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PHYSICAL REVIEW E, VOLUME 65, 026134
Scale-invariant behavior in a spatial game of prisoners’ dilemma

Y. F. Lim and Kan Chen
Department of Computational Science, National University of Singapore, Singapore 117543

C. Jayaprakash
Department of Physics, The Ohio State University, Columbus, Ohio 43210
(Received 19 May 2001; published 23 January 2002

A spatially extended version of the game of prisoner’s dilemma, originally proposed by Nowak and May, is
modified to include stochastic updating and found to exhibit scale-invariant behavior. Two critical regimes with
different scaling behaviors are found; the corresponding exponents have been determined numerically. Spa-
tially, the critical states are characterized by the existence of delicately balanced networks of defectors sepa-
rating domains of cooperators; temporally, the evolution of the critical states following local perturbations is
characterized by avalanches of various magnitudes, which cause restructuring of the networks of defectors on

all scales.
DOI: 10.1103/PhysReVvE.65.026134 PACS nunier02.50.Le, 05.45.Df, 05.65.b, 87.23.Ge
INTRODUCTION viduals who can recognize and remember one another are

unlikely at work for simpler systems. The discovery of altru-

The paradox of the Prisoners’ dilemma has been mucksm and cheating in mixed clones of the amoatiatyostel-
studied as a metaphor for the problems associated with tHgm discoideuni6], renders the relevance of such spatially
evolution of cooperative behavior in ecology, politics, and€Xtended models to the study of sociobiology more plausible.
economics. The dilemma highlights the conflict between Ir_1 add_ltlon to t_he emergence OT cooperatlonzthe evolution
what is best from an individual point of view and that from a of b|qlog|cal, POI't'CaI' or econ_o_ml_cal ,SVSt?’mS_ IS oft_en char-
collective perspective, which cannot be resolved in the con@Cte”Z(ad by. punctuated e.qwll.brlun{?]. with Intermittent
text of playing a single game. The pioneering work of Axel- pursts of activity aqd volgullty Interrupting penod_s of Fe'a'
rod and Hamiltor{1,2] in the late 1970s, in which the game tive trgnqunlty (stasi3. Using a simple model Of biological
is studied by playing it many times between players Whoevol_qtlo_n, ?‘T"k an_d Sneppd8] suggested that punctuat_ed
remember past encounters, created an entirely different wa uilibrium” is an |_nherent property of _self-orggmze_d critical
to study the dilemma. The study of the evolutionarily stable .ystems[9,10], which naturally evolve into a highly interac-

strategies of the repeated game has provided insight into t éve,hcntlcfal ”stgte W_Pﬁre m(;ntlnr perturt()jagm?\ls Ieas to da|\>|/a-
understanding of sociobiological behaviors. When player anches of all sizes. The model proposed by Nowak and vay,

play a single game, defection is the only evolutionarily stabl owever, does not' exhibit ;glf-organized criticality. Although
strategy[3], in the sense that a population which alwaysunder some special conditions the model can exhibit many

defects cannot be invaded by a mutant cooperator. For re(gascinating Persiz_an-carpetlike spati_al patterns, the patterns
peated games, evolutionarily stable strategies, such as tit-fof © unstable against any perturpat_mn. Typically, the model
ither evolves to a stable equilibrium state where a local

tat can lead to the emergence of cooperation among individif . ) . :
als; this provides a solution to the paradox and a mechanisrﬂerturbat'on only causes slight restructuring of the spatial

for the emergence of cooperative behaviors pattern, or to a highly active state, which never settles down

Nowak and May and Nowak, Bonhoeffer,. and May5] to a period of stasis. The main purpose of thi_s paper is to
noted that there is an another mechanism for the emergené@ow that when the.effect.s of a random environment are
of cooperative behavior. They considered a simple Spatidpcorporated appropriately into the model, the spatial game

game of the prisoners’ dilemma, where the players only pla)?f thlels pnstont()arf_ d|Iemma| cag ?VOIVettO c{'nt!cal s:cattss, wh?'rel
with their neighbors. In a spatial game, the territorially stryc->mall perturbations can lead to restructuring of the spatia

tured interactions can promote cooperatiteven if no patterns at all scales. Thus, the stochastic, spatial game of the
follow-up encounter is expectedf the bonus for cheating is prisoners’ dilemma not only provides a mechanism for the

