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PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998

Dynamics of dry friction: A numerical investigation

Y. F. Lim and Kan Chen
Department of Computational Science, National University of Singapore, Singapore 119260
(Received 9 March 1998

We perform extended numerical simulation of the dynamics of dry friction, based on a model derived from
the phenomenological description proposed by Baumbegget. [Nature (London 367, 544 (1994] and
Heslotet al.[Phys. Rev. 9, 4973(1994)]. Under a quasistationary approximation, the model is related to the
Dieterich-Ruina agindor slownesslaw, which was introduced by DieteridiPure Appl. Geophysl16, 790
(1978; J. Geophys. Res4, 2161(1979; in Mechanical Behavior of Crustal Rocksdited by N. L. Carter
et al, Geophysics Monograph No. ZAGU, Washington, DC, 1981p. 103 and RuindJ. Geophys. Re®8,
10359(1983] on the basis of experiments on rocks. We obtain a dynamical phase diagram that agrees well
with the experimental results on the paper-on-paper systems. In particular, the bifurcation between the stick-
slip motion and steady sliding is shown to change from a diteapercritical Hopf type to an inverted
(subcritica) one as the driving velocity increases, in agreement with the experiments.
[S1063-651%98)01311-1

PACS numbes): 05.45+b, 46.30.Pa, 62.20.Hg, 91.30.Px

[. INTRODUCTION perturbation; this gives rise to stick-slip phenomena. On the
other hand, the static friction coefficients is generally
It is well known that frictional resistance is independentfound to be an increasing function with respect to the contact
of the apparent area of the sliding surface and it is proporage of contact surfacdd,5]. This can be explained by the
tional to the normal load with a proportional constant  fact that the plastic relaxation of the stressed contact junc-
which is known as the friction coefficient. Traditionally, the tions during a stick period leads to an increasing real contact
friction coefficient has two distinct values: the static friction area, hence strengthening the contact. The mechanism for the
coefficientug, determined from the minimum force needed velocity dependence gfy and the mechanism for the age
to move a slider at rest, and the dynamic friction coefficientdependence of.s are not unrelated; both can be understood
g, used for the friction force when a steady sliding motionusing the concept of a memory lend#,4].
is established. Friction is often described using the well- The purpose of the paper is to show, by explicit numerical
known Amontons-Coulomb lawsi) Both us and uq are  simulation, that a model based on the phenomenological de-
independent of the apparent area of the contacting surfacésription of Ref[7] can be used to explain qualitativelgnd
and the normal loadjji) both us anduy4 depend on the shear sometimes even quantitativelynany interesting features
characteristics of the contacting materifls2]; and (ii) for ~ found in experiments. The model incorporates the existing
most casesyy is appreciably lower thap. This standard understanding of the age dependence of the static friction
picture is still widely accepted nowadays; however, in manyand the velocity dependence of the dynamic friction at low
cases, significant refinements must be taken into account faelocity, but does not make a distinction between the dy-
the explanation of the observed friction. namic and static frictions. There is no abrupt change from
Our common experiences tell us that the sliding of contact'static” friction to “dynamic” friction as in the traditional
bodies subjected to a steady pulling velocity sometimes prodescription of friction; this is important for the numerical
ceeds in an alternation of periods of rest and sliding rathegimulation used to construct the entire phase diagram for the
than moving steadilythis is the reason, for example, for the dynamics of dry friction. The rest of the paper is organized
occurrence of squeaking noi$e¥his unstable motion con- as follows. We first review in Sec. Il the phenomenology of
sists of periods of a stick state followed by a sudden slip andlry friction, focusing on the work done by Dieteri¢8] and
is known as stick-slip oscillations. The stick-slip motion oc- Ruina[8] and recent experiments performed by Baumberger
curs on both large and small scales. Understanding the sticiind co-workerg9,7]. We then establish in Sec. Il the fact
slip phenomenon is important not only for many engineeringthat the phenomenological description of Réf] is related
applications, but also for understanding the mechanism ofo the well-known Dieterich-Ruina agin@r slowness law
earthquakeswhich is a stick-slip phenomenon on a geologi- [8,10-13 as well as the Ruina-Dieterich slip law. The re-
cal scale[3]). sults from simulation of the model will be presentésec.
Obviously, stick-slip motion is caused by the variation of IV) together with some concluding remari&ec. ).
frictional resistance during sliding. In a certain range of the

veIocityV,_ a veIociFy Weaken?ng behavipcorresponding to Il. PHENOMENOLOGY OF DRY FRICTION
a decreasing functiop4(V) with respect to the steady rela-
tive sliding velocityV of the contact surfacgss often ob- Following the pioneering work of Rabinowicz on metals

