn+1. Thus the two solutions of Eq.
(10) with s=5/4 arefn

sM=1dsbd with n=0 and 1 and corre-
spond tofj,t=f1,0 and fj,t=f2,0, respectively, in Ref.[8]
notation. Inspecting the energy eigenvalues, the correspond-
ing energies areE1sM =1,t=0d=E1,0=7b−2sb2+10ad1/2

+u0
+ and E2sM =1,t=0d=E2,0=7b+2sb2+10ad1/2+u0

+, re-
spectively. The same potential is obtained by takingM =0
andt=2. In this case we have a single solution, Eq.(8) with
s=9/4, f0

sM=0dsbd with no nodes, and with energyE1sM
=0,t=2d=9b+u0

+. This corresponds tofj,t=f1,2 in the no-
tation of Ref.[8]. A similar analysis can be performed for the
solutions with odd-t values. ForM =1 there are two solu-
tions with t=1, Eq. (10) with s=7/4, which corresponds to
fj,t=f1,1 andfj,t=f2,1 for n=0 andn=1, respectively. The
corresponding energy eigenvalues areE1,1=9b−2sb2

+14ad1/2+u0
− and E2,1=9b+2sb2+14ad1/2+u0

−. Again the
same potential is obtained forM =0 andt=3. In this case
there is a single solution with no nodes, Eq.(8) with s
=11/4, which corresponds tof1,3 and has an energyE1,3
=11b+u0

−. In Fig. 1 a schematic spectrum is shown with
indication of the relevant quantum numbers. In Fig. 2 the
corresponding wave functions with the notationfj,t are pre-
sented.

Now we analyze the different potential shapes that can be
produced by different election of parameters in Eq.(14).
From Eq.(14) we find that the shape of the potentialupsbd
depends on the sign ofb2−4acp andb, which sets the coef-
ficients of the quadratic and quartic terms.(The coefficient of
the leading sextic term is always positive.) Whenb2.4acp

and b.0 hold [i.e., for b.2sacpd1/2], the potential has a
minimum at b=0 and it increases monotonously withb.
When b2,4acp, irrespective of the sign ofb [i.e., for

FIG. 1. Schematic typical spectrum for the sextic oscillator with
indication of the relevant quantum numbers.
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−2sacpd1/2,b,2sacpd1/2], a minimum appears forb.0,
while for b2.4acp andb,0 [i.e., forb,−2sacpd1/2], first a
maximum appears and then a minimum asb increases. In all
three cases the exact location of the extremal point(s) can be
obtained from the real and positive solutions of

sb0
pd2 =

1

3a
f− 2b ± sb2 + 12acpd1/2g. s15d

Due to the relatively small difference inc+ andc−, thet-even
andt-odd potentials have the same types of extrema at about
the sameb, except for some peculiar combinations ofa and
b. Assuming that there are no complications of this kind, we
can now return to the question of renormalizing the minima
of the t-even and t-odd potentials. Forb.2sacpd1/2,
p= +, − the minima of the two potentials will beu0

+ andu0
− at

b=0, so they coincide ifu0
+=u0

− holds. Forb,2sacpd1/2 we
can equate the minima ofu+sbd and u−sbd if we set u0

+=0
and

u0
− = sb2 − 11adsb0

+d2 − sb2 − 13adsb0
−d2 + 2abfsb0

+d4 − sb0
−d4g

+ a2fsb0
+d6 − sb0

−d6g, s16d

whereb0
p are obtained from Eq.s15d with the choice of the

“+” sign. With this the two potentials have their minima at
the same energy, but they take on different values at the
origin. Illustrations of the possible potential shapes are dis-
played in Fig. 3. Obviously,u0

− in Eq. s15d also has to be
added to the energies of thet-odd potential. Figure 4 shows
the relative position of the energy levelsEj,t as eithera or b
is varied and the other parameter is kept at a fixed value.