not too large, clusters of cooperators will grow. In addition,e'ﬁnergenCe of cooperative behaviors, but also serves as an

the spreading of defectors will be limited in the spatial game,example of “punctuated equilibrium”in the evolution of co-

because the returns diminish as they interact more with thefpPeration.
likes. The actual evolution of the spatial game proposed by
Nowak and May depends on the payoff values. In many
cases, Nowak and May found the coexistence of defectors In an individual game of prisoner’s dilemma with two
and cooperators in interesting evolving mosaics. They sugplayers, each has two options: to cooperdieor 1) or to
gested that in simplefbiological) systems, cooperation per- defect(D or 0). If both cooperate, each receives one point; a
sists by virtue of self-organized spatial structures generateplayer receives 0 points if the opponent defectslafyd 1) if

by interactions with immediate neighbors, because thehe player defects and the opponent chooses to cooperate.
mechanism associated with repeated interaction among indi-he spatial game of prisoners’ dilemma is defined on a two-

SPATIAL GAME OF PRISONERS’ DILEMMA
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dimensional(squarg lattice with evolution in discrete time. 1.0 SN
One assigns a playéwho is in stateC or D) to each site of 0.9 @ — 50
the lattice who plays with the eight immediate neighbors and,, 0. -

itself at each time step, i.e., the so-called Moore neighbor-g o7

hood is chosen for the interaction. Denoting the strategy ofg 4

the player at site at timet by s;(t) the payoff or the score % 05 4

earned by the player at site is given by P;i(t) 2 04

=EiEyi[si(t)sj(t)+b[1—si(t)]sj(t)], where v; is the % 05 -

Moore neighborhood of. In the original model studied by b 02 J

Nowak and May, the updating of the game is based on the o1

average payoffs of individual playerns;(t) = P;(t)/z where )

z; is the number of neighboréncluding itselj of site i. 0'0“ 12 18 14 15 18 17 18 19
Clearly, for an interior player,=9 and on the edges de- ' ' ' ' b ' ' ' '
pends on the boundary conditions. At the next time step, the

player at each site adopts the stratesyyt), of the neighbor 10 e
(excluding itself at siteh with the highest-average payoff if 9 ®) —— 30
the highest payofpy(t) is greater than the average payoff of 8 -

the original player at the site, i.es;(t+1)=s,(t) if pu(t) 74

>pj(t). The evolution is deterministic and there is no § |

memory; the behavior is determined by the initial conditions &

and the parametds which measures the benefit a defector % *7

obtains by exploiting a cooperator. We modify the model by 2 *

introducing astochasticelement to simulate the influence of 34

the environment by assigning an independent random vari- 2 |

able §; at each sitd. In our model, the player with the av- 14

erage payoffp; will be replaced by the neighbor with the

highest-average payoff,, if p,>p;+ d;. The variables; is 4 12 13 14 15 18 17 18 1