served in many different materials including meti#$ and  [2], many experimental studies have been performed to study
rocks [4]. In this range, which generally lies in a low- the low-velocity friction properties of various materials. In
velocity regime, the steady motion is unstable with respect tgarticular, experiments with rocks suggest a constitutive
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K where the critical stiffness is given by
i M —AN\NN—
slider Vv — MgVdueV)/dV
cr— d,

track

Vv
}% X X {1+ . B
d.g[ du(stateV)/oV] state=statéV)
FIG. 1. Schematic block-spring system. The slider with nidss

is driven by a pulling velocity through a spring with stiffness. ~ In the above expressiops(V) is the steady-state coeffi-
The displacement of the center of mass of the slider with respect t6ient. We will show that this stability criterion fits our nu-
the track isx. merical result very well.

On the other hand, an extensive experimental study of the
framework in which the rock friction can be characterized bydry friction dynamics of a paper-on-paper block-spring sys-
a set of evolving state variables. This idea was introduced byem (shown in Fig. 1 has been performed by Baumberger
Dieterich [6] and was generalized by Ruii8]. The two and co-workers[9,7] recently. Their experiments verified
frequently used single-state-variable constitutive laws can beany known properties of dry friction and gave a rather
described as follows. complete picture of dry friction in various regimes. In par-

(i) The Ruina-Dieterich slip lay10—12. The friction co- ticular, they explored systematically the dynamical phase
efficient u can be written in terms of the instantaneous ve-diagram by varying the driving velocity, the slider mass
locity v of the slider and the state variabfethat character- M, and the spring stiffnesk. The features of their experi-

izes the slip history of the contact: ments are summarized as follows.
p (i) The phase diagram in control parameter space
_ v . Uc (V,K/M) consists of two regions that can be characterized
m(hv)=potA Inv—c+B In d. (1) by stick-slip motion and steady sliding, respectively, and
they are separated by a bifurcation curve. The character of
vp v the bifurcation changes from a diredupercritical Hopf
¢=- d_clnd_c' (20 type in the creep-dominated regime to an invertsabcriti-

cal) one in the inertial regime ag increases.
where uo, A’, B’, v, andd, are constants. This slip law, (i) In the steady sliding region, the measured dynamic
however, cannot be used to describe restrengthening in stéiction coefficient 4 exhibits velocity weakening in low-
tionary contact. velocity range(<0.1 mm/3, which can be fitted as
(i) The Dieterich-Ruina aging (or slowness) lad0—17.

In this law u(¢,v) is given by Eq.(1), but ¢ now satisfies #d(Vliowy=2, b, IN(V/Vo), ®)
the dynamical equation whereV, is an arbitrary velocity scale, and velocity strength-
_ v ening at larger velocities, which can be characterized as
¢= 1- d_ (3) 0
c (V) |nighv= g+ nV. (7)
The restrengthening in truly stationary contact is incorpo- (i) The static friction coefficienius was found to in-
rated in this version becauge=1 while v =0. crease with the contact agg as
In steady sliding motion, both laws givé=d./v and the w(ts) =ag+bgn(tgy). (8)

steady-state coefficient is wu(dc/v,v)=pue+ (A’
—B')In(v/vy). Moreover, in the case of a small deviation (iv) By introducing a characteristic memory lendih, a
from the steady sliding motion, both laws linearize to therelation between Eqs6) and(8), i.e.,

same form[8,13]. Extensive nonlinear stability studies for

both one{Egs.(1) and(2)] and two-state-variable slip laws (V) iowv=ps(Do/V), 9
have been performed by Gai al. [14].

In a more general constitutive framework the friction co-
efficient w can be written in terms of the “state” of the
contact surfaces, namely,= w(statey) [8]. Ruina and Rice
[8,13] consider a general constitutive friction law with
Jdu(statey)/dv>0 and they have established the dynamic
linear stability conditions for steady sliding: For a block-
spring system as shown in Fig. 1, the steady sliding motio
with velocity V is stable wherj13]

