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Experimentally determined level densities of the transitional isotopes 148,149,150,152Sm at excitation energies
below and around the neutron binding energy are compared with microcanonical calculations based on a Monte
Carlo approach to noncollective level densities, folded with a collective enhancement estimated in the frame of
the interacting boson model (IBM). The IBM parameters are adjusted so as to reproduce the low-lying discrete
levels of both parities, with the exception of the odd-mass nucleus, 149Sm, where complete decoupling of the
unpaired neutron from the core is assumed.
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I. INTRODUCTION

Interest in the study of nuclear excitations in the continuum
below the neutron binding energy Bn has been revived in recent
years by a new method of analysis of γ -ray transitions, which
permits simultaneous extraction of the level density at the
excitation energy to which the nucleus under study decays and
of the γ strength function at the difference of the initial and
final excitation energies [1]. For rare-earth nuclei, to which
the method was applied for the first time [2], both energies
are in the continuum region, thus allowing an investigation
of various thermodynamical quantities, such as temperature
and entropy, versus excitation energy. In particular, for the
lanthanides analyzed in Ref. [2], 162Dy, 166Er, and 172Yb,
temperature does not increase monotonically with excitation
energy, but shows some broad oscillations, interpreted as a
consequence of the breaking of nucleon pairs and, at higher
energies, of the possible quenching of pair correlations.

Detailed analyses of the experimental results for these
nuclei were published in a serie of papers: In particular,
total level densities versus excitation energy were obtained
for 161,162Dy [3], 170,171,172Yb [3,4], and 166,167Er [5]. In
Refs. [3,5], heat capacity versus temperature, deduced from
total level density, indicates a phaselike transition from the
pair-correlate ground state to an uncorrelated one at a critical
temperature Tc � 0.5 MeV.

It has been known for years that, in addition to pairing and
shell effects, the level densities of deformed nuclei, like the
lanthanides analyzed in Refs. [2–5], are strongly enhanced
by collective effects, mainly of rotational nature, that are
already sizable at excitation energies of the order of Bn. On the
additional assumption of adiabatic decoupling of noncollective
and collective degrees of freedom, strictly valid at excitation
energies that are much higher than the average collective

energy, total level densities are simply obtained by folding
noncollective level densities, obtained by a microscopic model,
with collective level densities, usually given by some simple
quantum model, such as the axially symmetric rotor or the
harmonic oscillator, for rotations and vibrations, respectively.
At excitation energies of the order of Bn, rotational effects play
the main role: The relevant formalism [6] was applied long ago
to the analysis of neutron resonance spacings of nuclei in the
lanthanide and actinide regions [7]. Damping of collectivity
with increasing energy [8] will be neglected in the low-energy
region of interest to the present work.

Recently, the method of Ref. [1] has been applied to weakly
deformed nuclei in the same mass region and total level
densities and γ strength functions have been extracted for
148,149Sm [9]. It is not expected that the collective effects in the
level densities of even-even transitional nuclei are adequately
reproduced by means of a simple model, like the axially
symmetric rotor used for strongly deformed nuclei or the
oscillator adopted for spherical nuclei. However, it is known
that the low-lying discrete levels and related electromagnetic
transitions for this kind of nuclei are well reproduced by the
interacting boson model (IBM) [10], an algebraic model of
collective excitations with U(6) symmetry.

Sm isotopes constitute a transitional chain from spherical
to axially deformed nuclei, corresponding to the IBM limiting
symmetries U(5) and SU(3), respectively. By resorting to the
coherent state formulation [10] of the IBM, it is possible to
interpret the U(5) → SU(3) shape transition as a quantum
phase transition, whose order and critical point can be
determined by investigating the behavior of the derivatives
of the nuclear ground-state energy with respect to a suitable
control parameter. In the Sm chain, the best candidates to be
critical are 150Sm, on the basis of a recent study that combines
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coherent state formulation with catastrophe theory [11], and
152Sm [12], where selected collective bands of positive parity
and related electromagnetic transitions are nicely reproduced
in the frame of the X(5) critical symmetry [13], corresponding
to an analytical solution of the Bohr collective Hamiltonian.

Since the discrete spectra of the transitional even-even
isotopes 148,150,152Sm show so many interesting features, it
appears rather natural to extend the analysis to the continuum.
However, the collective level density generated by the IBM
cannot be compared directly with experimental data, like those
of Ref. [9], which refer to the total level density: The latter
can be estimated, for an even-even nucleus, by folding the
IBM level density with the density of incoherent quasiparticle
excitations, generated by a realistic microscopic model. Since
we are also interested in the possible fluctuations of the level
density connected with the breaking of Cooper pairs with
increasing energy, the calculations will be carried out in the
microcanonical ensemble.

The paper is organized as follows: Sec. II describes
the collective level density, Sec. III the noncollective
level density and Sec. IV the total level density. Finally,
Sec. V is dedicated to the comparison with experimental data
and Sec. VI to conclusions and perspectives. A comparison
of our formalism with traditional treatments of collective
enhancement of nuclear level densities is worked out in detail
in the Appendixes.