also changed to a new random number if the player is re-
placed, even if the strategy does not actually change. Thus,
the dynamics in our model are no longer deterministic. In our FIG. 1. (a) Concentration of cooperators afig) average payoff
simulation, we choosé,; independently randomly for each as function ofb. Results are obtained using 4@0 systems.
player from the interval— &y, 8,) with 5, chosen to be 2/9.
One can choose periodic boundary conditions or chooselearly dominate and a lone defector can invade the entire
open boundary conditions with players at the corners and opopulation of cooperators. The state is stable against any
the edges playing only with four and six players, respeclocal perturbation. Between the second and the third regime,
tively. Most of our results are for the latter boundary condi-there is actually a crossover regime (1/%<1.8), where
tion. We have also studied the model with two boundarymoving domains of defectors replace the mostly static net-
layers of players with a fixed strategy of cooperation. work structure observed in the second regime and the system
Summary of different behaviors in the modehe goal of does not settle down to a steady state.
our paper is to characterize the asymptotic behavior of the Macroscopic characterization of regime$Ve first de-
spatial distribution of the strategies and the spatiotemporadcribe the general features focusing on tmacroscopic
response of the system to localized disturbances for variouguantities in the model. A quantitative characterization of the
values ofb (bonus for cheatingfrom one to two. There are different regimes is obtained in terms of the average concen-
roughly three regimes corresponding to different ranges ofration of cooperators or defectors and the average payoff of
values forb. In the first regime, corresponding to<b  the players as a function & The averages are obtained by
< 1.5, the system evolves to a mostly static configuratiorperforming both a spatial average at a given time and a tem-
(with occasional local periodic flipglominated by coopera- poral average over the states obtained from avalanches. The
tors with local perturbations leading only to a small restruc-results are plotted in Figs(d) and Xb). The first regime is
turing of the system. In the second regime, neither cooperassharacterized by a relatively low concentration of defectors
tors nor defectors dominate. The system always settles dowtfess than 1/8 and high-average payoffs. Fdr<3/2, the
to a static or locally periodic state with a tightly connectedfraction of cooperator§:- decreases gradually from 1 to ap-
network of defectors which extends over the entire system. Aroximately 4/5; especially fop between 1.3 and 1.4, there
local perturbation can leads to restructuring of the network ats very little difference between the fraction of the coopera-
all scales. The second regime is the most interesting: ther®rs in the deterministic and random update rules.
are two ranges in which the system exhibits self-organized The transition to the second regime is sharp and is accom-
criticality and responds on all spatial scales when perturbeganied by a jump in the concentration of defectors and a
locally and concomitant power-law behavior, as discussedudden reduction in the average payoffsbAt1.50, there is
later. In the third regime, which occurs fbi>1.8, defectors a discontinuous jump in the fraction of cooperators to

b
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FIG. 3. Concentration of cooperators as a functionbah a
simple mean-field theory

age payoff is close to zero. In the crossover region between
the second and third regimes, i.e., for A6<1.8, both
cooperators and defectors form large domains fagnlie be-

© tween 0.50 and 0.57. In addition, in this regime the back-
FIG. 2. Typical spatial patterns in the two distinct SOC regions,dround exhibits a great deal of periodic activity; neverthe-
(8) b=1.55, (b) b=1.70. The defectors are in black. less, the overall domain structures are quite stable.

We point out in passing that in the deterministic case, the
roughly 2/3 followed by a steady decrease to approximatelysymptotic concentration of cooperators can depend on ini-
0.60 asb is increased td=1.6; this is in contrast to the tial conditions. For example, fdy>1.8, the system can go to
behavior of the deterministic model wheffe fluctuates a state with density of cooperators around 0.3, a state de-
around 0.80. In this regime, the defectors form a network okcribed in Ref[4], or to a state with zero cooperator density.
thin domain walls surrounding more or less rectangular do- Mean-field results We have also constructed a simple
mains of co-operators. This is signaled by the fact that formean-field theory and studied it numerically. We take into
b>3/2 in the deterministic case and for periodic boundaryaccount the fact that there are lines of defectors and study a
conditions, a row of defectors embedded in a sea of cooperane-dimensional systerti.e., fully correlated lines in two
tors undergoes a two cycle between three adjacent rows aimensions. It is straightforward to write an evolution equa-
defectors and one row of defectdikl]. tion for the probabilityq that a site in one-dimension is a

For 1.6k b<1.66, f; increases discontinuously to 0.70 cooperator at the next time step by factorizing the probability
and both the deterministic and random rules yield approxidistribution for the lattice(the mean-field assumption ne-
mately the same density of cooperators. In this regime, thglecting correlation$.The future of a site depends on the
activity takes a very long time to stop in the random modelpayoffs of the middle three sites of a five-site cluste(i)
in contrast to the pure case. At approximatbk 1.67, f. =3s(i)+{s(i)+b[1—s(i)]}[s(i—1)+s(i+1)], where the
again increases with a jump to about 2/3 and in the regiméactor of three accounts for the frozen neighbors in the or-
1.67<b<1.75, f steadily decreases to 0.56 mirroring the thogonal direction. By summing over all possible configura-
behavior in the regime 1.50b>1.60. Again, in this second tions of the five players appropriately weighted by the prob-
regime, we have found evidence for self-organized criticalityabilities, we find the mean-field evolution of We use a
as will be discussed below. The nature of the spatial patterngalue of 5=6/9 and iterate the equation to find the fixed
and structures is different from that in the regime X®l point or the steady-state value for different valueb.oThe
<1.59; the domain shapes of cooperators are no longer reatesults displayed in Fig. 3 reproduce the existence of three
angular and the thickness of the domain walls varies. Seeegimes, one in whictp=1 for b<<1.30 and one withp
Figs. 4a) and 2b). For largerb, a few domains of defectors =0 for b beyond 1.7 and an intermediate regime where
(D) can be found. varies continuously. The first transition is discontinuous

