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Dynamics of dry friction: A numerical investigation

Y. F. Lim and Kan Chen
Department of Computational Science, National University of Singapore, Singapore 119260

~Received 9 March 1998!

We perform extended numerical simulation of the dynamics of dry friction, based on a model derived from
the phenomenological description proposed by Baumbergeret al. @Nature ~London! 367, 544 ~1994!# and
Heslotet al. @Phys. Rev. E49, 4973~1994!#. Under a quasistationary approximation, the model is related to the
Dieterich-Ruina aging~or slowness! law, which was introduced by Dieterich@Pure Appl. Geophys.116, 790
~1978!; J. Geophys. Res.84, 2161~1979!; in Mechanical Behavior of Crustal Rocks,edited by N. L. Carter
et al., Geophysics Monograph No. 24~AGU, Washington, DC, 1981!, p. 103# and Ruina@J. Geophys. Res.88,
10 359~1983!# on the basis of experiments on rocks. We obtain a dynamical phase diagram that agrees well
with the experimental results on the paper-on-paper systems. In particular, the bifurcation between the stick-
slip motion and steady sliding is shown to change from a direct~supercritical! Hopf type to an inverted
~subcritical! one as the driving velocity increases, in agreement with the experiments.
@S1063-651X~98!01311-7#

PACS number~s!: 05.45.1b, 46.30.Pa, 62.20.Hg, 91.30.Px

I. INTRODUCTION

It is well known that frictional resistance is independent
of the apparent area of the sliding surface and it is propor-
tional to the normal load with a proportional constantm,
which is known as the friction coefficient. Traditionally, the
friction coefficient has two distinct values: the static friction
coefficientms , determined from the minimum force needed
to move a slider at rest, and the dynamic friction coefficient
md , used for the friction force when a steady sliding motion
is established. Friction is often described using the well-
known Amontons-Coulomb laws:~i! Both ms and md are
independent of the apparent area of the contacting surfaces
and the normal load,~ii ! bothms andmd depend on the shear
characteristics of the contacting materials@1,2#; and ~iii ! for
most cases,md is appreciably lower thanms . This standard
picture is still widely accepted nowadays; however, in many
cases, significant refinements must be taken into account for
the explanation of the observed friction.

Our common experiences tell us that the sliding of contact
bodies subjected to a steady pulling velocity sometimes pro-
ceeds in an alternation of periods of rest and sliding rather
than moving steadily~this is the reason, for example, for the
occurrence of squeaking noises!. This unstable motion con-
sists of periods of a stick state followed by a sudden slip and
is known as stick-slip oscillations. The stick-slip motion oc-
curs on both large and small scales. Understanding the stick-
slip phenomenon is important not only for many engineering
applications, but also for understanding the mechanism of
earthquakes~which is a stick-slip phenomenon on a geologi-
cal scale@3#!.

Obviously, stick-slip motion is caused by the variation of
frictional resistance during sliding. In a certain range of the
velocity V, a velocity weakening behavior@corresponding to
a decreasing functionmd(V) with respect to the steady rela-
tive sliding velocityV of the contact surfaces# is often ob-
served in many different materials including metals@2# and
rocks @4#. In this range, which generally lies in a low-
velocity regime, the steady motion is unstable with respect to

perturbation; this gives rise to stick-slip phenomena. On the
other hand, the static friction coefficientms is generally
found to be an increasing function with respect to the contact
age of contact surfaces@4,5#. This can be explained by the
fact that the plastic relaxation of the stressed contact junc-
tions during a stick period leads to an increasing real contact
area, hence strengthening the contact. The mechanism for the
velocity dependence ofmd and the mechanism for the age
dependence ofms are not unrelated; both can be understood
using the concept of a memory length@6,4#.