II. COLLECTIVE LEVEL DENSITY

As is known, the IBM commonly used in the analysis
of collective excitations of non-magic even-even nuclei is
formulated in the laboratory frame, so that diagonalization
of the IBM Hamiltonian yields the energies Ec, of collective
levels with good angular momentum J and parity π . In the
present work, we use the simplest version of the model,
IBM-1, which does not distinguish between neutron and proton
degrees of freedom. The number of proton pairs, Nπ , and the
number of neutron pairs, Nν , in the corresponding valence
shells define the effective boson number NB = Nπ + Nν ,
which is a conserved quantity that is the corresponding
operator N̂ , commutes with the Hamiltonian Ĥ . Since the
bosons of the model simulate collective fermion pairs, the Pauli
principle is approximately taken into account by defining the
boson number as the number of particle pairs, or of hole pairs,
whichever is less, in the given valence shells.

The density of collective levels of given angular momentum
and parity is simply written as a sum of Dirac delta functions
centered on the collective energies Ec(J, π ):

ρcoll(E, J, π ) =
∑

c

δ[E − Ec(Jc, πc)]δJ,Jc
δπ,πc

, (1)

and the total density of collective levels of given parity is
obtained by summing Eq. (1) over J from 0 to the maximum
angular momentum Jmax(π ) allowed by the finite boson
number NB :

ρcoll(E,π ) =
Jmax(π)∑
J=0

∑
c

δ[E − Ec(J, π )]. (2)

Since a level with angular momentum J corresponds to 2J + 1
degenerate sublevels, or states, the collective state density is
simply

ωcoll(E,π ) =
Jmax(π)∑
J=0

(2J + 1)
∑

c

δ[E − Ec(J, π )]. (3)

In the present work, we also need the density of collective
states with given projection M on an arbitrary quantization
axis:

ωcoll(E,M,π ) =
Jmax(π)∑
J=0

(2J + 1)

×
∑

c

δ[E − Ec(J, π )]fcoll(M,π ), (4)

where the distribution in M of states of given parity
π, fcoll(M,π ), can be normalized to unity in the finite range
from −Jmax(π ) to +Jmax(π ) and is directly estimated from the
calculated set of collective levels of given parity π .

Collective levels of positive parity can be obtained by
diagonalization of the standard IBM-1 Hamiltonian Ĥsd ,
containing free-boson terms and two-body interactions of s
and d bosons, which are the boson images of collective nucleon
pairs coupled to angular momentum and parity Lπ = 0+ and
2+, respectively. The 1 + 5 boson degrees of freedom span
a dynamical U(6) algebra. Consistent extension of the model
to collective states of negative parity and of parity changing
electromagnetic transitions requires introduction of p and f
bosons, with Lπ = 1− and 3−, respectively, corresponding to
3 + 7 additional degrees of freedom, so that the dynamical
algebra is enlarged to U(16) [14–17]. However, p bosons play
a minor role in reproducing the energies of the low-lying levels
of negative parity and are neglected in the present work, where
the levels of negative parity are obtained by coupling only one
f boson to s and d bosons. Therefore, Jmax(π = +) = 2N

and Jmax(π = −) = 2N + 1.
The sdf Hamiltonian adopted in the present work is the

same as that of Ref. [18] and can be written in the form

Ĥsdf = εd n̂d + εf n̂f + αP̂ †
sdf · P̂sdf + βQ̂sdf · Q̂sdf

+ γ L̂df · L̂df + δQ̂f · Q̂sd + εL̂d · L̂f . (5)

Here, n̂d and n̂f are the number operators of d and f
bosons, respectively, and the multipole operators are defined
as follows:

P̂ †
sdf = −s† · s† + d† · d† + f † · f †, (6)

Q̂sd = [s† × d̃ + d† × s̃ ](2) −
√

7

2
[d† × d̃](2), (7)

Q̂f = − 3

10

√
42[f † × f̃ ](2), (8)

Q̂sdf = Q̂sd + Q̂f , (9)

L̂d =
√

10[d† × d̃](2), (10)

L̂f = 2
√

7[f † × f̃ ](1), (11)

L̂df = L̂d + L̂f . (12)
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TABLE I. Boson number NB and coefficients (in keV) of the sdf
Hamiltonian for Sm isotopes.

Nucleus NB εd εf α β γ δ ε

148Sm 8 696.5 1303.0 −1.0 −10.0 4.0 −136.1 −3.0
150Sm 9 546.5 1303.0 −1.0 −10.0 −3.0 −136.1 −3.0
152Sm 10 442.3 1406.5 4.0 −17.0 −1.0 −46.3 −1.0

In the collective Hamiltonian (5), the monopole-monopole
interaction, P̂ †

sdf · P̂sdf , the quadrupole-quadrupole interac-
tion, Q̂sdf · Q̂sdf , and the square of total angular momentum,
L̂df · L̂df , modify the standard s − d multipole interactions
by including f bosons, whereas the last two cross-multipole
terms on the right-hand side of the same equation improve the
fit of octupole bands in deformed nuclei. Hamiltonian (5) is
thus more general than the one first used in computing negative
parity states in Sm isotopes [19].