The third regime obtains fds>1.80, wherein the system while the second is continuous. The results for the values of
consists almost entirely of defectoifg;~0.02 and the aver- b where the transitions occur are not quantitatively good re-
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1.0 e o -4 consisting of a sequence of synchronous updates according
e 000 to the evolution rule during which the effect of the perturba-
097 tion spreads through the system. In contrast to models such
08 4 as the Olami-Feder-Christens¢h2] stick-slip model, the
system does not reach a quiescent state in which the system
g 0.7 is stationary. In this respect, this behavior is similar to that in
< the state which exhibits self-organized criticality in the game
g 0.6 - of Life [13]. Periodic local flips can continue to occur and
£ therefore, the stochastic nature of the model poses technical
5 057 difficulties in defining precisely when an avalanche ends. We
% have defined the end of the avalanche as occurring when the
3 041 system reaches a periodic state. Once the avalanche stops,
S 03 4 we perturb the system again, thdsving the system slowly
We have also performed a simulation on two copies of the
0.2 4 system, one with and one without the perturbation and com-
pared the two in order to remove spurious contributions to
0.1 H the avalanche due to local periodic patterns. The most com-
monly used diagnostic to study possible critical behavior is
0.0 SPeSbessee ity I the probability distribution of various characteristics of the
o112 13 14 15 16 17 18 19 avalanches. We study the area affected by the avalamhes
b defined as the number of sites where the values of the per-

turbed and unperturbed copies have differed at least once
during the avalanche. We also monitor the the duration of the

flecting the intricate geometry of the actual configurations2valancheT, following the local perturbation and the magni-
which is not captured by the naive, local mean-field theory{ude (siz8 M, of the event defined as the total number of
however, incorporating the existence of the lines provides 4iPS in the affected areéthe periodic flipping outside the

simple description of the macroscopic features of the thredffected area is not includgd _ _
regimes. We have studied systems of sizes ranging fronx 20

up—160x 160. For each size of the system, we generate up to
20 000 avalanche@nd occasionally mojeo obtain the sta-
tistics for M, A, and T. Power-law decay of the probability
We now consider the critical regions of the model in moredistribution of, sayM, i.e., P(M)~M ™7, up to a finite-size
detail focusing on the spatio-temporal response of the systegutoff, M* (L) which grows algebraically with, M* (L)
to localized external perturbations. As we mentioned in the~L", is the typical signature of self-organized criticality.
previous section, there are two critical regions of the modelComputational limitations render it extremely difficult to dis-
corresponding to 18b<1.6 and 1.6%¥b<1.75, respec- tinguish such critical behavior from exponential decay,
tively. Not only are the spatial patterns in these two regiondM ~"exp(—M/M;) for very large avalanche sizes. Our re-
very different, but so is the dynamical behavior. One simplesults, as all numerical results, must therefore be treated with
way of distinguishing the behavior of the system, especiallycaution.
in the two critical regimes, which we have found useful, isto  We found that the probability distribution of these three
study how an initial condition with a single defector in a seaquantities can be fitted to a power l[aR(M)xM ™7, P(A)
of cooperators evolves in time. In the first critical region, axA™#, and P(T)=T ¢, respectively. Figures (8-5(c)
lone defector can invade almost the entire initial populatiorshow the scaling plots for the probability distributions of
consisting of all cooperators and generate a network of dethese quantities for the cabe=1.55 (in the first critical re-
fectors covering the entire system; in contrast, in the secondion). The exponents of the power laws are=1.4, 8
region, the lone defector generates only a small cluster o&1.65, anda~1.75.
defectors. As we will see shortly, the critical behaviors are For the second critical region, we have a different set of
also very different. In Fig. 4, the percentage of the area afexponentsr~1.1, 8~1.4, anda~1.05. This clearly shows
fected by a single defector is plotted for the stochastic modethat these two critical regions are very different. In the sec-
as a function ofb. For b>1.8, while a defector affects the ond region, there is a significant chance that the system wiill
entire population the resulting configuration is not spatiallynot settle down to a periodic state, but to a pseudoperiodic
complex, the entire system becomes defectors. state. This is due to the fact that the dynamics is not deter-
We now present the results on the statistical critical propministic whenever a player is replaced. Numerically, we de-
erties of the model in the critical regions. The stochasticfine the end of an avalanche when the system settles down to
dynamical evolution is carried out on dnxL lattice until  a pseudoperiodic state, in which the same configuration ap-
the transients have died down. Typically, the system settlepears after certain number of time steps.
into a state with a few periodic patterns. We make a local From a theoretical point of view, the understanding of
perturbation which changes a cooperator to a defector in thecale-invariant behavior in systems which are driven slowly
system or vice versa at one site. This initiates an avalanch@.e., where one perturbs, waits for the avalanche to end and