The purpose of the paper is to show, by explicit numerical
simulation, that a model based on the phenomenological de-
scription of Ref.@7# can be used to explain qualitatively~and
sometimes even quantitatively! many interesting features
found in experiments. The model incorporates the existing
understanding of the age dependence of the static friction
and the velocity dependence of the dynamic friction at low
velocity, but does not make a distinction between the dy-
namic and static frictions. There is no abrupt change from
‘‘static’’ friction to ‘‘dynamic’’ friction as in the traditional
description of friction; this is important for the numerical
simulation used to construct the entire phase diagram for the
dynamics of dry friction. The rest of the paper is organized
as follows. We first review in Sec. II the phenomenology of
dry friction, focusing on the work done by Dieterich@6# and
Ruina@8# and recent experiments performed by Baumberger
and co-workers@9,7#. We then establish in Sec. III the fact
that the phenomenological description of Ref.@7# is related
to the well-known Dieterich-Ruina aging~or slowness! law
@8,10–12# as well as the Ruina-Dieterich slip law. The re-
sults from simulation of the model will be presented~Sec.
IV ! together with some concluding remarks~Sec. V!.

II. PHENOMENOLOGY OF DRY FRICTION

Following the pioneering work of Rabinowicz on metals
@2#, many experimental studies have been performed to study
the low-velocity friction properties of various materials. In
particular, experiments with rocks suggest a constitutive
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framework in which the rock friction can be characterized by
a set of evolving state variables. This idea was introduced by
Dieterich @6# and was generalized by Ruina@8#. The two
frequently used single-state-variable constitutive laws can be
described as follows.

(i) The Ruina-Dieterich slip law@10–12#. The friction co-
efficient m can be written in terms of the instantaneous ve-
locity v of the slider and the state variablef that character-
izes the slip history of the contact:

m~f,v !5m01A8ln
v
vc

1B8ln
vcf

dc
, ~1!

ḟ52
vf

dc
ln

vf

dc
, ~2!

wherem0, A8, B8, vc, and dc are constants. This slip law,
however, cannot be used to describe restrengthening in sta-
tionary contact.

(ii) The Dieterich-Ruina aging (or slowness) law@10–12#.
In this law m(f,v) is given by Eq.~1!, but f now satisfies
the dynamical equation

ḟ512
vf

dc
. ~3!

The restrengthening in truly stationary contact is incorpo-
rated in this version becauseḟ51 while v50.

In steady sliding motion, both laws givef5dc /v and the
steady-state coefficient is m(dc /v,v)5m01(A8
2B8)ln(v/vc). Moreover, in the case of a small deviation
from the steady sliding motion, both laws linearize to the
same form@8,13#. Extensive nonlinear stability studies for
both one-@Eqs.~1! and~2!# and two-state-variable slip laws
have been performed by Guet al. @14#.

In a more general constitutive framework the friction co-
efficient m can be written in terms of the ‘‘state’’ of the
contact surfaces, namely,m5m(state,v) @8#. Ruina and Rice
@8,13# consider a general constitutive friction law with
]m(state,v)/]v.0 and they have established the dynamic
linear stability conditions for steady sliding: For a block-
spring system as shown in Fig. 1, the steady sliding motion
with velocity V is stable when@13#

dmss~V!/dV.0 ~4!

or when

dmss~V!/dV,0 with K.Kcr ,

where the critical stiffness is given by

Kcr5
2MgVdmss~V!/dV

dc

3H 11
V

dcg@]m~state,V!/]V#state5state~V!
J . ~5!

In the above expressionmss(V) is the steady-state coeffi-
cient. We will show that this stability criterion fits our nu-
merical result very well.

On the other hand, an extensive experimental study of the
dry friction dynamics of a paper-on-paper block-spring sys-
tem ~shown in Fig. 1! has been performed by Baumberger
and co-workers@9,7# recently. Their experiments verified
many known properties of dry friction and gave a rather
complete picture of dry friction in various regimes. In par-
ticular, they explored systematically the dynamical phase
diagram by varying the driving velocityV, the slider mass
M, and the spring stiffnessK. The features of their experi-
ments are summarized as follows.