The electric quadrupole transition rates can also be deter-
mined analytically by calculating the matrix elements of the
transition operator[8,11]

TsE2d = ta2m = tbfDm,0
s2d cosg + 2−1/2sDm,2

s2d + Dm,−2
s2d dsin gg.

s17d

The radial integrals that appear in theb variable in the ma-
trix elements ofTsE2d can again be determined using Eq.s11d.

FIG. 2. Wave functions with the notationfj,t for the case of
potential parametersa=40 000 andb=200.

FIG. 3. Potentialsu+sbd (full line) and u−sbd (broken line) for
a=40 000, andb=1000 (left panel), b=200 (middle panel), andb
=−1000 (right panel). The lowest energy level appears in these
potentials atE1,0=4633.57, 73.35, and −9366.43, respectively.

FIG. 4. Excitation energiesEj,t
* =Ej,t−E1,0 with a=40 000 fixed

as a function ofb (left panel) and withb=200 fixed as a function of
a (right panel).

FIG. 5. The energy spectrum and the strength of some electric
quadrupole transitions calculated witha=40 000 andb=200 (left
panel) and the corresponding data for134Ba (right panel).
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In order to obtain thetotal matrix elements, one has to cal-
culate also the components depending ong and the Euler
anglesui. This can be done following the techniques de-
scribed in Ref.f16g. These parts introduce certain selection
rules not only for the angular momenta, but also fort.

V. DISCUSSION

In order to compare the main characteristics of the sextic
oscillator as ag-unstable potential with those of other poten-
tials of this kind, we present calculations for a particular
value of the parameters,a=40 000 andb=200. These num-
bers were chosen such that the resulting energy spectrum
approximates that of the134Ba nucleus, the first candidate for
Es5d symmetry[17]. We stress that our aim is not to repro-
duce the experimental data, rather to get a qualitative picture
about the general performance of the model. The potentials
u±sbd are displayed in the middle panel of Fig. 3, while the
energy eigenvalues are shown in Fig. 5, together with the
corresponding experimental energy levels. Figure 5 also
shows the calculated and the experimentalBsE2d values for
transitions between the energy levels. Note that electric
quadrupole transitions which changet by more than one unit
are zero if we use the transition operator(17), but finite
BsE2d strengths can be obtained if we apply terms of the
next order(see, e.g., Ref.[18]).

In Table I we summarize the ratio of the most important
energy eigenvalues and those of the most characteristic
BsE2d transition rates obtained from the sextic oscillator with
parametersa=40 000,b=200, the infinite square well poten-
tial [8], and the numerically solvedb4 potential[19] together
with the corresponding experimental values for134Ba, when-
ever available. It is seen that the energy ratios corresponding
to theEs5d symmetry systematically fall between the values
of the b4 potential and the sextic oscillator. The situation is

less obvious for the ratio of theBsE2d values: here the sextic
oscillator and the infinite square well seem to yield similar
ratios, while the numbers obtained from theb4 potential are
systematically higher. This might be due to the fact that the
sextic oscillator potential goes to infinity steeper than theb4

potential, so the asymptotic behavior of its wave functions
can be closer to that of the wave functions of the infinite
square well. Comparing the results with the experimental
data for134Ba we can conclude that, at least in this case, the
sextic oscillator allows a better approximation than the other
essentially parameter-free potentials. We expect that this con-
clusion will be general due to the flexible nature of the sextic
potential whose shape is governed by two parameters. In fact
this potential can be used not just at the critical point but it
can be useful to model the full shape phase transition from
spherical to deformedg-unstable nuclei by changing the pa-
rametersa andb.

Before closing, we mention some aspects of the sextic
oscillator that might give further help in the analysis of nu-
clei near critical points. First, we note that withM =2 in Eq.
(6) the analysis can be extended to further states, such as
f1,4, f1,5, f2,2, f2,3, f3,0, and f3,1. Second, the potential
shape which contains both a local maximum and a minimum
at b.0 might be useful in the description of nuclei with the
so-calledXs5d symmetry, which is thought to occur in the
shape phase transition between the spherical and the axially
deformed domain[9]. Third, there are further quasi-exactly
solvable potentials both with confining and nonconfining
nature [15], which can also be considered in the Bohr
Hamiltonian.
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