can be established. Hel&,, which is given experimentally
as 0.9um [7], can be interpreted as an average sliding dis-
placement needed to move to hew microcontacts.
These results are rather genefack-rock friction[6,4],
for example, exhibits similar featuresThe experiments
show that the motion of the system at low velocitg0.1
m/9 is primarily controlled by a creep process. Based on
hese results, a phenomenological model of dry friction dy-
namics for the low-velocity regimg] of the paper-on-paper
duedV)IdV>0 (4) system has been proposed. Both linggrand nonlineaf15]
stability analyses about steady sliding of the model give ex-
or when cellent quantitative agreement with experiments. In addition,
the transient behavior in the steady sliding region of the sys-
dusV)/dV<0 with K>K,,, tem after setting the driving velocity to zero suddenly has
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been studied under the aid of the mofib], where a two- We now proceed to derivdUy(¢) by considering the case

stage process has been observed. However, there is no Sy$-constant velocity motionx=V). In this case¢=D,/V
tematic theoretical study of the entire regime covering theand the friction forcdgiven in Eq.(6)] is equal to the exter-
crossover from the static friction regime to the dynamic fric-na| forceF.,, given in Eq.(14). This gives rise to

tion regime and the crossover to the high-velodityertial)

regime. In this paper we show numerically that most impor- 2AUo(¢p) 20
tant experimental features in various regimes can be repro- Mgla,~b,In(V/Vg)]= ——=——+ —
duced in a single model.

27V
a)oa

By using the average contact age we can rewrite the

IIl. PHENOMENOLOGICAL MODEL above equation as
We follow the phenomenological approach used in Ref. a Do
[7]. Consider the experimental setup shown in Fig. 1. The AUo(¢)=5Mg av_bvlnv_o
motion of the block under the influence of the external driv-
ing force as shown in Fig. 1 is assumed to be a thermally 27Dy
activated creeping motion in a periodic pinning potential bi- —Aln wod +(bv+A)In¢], (19

ased by the external driving force. In the low-bias regime,
where the barrier heights of the effective potential are comwhereA=2o/aMg. Given AU (), we can write the fric-
parable to the thermal activation energy, the velocity of thetion coefficient(which is equal to the external force divided

slider is given by by the weightM g under a quasistationary approximation
terms of ¢,
. 1 1 ) 10
Xx=a|——— N
' . V X
T+ T (b =a,+b,In 0 4 An*. (16)
Dy Dy

wherea is the typical distance between two potential minima

and 7, (7_) is the thermal time for escaping from a given When the velocity is not a constant, the contact @gés

well into its downstreanfjupstream nearest neighbor. If we assumed to be the state variable that follows the Dieterich-
let the corresponding barrier height ke, (U_), then we  Ruina aging law

have )

. X¢

1w p[ AU+) $(H=1-5". (17
—=_——exp — , (1)) 0

T+ 2T

g

By using this equation, the rate dependence of the dynamic
whereo is the thermal activation energy.can be written as  friction and the contact time dependence of the static friction
N RT, whereN, is the number of moles of the degrees of can be taken into account properly. In fact, it is obvious that
freedom involved in the creep motiom, is the oscillation  Eg. (16) (which is written under the quasistationary approxi-
frequency about the minimum of the effective potential. Thematior) is identical to Eq.(1) by choosinga,= g, A
amplitudeAU, of the periodic pinning potential is assumed =A’, b, +A=B’, Vy=v, andDy=d.. Thus Eqs(16) and
to increase with the dynamical contact age variale (17), which form the basis for the phenomenological descrip-

[6,8,7], hence the barrier heights are given by tion of dry friction given in Ref[7], are equivalent to the
Dieterich-Ruina agingor slownesslaw [8,10—17. This is a
AU =AUq(¢)+Fexdl2, (120 strong indication that the phenomenological theory of dry

) ~friction discussed in Ref.7] is not limited to the explanation
whereF . is the external forcéin the experimental setup, it qf experimental results on the paper-on-paper system; it
is the spring force induced by the driving velociy. gives a rather general phenomenological picture that can be

Although Egs.(10) and (11) are valid strictly only for a  ysed for understanding the dynamics involving dry friction
time- and position-independent external force and a timepn a range of materials. For example, it may be useful for
independent pinning potential, they can also be used in morgydying the phenomenology of rock friction, which is im-
general cases under the assumption that the chang&sn portant in the study of earthquake dynamics.

andAU,(¢) are so slow that aadiabaticapproximation is For the case where is comparable td& @ (this can be
valid [7]. Combining the above equations we can write thethought of as in the static friction regimave have to use the
velocity of the slider as original equation, i.e., Eq13), which can be rewritten as

: wod_  [Fex@ AU, _ _ 7x  [AUq(¢)

X~ 272 S'”f{ 20 ]GXD{ = B Fexi($,X)=MgASsinh™2 w—oaexr{ 1. a9

In the case thaF.,@>o, the above equation can be ap- The friction coefficient is then given asvith the quasista-
proximated as tionary approximation