FIG. 4. Percentage of affected area due to a lone defector.

CRITICAL STATES OF THE MODEL
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£ 102 4 We display a plot ofL’P(A,L) vs AL"A with 8=0.65 and
& 104 va=0.40 and find reasonable data collapse lforanging
from 20—160. This is displayed in Fig. 6. The scaling fits for
10°% 4 R the other quantities are somewhat poorer or of comparable
10 . | a: quality. We note that the value ofis rather small in the first

critical region and the plot implies that the scaling or metri-
T cal factor inA/L"A is small. The fits to the multifractal form
were not satisfactory. Given our limited theoretical under-
standing of scale-invariant behavior in discrete, driven dy-
namical systems and the limitations of numerical simulations
(the number of avalanches needed to get statistics for large-
system sizes is computationally prohibitiibe results must
then perturbs agajns meager. Numerically, the existence of be treated with due caution. Nevertheless, the occurrence of
power-law scaling in the stick-slip modgl2], which do not  scaling behavior over a wide range of scales is an interesting
have an obvious conservation law, as is the case with thehenomenon in models used in the context of evolutionary
model studied in this paper, has been established fairly corbiology.
vincingly numerically. In other models such as the game of

life, there is also evidence for power laws. So the existence

of power laws in our model is not unusual. However, the
stick-slip model is deterministic with randomness occurring In summary, we have studied a modified version of the
only through initial conditions. The original deterministic spatial game of prisoners’ dilemma originally proposed by
model does not exhibit scaling behavior for anythe model Nowak and May by incorporating the effect of a random
studied in this paper has an intermittent underlying stochasenvironment. We have shown that in the regime where nei-
ticity, which nevertheless only leads to periodic patches in ather cooperators nor defectors dominate, the spatial game
otherwise quiescent background because of the discrete naaturally evolves to critical states in which a small perturba-
ture of the model. It is also worth noting that in contrast totion can lead to restructuring of the defector network at all
the stick-slip model, there is not a great deal of sensitivity toscales. Two different critical behaviors are found in the
boundary conditions although the scaling is better for somenodel, and the nature of these critical states remain to be
boundary conditions. We also recall that the finite-size scalunderstood. We have also tried to include other type of play-
ing hypothesis postulates for any quantiy(i.e., A, M, or  ers, such as players using tit-for-tat and Pavlov strategies.
T), P(x,L)=L"PxF(x/L"x). The other possibility is that the Preliminary results show that similar self-organized critical
system obeys multifractal scaling as in the case of some systates persist in these more complicated models. The crucial
tems exhibiting self-organized criticalifyL4]: elements for self-organized criticality appear to be the play-

FIG. 5. Probability distribution ofa) M, (b) A, and(c) T for
various sizes of the system in the first critical regirbe; 1.55 is
used.

CONCLUSION

026134-5



LIM, CHEN, AND JAYA PRAKASH PHYSICAL REVIEW E 65 026134

ers who always defectall-D players. These players will gence of any particular spatial structures. While the occur-
form a tightly connected but delicately balanced network thatence of asymptotic criticality is an open question, very large
separates the domains consisting of other type of players. torrelation lengths and response on many scales clearly oc-
is the allD players who force the system to a state of “punc-cur for a range of parameter values. These results may indi-
tuated equilibrium.” Without these players, we found that thecate that defectors such as parasites in real biological sys-
evolution of the game to be quite random without the emertems play a crucial role in evolution.
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