The eigenvalues of Ĥsdf , whose coefficients (in keV)
are given in Table I, are obtained by numerical diagonalization
using a modified version of the Octupole code [20].

The experimental levels of both parities are satisfactorily
reproduced up to an excitation energy E � 1.5 MeV and
angular momentum Jmax = 10. To use IBM results in a
collective enhancement of intrinsic level densities, collective
states have been calculated up to J = Jmax. The M distributions
of collective states turn out to be rather well approximated
by Gaussians centered at M = 0, with characteristic FWHM
values of the order of Jmax.

Figure 1 shows the collective level densities of 148,150,152Sm
calculated by IBM for positive and negative parities separately
according to Eq. (2). The level densities steadily increase if
one goes from the spherical nucleus 148Sm to the deformed
nucleus 152Sm. It is interesting to remark that the increase is
faster for negative parity than for positive parity; therefore the
use of f bosons in the IBM is an important requirement for
the proper description of the collective enhancement in the Sm

isotopic chain. As a consequence, the collective enhancement
factor of total level density turns out to be much higher in the
deformed case than in the spherical one.

III. NONCOLLECTIVE LEVEL DENSITY

Since the collective level density is computed in the
laboratory frame, so must be the noncollective one; thus,
both collective and noncollective angular momenta are good
quantum numbers in the present approach. In particular, single-
particle levels have been generated in a spherical Woods-Saxon
potential with parameters appropriate to the Sm region. It is
important to remark that the noncollective level density has
a weak dependence on deformation, whose main effect is
a redistribution of levels, without significant changes in the
average density.

Here and in the following, we shall usually refer to
the noncollective level density as the intrinsic level density,
since this is the traditional name under which it is known
in the literature (see, e.g., Ref. [6]). In the present work,
intrinsic is equivalent to noncollective and does not imply
that calculations are done in an intrinsic reference frame.

Several methods of generating excited multiparticle con-
figurations of an atomic nucleus from given sets of single-
particle states were proposed in the course of years, both
in the microcanonical and the grand-canonical frameworks,
and are available in the literature. In particular, an exact
recursive method of interest to the present work was originally
formulated by Williams [21]: It is based on the use of exact
recursion relations to expand the grand partition function, but
it does not rely on the saddle-point approximation used in the
traditional grand-canonical approach. It has the advantage of
requiring much shorter computation time than a combinatorial
approach, which counts all possible configurations, but cannot
deal with residual interactions, at least in its original form.

In the combinatorial methods, such as the odometer
approach of Hillman and Grover [22], level densities are
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FIG. 1. Collective level densities of
148,150,152Sm vs excitation energy. Solid
histograms: positive parity; dashed histograms:
negative parity.
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computed numerically by performing an exhaustive counting
of excited configurations. More recently, combinatorial calcu-
lations were carried out by means of the Densidad code [23],
based on a model proposed by Herman and Reffo [24–26], to
estimate level densities with a fixed number of particles and
holes (excitons), for use in pre-equilibrium models of nuclear
reactions. In the frame of an independent particle picture of
atomic nuclei, this method is exact but very time consuming
and becomes intractable at high excitation energies or for
large shell model spaces (i.e., for medium and heavy nuclei).
A residual pairing interaction can be included in the usual
Bardeen-Cooper-Schrieffer (BCS) approximation, at the cost
of greatly increased computer time.

It becomes thus natural to resort to a Monte Carlo (MC)
technique, like the one proposed by Cerf [27], to avoid
exhaustive counting of excited configurations and reduce
computer time, without sizable loss of accuracy. In general,
MC algorithms are known to be very efficient in solving com-
binatorial problems. In this work the MC procedure is followed
to extract a random sample of excited states in the considered
energy range. This very small fraction of configuration space is
assumed to be representative of the whole ensemble. Since the
level density increases exponentially, it is difficult to do a MC
sampling uniformly over the entire energy range of interest.
In what follows we make use of the Metropolis sampling
scheme [28] to achieve uniform sampling, as explained in
detail by Cerf [27]. A MC estimator for the intrinsic state
density of the N-neutron or Z-proton system with given angular
momentum projection M and parity π is given by