_20Uy(é) 20

21X
ext™— a a

(,an

). (14) M(¢,;<):Asgr('x)sinh1[%ex;{% ] (19)
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FIG. 2. Friction coefficienj. described by Eq(23) vs the pull-
ing velocity V when the sliding motion is steady. changes from
velocity weakening to velocity strengthening aV=V*
(=1 mm/9g; this givesn=14.0 s/m.

where

FIG. 3. Dynamical phase diagram iv (K/M) space, obtained
by varying K and V with M=1.2kg. It consists of a creep-
dominated regime that can be characterized by the time scale
and an inertial regime with a characteristic timg (see the tejt
The dotted line indicates,,= 7, . The bifurcation curve, which is
represented by closed circles, first decreases slightly iasreases

in the creep-dominated regime and deflects upward after entering
the inertial regime in which it reaches a maximum and drops sud-
denly. The bifurcation occurs &/M~1.53x 10° N/cm kg when

the motion is creep dominated and it happens within
1.01X 10° um/s<V=<1.26x 10° um/s when inertial motion takes
place. The solid line is the theoretical prediction by Rice and Ruina
[Egs.(4) and(5)].

¢lx

Vo A

o Dy (20

,LL a,+b,In

Here;is an approximation oft we describe in Eg(16). In

this static friction regime, the velocity is very small and it
can also change its sign, thus the equationgiareeds to be

modified. It is reasonable to simply use equations of the block-spring system shown in Fig. 1:

x| ¢

B)=1-5. MX() =K(Vt=x) ~ u($,x)Mg,

) o ) where
Although the regularized friction law stated in Eq49)—

(21) has been briefly mentioned by Rice and Ben-Zio8], 1 m
it appears as a natural result of the phenomenological theory w(d,x)=Asgnx)sinh- [—ex[j{
discussed in Ref.7]. A
There are a few advantages of using E4®9)—(21) to
describe the friction force(i) There is no need to make a dV
distinction between static and dynamic frictions, thus there is p=a,+b, In5—
no stoppingcondition (which is used to indicate the cross-
over from the dynamic friction regime to the static friction gng
regime to worry aboutj(ii) the contact age is a well-defined
quantity with Eq.(21); and(iii) there is no numerical singu-
larity in the dynamical equations for the sliding block when
the velocity goes to zero and changes sign. To include the
inertial regime, we have to take into account the velocity
strengthening described by E@); we include this effect by
simply adding a damping termx in Eq. (19) (a similar idea
has been used in Rf17]).

] +9x, (23

¢IX|

0
+A| Dy’

(24)

x| ¢

P(t)=1— Dy (25)

We compare our result for the friction coefficiept
=u(Do/V,V) with the experimental results when the slid-

ing motion is steadyX=V and ¢=D,/V). All the coeffi-

cients in the friction law are determined precisely in experi-

ments for the paper-on-paper system except for the value of

7, which is determined as follows. We consider the deflec-
We now present the numerical results from the simulatiortion point at V=V* from velocity weakening to

of the block-spring system. Using the friction law describedvelocity — strengthening; this is determined using

in the preceding section, we can write down the dynamicatiu(Dy/V,V)/dV|y-y«=0. This leads to

IV. PHASE DIAGRAM OF DRY FRICTION DYNAMICS
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FIG. 4. (a) Time evolution of the spring elongation, when cross- b V (mis)
ing the bifurcation curve in the low-velocity regimeV (b)

=5.0um/s, M=1.2 kg, and(from the upper to the lower curye
K=1C? 10°, and 1 N/cm. The lowest curve has been shifted
vertically by the amount-1.0x10"* for the sake of clarity(b)
Transition from stick-slip motion to steady sliding in the high-
velocity regime K =10 N/cm, M =1.2 kg, and(from the upper to stick-slip oscillations vs the pulling velocity at variousk. The

the lower curvg V=10", 1¢°, and 16_'“”1/5' The lowest and the period approaches zero continuously as eith@r V increases.
second lowest curves have been shifted vertically by the amounts
—5.0x10" % and —2.0x 10™4, respectively, for the sake of clarity.
logarithmic velocity weakening behavior pf(Do/V,V) can
; be found at low velocitie$<0.1 mm/3; in this regime, the
B

FIG. 5. (a) Amplitude of the stick-slip oscillations vs the pulling
velocity V at various values oK. The amplitude approaches zero
continuously aK increases, whereas the transition from stick-slip
to steady sliding a¥ is increased is rather sharip) Period of the

motion of the slider is creep dominated and the effect of the
B damping termyV is negligible. In the high-velocity regime,
n= o\/* F{ — ' (26) m(Dg/V,V) becomes an increasing function wf which