~i! The phase diagram in control parameter space
(V,K/M ) consists of two regions that can be characterized
by stick-slip motion and steady sliding, respectively, and
they are separated by a bifurcation curve. The character of
the bifurcation changes from a direct~supercritical! Hopf
type in the creep-dominated regime to an inverted~subcriti-
cal! one in the inertial regime asV increases.

~ii ! In the steady sliding region, the measured dynamic
friction coefficientmd exhibits velocity weakening in low-
velocity range~<0.1 mm/s!, which can be fitted as

md~V!u lowV5av2bvln~V/V0!, ~6!

whereV0 is an arbitrary velocity scale, and velocity strength-
ening at larger velocities, which can be characterized as

md~V!uhighV5md
01hV. ~7!

~iii ! The static friction coefficientms was found to in-
crease with the contact agetst as

ms~ tst!5as1bsln~ tst!. ~8!

~iv! By introducing a characteristic memory lengthD0, a
relation between Eqs.~6! and ~8!, i.e.,

md~V!u lowV5ms~D0 /V!, ~9!

can be established. HereD0, which is given experimentally
as 0.9mm @7#, can be interpreted as an average sliding dis-
placement needed to move to new microcontacts.

These results are rather general~rock-rock friction @6,4#,
for example, exhibits similar features!. The experiments
show that the motion of the system at low velocity~<0.1
mm/s! is primarily controlled by a creep process. Based on
these results, a phenomenological model of dry friction dy-
namics for the low-velocity regime@7# of the paper-on-paper
system has been proposed. Both linear@7# and nonlinear@15#
stability analyses about steady sliding of the model give ex-
cellent quantitative agreement with experiments. In addition,
the transient behavior in the steady sliding region of the sys-
tem after setting the driving velocity to zero suddenly has

FIG. 1. Schematic block-spring system. The slider with massM
is driven by a pulling velocityV through a spring with stiffnessK.
The displacement of the center of mass of the slider with respect to
the track isx.
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been studied under the aid of the model@16#, where a two-
stage process has been observed. However, there is no sys-
tematic theoretical study of the entire regime covering the
crossover from the static friction regime to the dynamic fric-
tion regime and the crossover to the high-velocity~inertial!
regime. In this paper we show numerically that most impor-
tant experimental features in various regimes can be repro-
duced in a single model.

III. PHENOMENOLOGICAL MODEL

We follow the phenomenological approach used in Ref.
@7#. Consider the experimental setup shown in Fig. 1. The
motion of the block under the influence of the external driv-
ing force as shown in Fig. 1 is assumed to be a thermally
activated creeping motion in a periodic pinning potential bi-
ased by the external driving force. In the low-bias regime,
where the barrier heights of the effective potential are com-
parable to the thermal activation energy, the velocity of the
slider is given by

ẋ5aS 1

t1
2

1

t2
D , ~10!

wherea is the typical distance between two potential minima
and t1 (t2) is the thermal time for escaping from a given
well into its downstream~upstream! nearest neighbor. If we
let the corresponding barrier height beU1 (U2), then we
have

1

t6
5

v0

2p
expH 2

DU6

s J , ~11!

wheres is the thermal activation energy.s can be written as
NcrRT, whereNcr is the number of moles of the degrees of
freedom involved in the creep motion.v0 is the oscillation
frequency about the minimum of the effective potential. The
amplitudeDU0 of the periodic pinning potential is assumed
to increase with the dynamical contact age variablef
@6,8,7#, hence the barrier heights are given by

DU65DU0~f!7Fexta/2, ~12!

whereFext is the external force~in the experimental setup, it
is the spring force induced by the driving velocityV).

Although Eqs.~10! and ~11! are valid strictly only for a
time- and position-independent external force and a time-
independent pinning potential, they can also be used in more
general cases under the assumption that the changes inFext
andDU0(f) are so slow that anadiabaticapproximation is
valid @7#. Combining the above equations we can write the
velocity of the slider as

ẋ~ t !'
v0a

2p
2 sinhH Fexta

2s J expH 2
DU0

s J . ~13!