ω
N,Z
intr (E,M,π ) � s

L∑
j=1

δ(E − ECj
)δM,Mj

δπ,πj

W (Cj )
, (13)

where Cj are random single-particle configurations along a
long enough random walk of length L, and W (Cj ) are the
weight functions associated with each configuration. The scale
factor s, which is needed to normalize the state density,
is derived from an exact recursive calculation by means
of the Totstade code [29], where the recursive method of
Williams [21] is implemented. The recursive method, however,
cannot yield spin-parity distributions, nor can it take into
account a residual pairing interaction: Therefore, we just
need it to normalize the sampled MC state density. The
calculated recursive state density ωrec

intr(E) is also used as the
weight function W (Cj ) = W (ECj

) of the Metropolis sampling
scheme, where ECj

is the energy of a given j th configuration
[27]. To derive the normalization factor needed in Eq. (13), the
total number of states, Nrec, is calculated up to the maximum
excitation energy Emax:

Nrec =
∫ Emax

0
ωrec

intr(E)dE. (14)

Using the normalization condition

NN,Z
rec =

∫ Emax

0
dE

∑
M

∑
π

ω
N,Z
intr (E,M,π ) (15)

and Eqs. (13)–(15) we obtain the following expression of the
scale factor s:

s = NN,Z
rec∑N

j=1
1

W (Cj )

. (16)

Residual pairing interactions treated in the BCS approximation
are easily introduced in the MC formalism following again the
approximate method of Ref. [27]: For each sampled excited
configuration Cj , the usual BCS equations for energy gap and
particle number are solved by blocking the orbits occupied by
unpaired nucleons, and the computed pairing energy PCj

is
used to correct the energy ECj

of the sampled configuration,
replaced by ECj

− PCj
in the computation of the MC state

density, Eq. (13), which is changed into

ωBCS
intr (E,M,π ) � s

N∑
j=1

δ(E − ECj
+ PCj

)δM,Mj
δπ,πj

W (ECj
)

, (17)

because of the pairing energy correction PCj
. The energy ECj

used to calculate the weight function does not contain the
pairing correction, therefore the state density without pairing
can be computed at the same time, so the scaling factor s is
common to both formulations, with pairing and without it. In
this approximate treatment of pairing, the excitations involving
promoted pairs are neglected, but this helps to minimize the
overlap with the collective excitations computed in the IBM,
since the interacting bosons of the model simulate collective
fermion pairs and the eigenstates of the IBM Hamiltonian
can be considered as excitations resulting from promoted
collective pairs.

The intrinsic state density ωintr(E,M,π ) of the whole
nucleus with given angular momentum projection M and parity
π is obtained by separate calculations of neutron and proton
state densities, ωN

intr(E,M,π ) and ωZ
intr(E,M,π ), respectively,

by means of Eq. (13), and their subsequent convolution is
performed according to the formula for the coefficients of the
Cauchy product of two infinite series

ωintr(E,M,π ) =
E∑

Q=0

∑
π

N

∑
π

Z

∑
MN

∑
MZ

ωN
intr(Q,MN, πN )ωZ

intr

× (E − Q,MZ, πZ)δπ,πN πZ
δM,MN +MZ

.

(18)

IV. TOTAL LEVEL DENSITY

On the assumption of complete decoupling of intrinsic and
collective degrees of freedom, at low energy E, where both
collective and intrinsic levels are discrete, the total density of
states of given spin projection M and parity π can be put in
the form

ω(E,M,π ) =
∑
πi

∑
πc

Nc(πc)∑
c=0

Ni (πi )∑
i=0

∑
Mi

∑
Mc

δ[E − Ec(Mc, πc)

− εi(Mi, πi)]δMc+Mi,M δπcπi ,π , (19)

where Ec,Mc, πc are the collective and εi,Mi, πi are the
intrinsic excitation energies, spin projection and parities. The
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ground-state collective and intrinsic energies, E0 and ε0,
respectively, are both set to zero. According to formula (19), in
particular, at E < ε1, the lowest two-quasiparticle excitation,
the total level density of an even-even nucleus coincides with
the collective one.

At excitation energy E much greater than 〈Ec〉, the average
collective energy, where the intrinsic state density can be well
approximated by a continuum, it is more convenient to start
from the folding of the intrinsic and collective state densities at
given projection of total angular momentum M = Mi + Mc:

ω(E,M,π ) =
∑
πi

∑
πc

Nc(πc)∑
c=0

∫ ∞

0
dEi

∑
Mi+Mc=M

ωintr(Ei,Mi,πi)

×ωcoll(E − Ei,Mc, πc) δπcπi ,π , (20)

which immediately reduces to formula (19) if the intrinsic and
collective state densities are discretized again as

ωintr(Ei,Mi, πi) =
∑

j,Mj ,πj

δ[Ei − εj (Mj, πj )]

× δπi ,πj
δMi,Mj

, (21)

ωcoll(E − Ei,Mc, πc) =
∑

l,Ml,πl

δ[E − Ei − El(Ml, πl)]

× δπc,πl
δMc,Ml

. (22)

The observable level density of given spin J and parity
π, ρ(E, J, π ), is obtained from the calculated state density
ω(E,M,π ) of the whole nucleus, given by Eq. (19), using
a formula valid in the case of spherical symmetry (see, e.g.,
Ref. [30]),

ρ(E, J, π ) = ω(E,M = J, π ) − ω(E,M = J + 1, π ).