1 behaves agV asymptotically. Hence the experimentally ob-
served dynamic friction coefficieniy(V) [7] can be de-

. scribed by our simple expression @{D,/V,V) without im-
where u=a,—b,In(V*/Vy). Substituting the experimental posing any extra condition. A similar dependence of the
valuesa,=0.369,b,=0.014,V,=1 um/s,V* =1 mm/s[7], steady-state coefficient dhwas also observed in a modified
andA=0.011[15] into Eq. (26) gives »=14.0 s/m. Ruina-Dieterich slip law17].

Using the values given above, the friction coefficient We explore the dynamical phase diagram in control pa-
n(Do/V,V) in the steady sliding region is shown in Fig. 2, rameter space\{,K/M) by systematically varying/ (from
which shows excellent agreement with experimgiiis The 10 2 to 1 um/9) andK (from 10 ! to 10 N/cm) with M
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=1.2 kg(this is the value used in the experimerfthe phase by using differentk andV. The results are shown in Fig. 5.
diagram is shown in Fig. 3. Stick-slip motion occurs below aThe amplitude and period decrease as the stiffiess in-
bifurcation curve K/M).(V), and steady sliding is found Créased. The amplitude approaches zero continuousk as
above (or to the right of it. The closed circles refer to the becomes larger and larger; this suggests that the bifurcation

first steady sliding motions observed with increadihgr V. from stick-slip motion to steady sliding by increasikgs a

: - ) . . irect Hopf bifurcation. This agrees with previous theoretical
The phase d'agra'.“ consists of acreep do_mmated regime th{%gd numerical analysdd,15]. On the other hand, the tran-
can be characterized by the time scalg=D,/V at low

" ) . . ; . .. sition from stick-slip motion with a finite amplitude to stead
velocities and an inertial regime with a characteristic time P P y

_ 12 . " - U Esliding (with zero amplitudgwith increasing pulling velocity
7in=2m(M/K)™* at higher velocities. The dotted line indi- \, 5™ ather sharp(the transition velocity is between

cates 7¢,=7in. In the creep-dominatedow-velocity) re- 1 51103 and 1.26< 10° um/9). This supports that the bifur-
gime, the bifurcation occurs almost at a const#&fM  cation encountered by increasing velocity is of the inverted
(%153>< 103 N/cm kg) Figure 4a) shows the bifurcation Hopf type, as was Suggested previou&(7yla based on
from stick-slip to steady sliding aK is increased in this experimental datébut was not understood theoreticallyve
regime. The bifurcation curve first slightly decreases in thehave shown numerically that the inverted Hopf bifurcation
creep-dominated regime A& is increased and deflects up- can be obtained within our friction model.

ward after crossing the dotted line. In the inertial regime, the

curve increases until it reaches a maximum and then drop V. CONCLUSION

Sl_JddenIy: The bifurcation mainly occurs within a Narrow re-  \ve extend the phenomenological description of Baum-
gion of V (1'01><_103 pm/s<V<1.26x 10° pm/s). The bi-  herger and co-workers and construct a simple model that can
furcation from stick-slip motion to steady sliding in this pe ysed to simulate the dynamics of dry friction in various
regime is shown in Fig. ). The theoretical curve calcu- regimes. We have shown that by associating the thermally
lated using the Rice-Ruina stability13] (using Eqs.(4)  activated creeping motion with a damping term that is sig-
and (5) with us(V)=u(Do/V,V) and [Ju(stateV)/ nificant only when the velocity is large, the behavior of the
Nl state-statey) = [ (V) V]y-p v) is also plotted in  experimentally observed dynamic friction coefficignt can
Fig. 3. Our numerical result agrees well with the theoreticalbe predicted easily. Our model also gives rise to satisfactory
prediction, except for some slight deviation at high veloci-agreement with the experimental phase diagram. Except for
ties. Our numerical phase diagram also agrees reasonatiye slope of the bifurcation curve observed in experiments,
well with the experimental phase diagram, except for thehe essential features of the bifurcation in both creep-
slope of the experimental bifurcation curve, which we aredominated and inertial regimes can be reproduced using our
not able to reproduce with our model. simple model. We believe that the model will also be very
To investigate the nature of the bifurcation, we have meauseful for the numerical study of earthquake models, which
sured the amplitude and period of the stick-slip oscillationsare often modeled using block-spring systems.
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