In the case thatFexta@s, the above equation can be ap-
proximated as

Fext5
2DU0~f!

a
1

2s

a
lnS 2p ẋ

v0a
D . ~14!

We now proceed to deriveDU0(f) by considering the case
of constant velocity motion (ẋ5V). In this casef5D0 /V
and the friction force@given in Eq.~6!# is equal to the exter-
nal forceFext given in Eq.~14!. This gives rise to

Mg@av2bvln~V/V0!#5
2DU0~f!

a
1

2s

a
lnS 2pV

v0a D .

By using the average contact agef, we can rewrite the
above equation as

DU0~f!5
a

2
MgH av2bvln

D0

V0

2Aln
2pD0

v0a
1~bv1A!lnfJ , ~15!

whereA52s/aMg. GivenDU0(f), we can write the fric-
tion coefficient~which is equal to the external force divided
by the weightMg under a quasistationary approximation! in
terms off,

m~f,ẋ!5av1bvln
fV0

D0
1Aln

f ẋ

D0
. ~16!

When the velocity is not a constant, the contact agef is
assumed to be the state variable that follows the Dieterich-
Ruina aging law

ḟ~ t !512
ẋf

D0
. ~17!

By using this equation, the rate dependence of the dynamic
friction and the contact time dependence of the static friction
can be taken into account properly. In fact, it is obvious that
Eq. ~16! ~which is written under the quasistationary approxi-
mation! is identical to Eq. ~1! by choosing av5m0, A
5A8, bv1A5B8, V05vc, andD05dc . Thus Eqs.~16! and
~17!, which form the basis for the phenomenological descrip-
tion of dry friction given in Ref.@7#, are equivalent to the
Dieterich-Ruina aging~or slowness! law @8,10–12#. This is a
strong indication that the phenomenological theory of dry
friction discussed in Ref.@7# is not limited to the explanation
of experimental results on the paper-on-paper system; it
gives a rather general phenomenological picture that can be
used for understanding the dynamics involving dry friction
on a range of materials. For example, it may be useful for
studying the phenomenology of rock friction, which is im-
portant in the study of earthquake dynamics.

For the case wheres is comparable toFexta ~this can be
thought of as in the static friction regime!, we have to use the
original equation, i.e., Eq.~13!, which can be rewritten as

Fext~f,ẋ!5MgA sinh21H p ẋ

v0a
expFDU0~f!

s G J . ~18!

The friction coefficient is then given as~with the quasista-
tionary approximation!

m~f,ẋ!5A sgn~ ẋ!sinh21H 1

2
expF m̄

A
G J , ~19!
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where

m̄5av1bvln
fV0

D0
1Aln

fuẋu
D0

. ~20!

Herem̄ is an approximation ofm we describe in Eq.~16!. In
this static friction regime, the velocityẋ is very small and it
can also change its sign, thus the equation forf needs to be
modified. It is reasonable to simply use

ḟ~ t !512
uẋuf
D0

. ~21!

Although the regularized friction law stated in Eqs.~19!–
~21! has been briefly mentioned by Rice and Ben-Zion@12#,
it appears as a natural result of the phenomenological theory
discussed in Ref.@7#.

There are a few advantages of using Eqs.~19!–~21! to
describe the friction force:~i! There is no need to make a
distinction between static and dynamic frictions, thus there is
no stoppingcondition ~which is used to indicate the cross-
over from the dynamic friction regime to the static friction
regime! to worry about;~ii ! the contact age is a well-defined
quantity with Eq.~21!; and~iii ! there is no numerical singu-
larity in the dynamical equations for the sliding block when
the velocity goes to zero and changes sign. To include the
inertial regime, we have to take into account the velocity
strengthening described by Eq.~7!; we include this effect by
simply adding a damping termh ẋ in Eq. ~19! ~a similar idea
has been used in Ref.@17#!.