(23)

The total level density is finally obtained by summing this
expression over J and π ,

ρ(E) =
∑
Jπ

ρ(E, J, π ). (24)

All level density calculations carried out in the present work
make direct use of formulas (19)–(24). However, comparison
of our formalism with the traditional treatment of collective
enhancement of deformed nuclei [7], albeit not necessary to
the present work, allows us to gain a qualitatively interesting
physical insight. To this aim, a more compact approximation to

formula (20) is worked out in Appendix A and this is compared
with the corresponding formalism for axially symmetric rotors
in Appendix B.

V. NUMERICAL RESULTS

The hybrid formalism described in the preceding sections,
where an intrinsic state density from MC calculations done in
the microcanonical ensemble is folded with a collective state
density computed by means of the interacting boson model,
on the assumption of complete decoupling of intrinsic and
collective degrees of freedom, is applied to four transitional
Sm isotopes. The resulting total level density ρ(E) is plotted
in Fig. 2 as a function of E up to E = Bn, the neutron binding
energy, and compared with experimental data in the energy
range from 1 MeV to Bn − 1 MeV for 148,149Sm [9].

In the case of 149Sm we have folded the intrinsic state
density of the odd-mass nucleus with the collective state
density of its even-even core, 148Sm, because we have assumed
complete decoupling of the odd neutron from the core. Not
surprisingly, this approximation is particularly poor at low
excitation energies, where the leading contribution to the
total level density is the collective one. At such energies, the
collective level density could be computed in the interacting
boson-fermion model (IBFM) [31], where the coupling of the
odd fermion with the even-even core of an odd-mass nucleus is
properly taken into account. This kind of calculation, however,
lies beyond the scope of the present work, because it would
require additional work in its own, namely, the extension of the
standard IBFM, where the odd fermion is coupled with s and
d bosons only, to the coupling with negative-parity bosons.

Other important pieces of information about level densities
at the neutron binding energy are the average spacings of
s-wave and p-wave resonances detected in neutron capture
by a target nucleus with one less neutron than the nucleus
under consideration. A recent comprehensive compilation of
neutron resonance spacings is included in the Reference Input
Parameter Library, Version 2 (RIPL-2) [32], which contains
recommended values for 296 s-wave resonance spacings and
82 p-wave resonance spacings. Table II compares the values
of the model-independent s-wave resonance spacings D0 com-
puted in the present approach by counting relevant resonances
for the four Sm compound nuclei under consideration with the
recommended values of the RIPL-2 compilation. By definition

D0 =
{

[ρ(Bn + �E/2, 1/2+)]−1, It = 0+,{
ρ
[
Bn + �E/2,

(
Iπ
t − 1/2

)π ] + ρ
[
Bn + �E/2,

(
Iπ
t + 1/2

)π ]}−1
, It �= 0+,

(25)

where Iπ
t is the ground-state spin parity of the target nucleus

and �E is the energy interval for counting the resonances.
In the case of 152Sm, there is also an experimental value

of D0 recently obtained by the n TOF collaboration [33]
in neutron capture by 151Sm, which is slightly higher than
the RIPL-2 recommendation and our theoretical result. The

agreement between theory and experiment is satisfactory in the
case of 148,152Sm and underestimates the experimental values
by a factor of 2 in the case of 149,150Sm. However, it is to be
stressed again that our theoretical values are obtained on the
crude assumption of decoupling of intrinsic and collective
degrees of freedom, which is poor, in particular, for the
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FIG. 2. Total level densities of
148,149,150,152Sm vs excitation energy (dashed
histograms) and corresponding intrinsic level
densities (solid histograms). The experimental
data (empty circles) of 148,149Sm are taken from
Ref. [9].

odd-mass nucleus 149Sm. Therefore, we consider the present
results as an encouraging approximation; in any case, they
emphasize the crucial role played by collective enhancement
in level densities around E � Bn. As can be seen from Fig. 2,
without folding with the collective contribution, the noncol-
lective values of D0 would overestimate the experimental ones
by a factor of 10–50 in this mass region (see also Ref. [34]).

The main advantage of our treatment of collective effects is
that the model can be equally well applied to spherical (148Sm),
transitional (150Sm), and deformed nuclei (152Sm), whereas the
model of Refs. [6,7], briefly described in Appendix B, is valid
only in the last case and, in fact, it has already been applied
to heavier deformed lanthanides measured by the Oslo group,
such as 161,162Dy, 166Er, and 171,172Yb [35,36].

VI. CONCLUSIONS AND PERSPECTIVES

The numerical results discussed in Sec. V appear to us,
in spite of some simplifying model assumptions, signifi-
cant enough to encourage improvement of the model in
two basic steps: (i) extension to higher excitation energies;
(ii) introduction of a proper coupling of intrinsic and collective
degrees of freedom for odd nuclei.

TABLE II. s-wave resonance spacings for Sm isotopes.

Compound Bn (MeV) Iπ
t D0exp. (eV) D0calc. (eV)

Nucleus

148Sm 8.141 7/2− (5.1 ± 0.5)a 5.4 ± 0.3
149Sm 5.871 0+ (100.0 ± 20.0)a 53.0 ± 2.0
150Sm 7.985 7/2− (2.1 ± 0.3)a 0.94 ± 0.03
152Sm 8.257 5/2− (1.04 ± 0.15)a 1.2 ± 0.1

(1.48 ± 0.04)b

aFrom Ref. [32].
bFrom Ref. [33].

Step (i) is relatively simple, if one replaces the micro-
canonical description adopted in the present work with a
grand-canonical formalism, at the cost of smoothing out the
level density fluctuations related to shell and pairing effects,
which are less and less observable with increasing excitation
energy. Under this assumption, one could compute the intrinsic
state density ωintr(E,M,π ) in the grand-canonical ensemble
(see, e.g., Ref. [30]) and then make use of Eq. (A11) of
Appendix A for the total state density ω(E,M,π ), and derive
total level densities ρ(E, J, π ) by means of Eq. (23).

The problem still to be solved in this approach is the
damping of collective effects with increasing temperature,
that is, the temperature dependence of the collective partition
function Zcoll(T , πc) defined by Eq. (A6) of Appendix A,
which is expected to go through a maximum at some finite
temperature and then decrease to unity in the T → ∞ limit.
The problem was already faced in Refs. [18,37] under the
simplifying assumption that only the effective boson number
NB changes with temperature and goes to zero when T goes
to infinity. Even in that case, however, a realistic microscopic
calculation of NB(T ) is needed, since it was recently noticed
[38] that the simple BCS calculations at finite temperature
done in Refs. [18,37] do not properly deal with quadrupole
and octupole bosons, inducing, as a consequence, the transition
from a deformed ground state to a spherical equilibrium shape
at much lower temperature than the one predicted by self-
consistent mean-field calculations. In addition, the temperature
dependence of the IBM Hamiltonian parameters, in particular
the d- and f-boson energies, might be non-negligible over
a broad temperature range, so that a consistent microscopic
model of both boson number and Hamiltonian appears to be
mandatory.

Once step (i) is taken and computed level densities at high
energy compare reasonably well with available experimental
data, one might try step (ii), that is, inclusion of the coupling of
intrinsic and collective degrees of freedom in the formalism,
of particular importance to the treatment of odd-mass and
odd-odd nuclei at low excitation energies.
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The most viable computational approach in this case is the
simultaneous MC treatment of both mean-field and residual
interactions. A finite temperature version of the MC treatment
of the intrinsic level density described in Sec. III was proposed
by Cerf in Ref. [39] and applied there to the pairing interaction
in a single j shell, to check numerical results with the exact
analytical results of the seniority model. Since the calculation
of thermodynamic quantities is done there in the canonical
ensemble, and promoted pairs are treated like bosons, with
an approximate inclusion of the Pauli principle, the extension
to the boson interactions of the IBM might be feasible, but
how to treat boson-fermion couplings is an open matter for
investigation.

A completely different approach is the shell model MC
(SMMC) method [40,41], where correlation effects are taken
into account by including fluctuations of the mean field
through the Hubbard-Stratonovich transformation, which per-
mits decomposition of the many body operator exp(−βH ),
considered as an imaginary-time propagator, in a set of
one-body propagators of noninteracting particles moving in
fluctuating auxiliary fields. The SMMC method has been
extensively applied by Alhassid and coworkers [42] to the
calculation of level densities of nuclei in the mass and energy
range that can be described in a model space limited to the
fpg9/2 major shell (i.e., nuclei in the 50 < A < 70 region)
up to excitation energies of the order of 30 MeV, by using
a residual fermion interaction made of an isovector pairing
interaction and a number of isoscalar multipole-multipole
interactions, which are all attractive, thus yielding a good-sign
Hamiltonian, i.e., avoiding fluctuating signs of integrands in
MC integrals over auxiliary fields. Recently, the method has
been extended to much higher excitation energies, of the order
of 90 MeV for nuclei in the same mass region [43], including
also the contribution of scattering states, in addition to the
bound states, to the nuclear partition function, which becomes
significant for weakly bound nuclei in the temperature range
from 2 to 4 MeV. At higher temperature the approximation
of fixed mean field used in the SMMC calculations loses its
meaning. However, it is not trivial how the method could be
extended to medium-heavy nuclei (70 < A < 240), where the
IBM and IBFM work at their best in reproducing discrete levels
and related electromagnetic transitions.
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APPENDIX A: HIGH-ENERGY APPROXIMATION

If E � 〈Ec〉, the average collective energy, we start from
the convolution (20), where we introduce expression (4) for

ωcoll(Ec,Mc, πc):

ω(E,M,π ) =
∑
πi

∑
πc

∫ ∞

0
dEi

∑
Mi+Mc=M

ωintr(Ei,Mi,πi)

×
∑
I,c

(2I + 1) δ[E − Ei − Ec(I, πc)]

× fcoll(Mc, πc) δπcπi ,π

=
∑
πiπc

∑
Mi+Mc=M

∑
I,c

(2I + 1)ωintr

[E − Ec(I, πc),Mi, πi]fcoll(Mc, πc)δπiπc,π .