IV. PHASE DIAGRAM OF DRY FRICTION DYNAMICS

We now present the numerical results from the simulation
of the block-spring system. Using the friction law described
in the preceding section, we can write down the dynamical

equations of the block-spring system shown in Fig. 1:

Mẍ~ t !5K~Vt2x!2m~f,ẋ!Mg, ~22!

where

m~f,ẋ!5A sgn~ ẋ!sinh21H 1

2
expF m̄

A
G J 1h ẋ, ~23!

m̄5av1bvln
fV0

D0
1A ln

fuẋu
D0

, ~24!

and

ḟ~ t !512
uẋuf
D0

. ~25!

We compare our result for the friction coefficientm
5m(D0 /V,V) with the experimental results when the slid-
ing motion is steady (ẋ5V and f5D0 /V). All the coeffi-
cients in the friction law are determined precisely in experi-
ments for the paper-on-paper system except for the value of
h, which is determined as follows. We consider the deflec-
tion point at V5V* from velocity weakening to
velocity strengthening; this is determined using
dm(D0 /V,V)/dVuV5V* 50. This leads to

FIG. 2. Friction coefficientm described by Eq.~23! vs the pull-
ing velocity V when the sliding motion is steady.m changes from
velocity weakening to velocity strengthening atV5V*
(51 mm/s!; this givesh514.0 s/m.

FIG. 3. Dynamical phase diagram in (V,K/M ) space, obtained
by varying K and V with M51.2 kg. It consists of a creep-
dominated regime that can be characterized by the time scaletcr

and an inertial regime with a characteristic timet in ~see the text!.
The dotted line indicatestcr5t in . The bifurcation curve, which is
represented by closed circles, first decreases slightly asV increases
in the creep-dominated regime and deflects upward after entering
the inertial regime in which it reaches a maximum and drops sud-
denly. The bifurcation occurs atK/M'1.533103 N/cm kg when
the motion is creep dominated and it happens within
1.013103 mm/s<V<1.263103 mm/s when inertial motion takes
place. The solid line is the theoretical prediction by Rice and Ruina
@Eqs.~4! and ~5!#.
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h5
bv

2V*

expF m̄

A
G

A1

4
expF2m̄

A
G11

, ~26!

where m̄5av2bvln(V* /V0). Substituting the experimental
valuesav50.369,bv50.014,V051 mm/s,V* 51 mm/s@7#,
andA50.011@15# into Eq. ~26! givesh514.0 s/m.

Using the values given above, the friction coefficient
m(D0 /V,V) in the steady sliding region is shown in Fig. 2,
which shows excellent agreement with experiments@7#. The

logarithmic velocity weakening behavior ofm(D0 /V,V) can
be found at low velocities~<0.1 mm/s!; in this regime, the
motion of the slider is creep dominated and the effect of the
damping termhV is negligible. In the high-velocity regime,
m(D0 /V,V) becomes an increasing function ofV, which
behaves ashV asymptotically. Hence the experimentally ob-
served dynamic friction coefficientmd(V) @7# can be de-
scribed by our simple expression ofm(D0 /V,V) without im-
posing any extra condition. A similar dependence of the
steady-state coefficient onV was also observed in a modified
Ruina-Dieterich slip law@17#.

We explore the dynamical phase diagram in control pa-
rameter space (V,K/M ) by systematically varyingV ~from
1022 to 105 mm/s! and K ~from 1021 to 105 N/cm! with M

FIG. 4. ~a! Time evolution of the spring elongation, when cross-
ing the bifurcation curve in the low-velocity regime.V
55.0mm/s, M51.2 kg, and~from the upper to the lower curve!
K5102, 103, and 104 N/cm. The lowest curve has been shifted
vertically by the amount21.031024 for the sake of clarity.~b!
Transition from stick-slip motion to steady sliding in the high-
velocity regime.K5102 N/cm, M51.2 kg, and~from the upper to
the lower curve! V5102, 103, and 104 mm/s. The lowest and the
second lowest curves have been shifted vertically by the amounts
25.031024 and22.031024, respectively, for the sake of clarity.