(A1)

We now assume that the intrinsic state density
ωintr(Ei,Mi, πi) also factorizes,

ωintr(Ei,Mi, πi) = ωintr(Ei, πi)fintr(Mi, πi), (A2)

and expand ωintr(E − Ec, πi) in a Taylor series to first order in
the collective energy Ec, since we have assumed that E � Ec.
Therefore

ωintr[E − Ec(I, πc), πi] � ωintr(E,πi) − Ec(I, πc)

× ∂

∂E
ωintr(E,πi)

= ωintr(E,πi)

(
1 − Ec (I, πc)

T (E)

)
� ωintr (E,πi) exp

(
−Ec (I, πc)

T (E)

)
.

(A3)

Here, the inverse temperature corresponding to excitation
energy E is, by definition,

1

T
= 1

ωintr(E,πi)

∂

∂E
[ωintr(E,πi)]. (A4)

Therefore, Eq. (A1) is transformed into

ω(E,M,π ) =
∑
πiπc

∑
MiMc

ωintr(E,πi)fintr(Mi, πi)fcoll(Mc, πc)

×Zcoll[T (E), πc]δπiπc,π δMi+Mc,M, (A5)

where the colllective enhancement factor is

Zcoll(T (E), πc) =
Imax(πc)∑

I=0

∑
c

(2I + 1) exp

(
−Ec (I, πc)

T (E)

)
,

(A6)
which has the form of a canonical partition function.

Formula (A6) lends itself to the introduction of collec-
tivity damping with increasing temperature, provided the
collective model is modified by a temperature dependence
of the Hamiltonian parameters. In particular, the behavior of
the partition function (A6) on the assumption that only the
effective boson number decreases with increasing temperature
was first studied at the limiting symmetries of IBM-1 for
positive parity only [37], and, more recently, for both parities
in the same transitional Sm chain [18] considered in the present
work.
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We now make another assumption, that both the intrinsic
and collective M distributions are well approximated by
Gaussians,

fg(Mg, πg) = 1√
2πσg

exp

(
− M2

g

2σ 2
g

)
, (A7)

where index g means either intrinsic (i) or collective (c). It is
to be stressed that, in general, the width σg is a function of
parity πg . On these conditions the folding of M distributions
can be evaluated analytically:

f (M,πi, πc) =
∑

Mi+Mc=M

fi (Mi, πi) fc (Mc, πc)

=
∑
MiMc

fi (Mi, πi) fc (Mc, πc) δ (M − Mi − Mc)

�
∫ +∞

−∞
dMcfi (M − Mc, πi) fc (Mc, πc)

= 1√
2πσi

1√
2πσc

∫ +∞

−∞
dMc exp

(
− M2

c

2σ 2
c

)
× exp

(
− (M − Mc)2

2σ 2
i

)
= 1√

2πσi

1√
2πσc

exp

(
− M2

2σ 2
i

) ∫ +∞

−∞
dMc

× exp
(−bM2

c + aMc

)
, (A8)

where a = M/σ 2
i and b = 1/2(σ 2

i + σ 2
c )/σ 2

i σ 2
c . The integral

on the right-hand side is elementary, simplifying to∫ +∞

−∞
dMc exp

(−bM2
c + aMc

) =
√

π

b
exp

(
a2

4b

)
(A9)

and the final results for f is

f (M,πi, πc) = 1
√

2π

√
σ 2

i + σ 2
c

exp

[
− M2

2
(
σ 2

i + σ 2
c

)]
.

(A10)
Therefore,

ω(E,M,π ) =
∑
πiπc

f (M,πi, πc)Zcoll[T (E), πc]

×ωintr(E,πi)δπiπc,π . (A11)

To evaluate the level density at given angular momentum
and parity ρ(E, J, π ), we make use of Eq. (23), where the
difference on the right-hand side can be further approximated
by a derivative, in the limit of large J:

ρ(E, J, π ) � − ∂

∂M
ω(E,M,π )|M=J+ 1

2

=
∑
πiπc

2J + 1

2
√

2π
(
σ 2

i + σ 2
c

) 3
2

exp

[
−

(
J + 1

2

)2

2
(
σ 2

i + σ 2
c

)]
×Zcoll[T (E), πc] ωintr(E,πi)δπiπc,π . (A12)

The standard expression of the intrinsic level density of
spherical nuclei (see, e.g., Ref. [30]) is recovered from this
formula when πc = +, σc = 0, and Zcoll ≡ 1; σi is identified
with the parallel spin cutoff factor σ‖.