FIG. 5. ~a! Amplitude of the stick-slip oscillations vs the pulling
velocity V at various values ofK. The amplitude approaches zero
continuously asK increases, whereas the transition from stick-slip
to steady sliding asV is increased is rather sharp.~b! Period of the
stick-slip oscillations vs the pulling velocityV at variousK. The
period approaches zero continuously as eitherK or V increases.
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51.2 kg~this is the value used in the experiment!. The phase
diagram is shown in Fig. 3. Stick-slip motion occurs below a
bifurcation curve (K/M )c(V), and steady sliding is found
above~or to the right of! it. The closed circles refer to the
first steady sliding motions observed with increasingK or V.
The phase diagram consists of a creep-dominated regime that
can be characterized by the time scaletcr5D0 /V at low
velocities and an inertial regime with a characteristic time
t in52p(M /K)1/2 at higher velocities. The dotted line indi-
cates tcr5t in . In the creep-dominated~low-velocity! re-
gime, the bifurcation occurs almost at a constantK/M
('1.533103 N/cm kg!. Figure 4~a! shows the bifurcation
from stick-slip to steady sliding asK is increased in this
regime. The bifurcation curve first slightly decreases in the
creep-dominated regime asV is increased and deflects up-
ward after crossing the dotted line. In the inertial regime, the
curve increases until it reaches a maximum and then drop
suddenly: The bifurcation mainly occurs within a narrow re-
gion of V (1.013103 mm/s<V<1.263103 mm/s!. The bi-
furcation from stick-slip motion to steady sliding in this
regime is shown in Fig. 4~b!. The theoretical curve calcu-
lated using the Rice-Ruina stability@13# „using Eqs.~4!
and ~5! with mss(V)5m(D0 /V,V) and @]m(state,V)/
]V] state5state(V)5@]m(f,V)/]V#f5D0 /V… is also plotted in
Fig. 3. Our numerical result agrees well with the theoretical
prediction, except for some slight deviation at high veloci-
ties. Our numerical phase diagram also agrees reasonably
well with the experimental phase diagram, except for the
slope of the experimental bifurcation curve, which we are
not able to reproduce with our model.

To investigate the nature of the bifurcation, we have mea-
sured the amplitude and period of the stick-slip oscillations

by using differentK andV. The results are shown in Fig. 5.
The amplitude and period decrease as the stiffnessK is in-
creased. The amplitude approaches zero continuously asK
becomes larger and larger; this suggests that the bifurcation
from stick-slip motion to steady sliding by increasingK is a
direct Hopf bifurcation. This agrees with previous theoretical
and numerical analyses@7,15#. On the other hand, the tran-
sition from stick-slip motion with a finite amplitude to steady
sliding ~with zero amplitude! with increasing pulling velocity
V is rather sharp ~the transition velocity is between
1.013103 and 1.263103 mm/s!. This supports that the bifur-
cation encountered by increasing velocity is of the inverted
Hopf type, as was suggested previously@9,7,18# based on
experimental data~but was not understood theoretically!. We
have shown numerically that the inverted Hopf bifurcation
can be obtained within our friction model.

V. CONCLUSION

We extend the phenomenological description of Baum-
berger and co-workers and construct a simple model that can
be used to simulate the dynamics of dry friction in various
regimes. We have shown that by associating the thermally
activated creeping motion with a damping term that is sig-
nificant only when the velocity is large, the behavior of the
experimentally observed dynamic friction coefficientmd can
be predicted easily. Our model also gives rise to satisfactory
agreement with the experimental phase diagram. Except for
the slope of the bifurcation curve observed in experiments,
the essential features of the bifurcation in both creep-
dominated and inertial regimes can be reproduced using our
simple model. We believe that the model will also be very
useful for the numerical study of earthquake models, which
are often modeled using block-spring systems.
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