A widely used expression of ρ(E, J, π ) for deformed nuclei
(see, e.g., Ref. [44]) neglects the folding of intrinsic and
collective M distributions (σc = 0) and uses, instead of Zcoll,
a collective enhancement factor KrotKvib, where, differently
from our Zcoll, rotational and vibrational degrees of freedom
are decoupled. These approximations lead to a significant
overestimate of collective enhancement, at least at low energy,
where collectivity damping with increasing excitation energy
can be neglected.

APPENDIX B: COMPARISON OF IBM AND ROTATIONAL
ENHANCEMENT FACTORS

In the traditional treatment of rotational enhancement
[6,7] of level densities of axially symmetric nuclei, the
intrinsic excitations are labeled with the projection K of total
angular momentum on the nuclear symmetry axis, and the
corresponding state density ωintr(Eintr,K, π ) is folded with
a simple rotational level density to give the following level
density for specific angular momentum J:

ρ(E, J, π ) = 1

2

J∑
K=−J

ωintr[E − Erot(K, J ),K, π ], (B1)

where

Erot(K, J ) = h̄2

2�⊥
[J (J + 1) − K2], (B2)

and �⊥ is the moment of inertia about an axis perpendicular
to the nuclear symmetry axis. In the expression of ρ(E, J, π ),
valid for E > Erot(K, J ), the factor of 1/2 accounts for the
fact that, when K �= 0, the intrinsic states with projection ±K

combine to form a single band with J = |K|, |K| + 1, etc.,
whereas, for K = 0, only one half of the bands contribute, for
a given J.

If there are many independent intrinsic degrees of freedom,
ωintr(E,K, π ) can be assumed to be normal in K:

ωintr(Eintr,K, π ) = 1√
2πσ‖

exp

(
− K2

2σ 2
‖

)
ωintr(E,π ), (B3)

where σ‖ is the parallel spin cutoff factor. By repeating for
ρtot(E, J, π ) the steps of Taylor expansion to first order in Erot

and introducing of temperature T, one obtains the well-known
expression

ρ(E, J, π ) = 1

2
√

2πσ‖
ωintr(E,π )

×
J∑

K=−J

exp

[
−J (J + 1)

2σ 2
⊥

− K2

2

(
1

σ 2
‖

− 1

σ 2
⊥

)]
,

(B4)

where

σ 2
⊥ = �⊥T

h̄2 (B5)

is the perpendicular spin-cutoff factor. The total level density
ρ(E,π ) is obtained by summing Eq. (B4) over J:

ρ(E,π ) =
∞∑

J=0

ρ(E, J, π ).
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Formula (B4) is considerably simplified when the term
containing K2 is negligible with respect to the term containing
J (J + 1) in the argument of the exponential. In that case

ρ(E, J, π ) � ωintr(E,π )

2
√

2πσ‖
(2J + 1) exp

(
−J (J + 1)

2σ 2
⊥

)
, (B6)

ρ(E,π ) � ωintr(E,π )

2
√

2πσ‖

∞∑
J=0

(2J + 1) exp

(
−J (J + 1)

2σ 2
⊥

)

� ωintr(E,π )√
2πσ‖

σ 2
⊥. (B7)

It is to be stressed that

Zrot = 1

2

∞∑
J=0

(2J + 1) exp

(
−J (J + 1)

2σ 2
⊥

)
� σ 2

⊥ (B8)

is a state partition function of type (A6), but our Zcoll, derived in
Appendix A, is more general, since it is not limited to rotational
excitations but is valid for vibrational and transitional spectra
as well. Formulas (A12) and (B6) for the spin-dependent
level densities cannot be compared directly, because the
former uses an intrinsic state density with spherical symmetry
and the latter uses an intrinsic state density with axial
symmetry.
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M. Krtička (World Scientific, Singapore, 2003), p. 769.

[39] N. J. Cerf, Phys. Rev. Lett. 76, 2420 (1996).
[40] G. H. Lang, C. W. Johnson, S. E. Koonin, and W. E. Ormand,

Phys. Rev. C 48, 1518 (1993).
[41] Y. Alhassid, D. J. Dean, S. E. Koonin, G. Lang, and

W. E. Ormand, Phys. Rev. Lett. 72, 613 (1994).
[42] Y. Alhassid, Nucl. Phys. A690, 163c (2001) and references

therein.
[43] Y. Alhassid, G. F. Bertsch, and L. Fang, Phys. Rev. C 68, 044322

(2003).
[44] A. S. Iljinov, M. V. Mebel, N. Bianchi, E. De Sanctis,

C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A. R. Reolon,
and P. Rossi, Nucl. Phys. A543, 517 (1992).

064320-9


