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L Fixed Point Introduction

Definitions

Let T : C — C be a mapping. We say that 7" has a fixed point
if there exists x € C such that Tz = .

Theorem (Banach contraction)

Let X be a Banach space and C' a closed subset of X. If
T:C — C is a contraction, i.e.

Tz — Ty|| < k||lx —yl||,Vz,y € C, with k <1,

then T has a fized point.



L Fixed Point Introduction

Definitions

A mapping T : C — C' is non-expansive if

[Tz — Ty|| < ||z — yl|, Yo,y € C.

Banach’s theorem does not hold for non-expansive mappings.

Definition

A Banach space X has the fixed point property (FPP) if every
non-expansive mapping 1" : C' — C, where C is a closed convex
bounded subset of X, has a fixed point.



L Fixed Point Introduction

Fixed Point and Reflexivity

Uniformly smooth(= Reflexivity)
Uniformly Convex(= Reflexivity)
Normal Structure 4+ Reflexivity

Uniformly Kadec Klee + Reflexivity — FPP
Uniformly Opial Condition + Reflexivity

etc + Reflexivity

FPP = Reflexivity ?



L Fixed Point Introduction

(1 does not have the FPP

Theorem
{1 does not have the FPP.

Proof: We consider
C={z=(x;)ety:Yie Nz; >0,|z|; =1}.

The set C'is a closed convex bounded subset of ¢1. Let
T : C'— C be the mapping given by

T(ZL‘l,LL‘Q,...) = (0,1‘1,1‘2,.. . )

T is a non-expansive mapping and fixed point free.



L Fixed Point Introduction

The main question.

If X fails to have the FPP, can X be renormed to have the
FPP?

In particular, can ¢; be renormed to have the FPP?



L Fixed Point Introduction

Some answers

Theorem (T. Dominguez Benavides, 2009)

Every reflexive Banach space can be renormed to have the FPP.

Theorem (P. N. Dowling, C. J. Lennard and B. Turett, 1997-1998)

01(T), co(T") and £ can not be renormed to have the FPP.



L Fixed Point Introduction

Some answers

Theorem (P.K. Lin, 2008)
The Banach space ¢1 can be renormed to have the FPP.

In ¢1 consider the norm given by

)
E an€n
n=1

[o¢]
= Sup vk § an€nl|
k —
n=~k 1
where {e, }, is the canonical basis on ¢; and vy, = 1-8+W'

Then (41, [||]||) has the FPP.
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Some answers

(1, 1[|-]]]) is the first known Banach space with the FPP and
non-reflexive.

FPP =% Reflexivity



L Fixed Point Introduction

If X fails to have the FPP, we try to find a renorming, [||-|||, so
that (X, |||||]) has the FPP.



L Main Result

Our assumptions

Let (X, || - ||) be a Banach space. Let R : X — [0,00) (k > 1)
be a family of seminorms such that

Ri(z) = ||=l|, and Vk>2 Ry(z) < |[lz]|
Consider a nondecreasing sequence {v;} C (0,1) so that
li =1
imy,

and define
||z||| = supyxRi(z); = € X.
E>1

Then
Yllzl < [[|z]]] < |-



L Main Result

Our assumptions

Consider (X, ] -||) endowed with a linear topology 7. Assume
that the family of seminorms and the linear topology
satisfy the following properties:

lilgan(:c) =0 for all z € X.
For all £ > 1 and for every norm-bounded z,, — 0 in 7:

lim sup R (zy,) = limsup ||z,
n n

For all x € X,

lim sup Ri(zy, + x) = limsup Ry(x,) + Ri(x).



L Main Result

Example

Consider (¢1, | - ||1) with its usual norm. Let {Ry(-)} be a
family of seminorms given by

Ry (z) = |||,
Ry (z) = anen Vk > 2,
n=~k 1

where © = >~ | xpe, € 41.

Let 7 = 0(¢1,¢p). Then the family of seminorms and the
topology 7 are in the above conditions.



L Main Result

Our result

With the above assumptions on (X, | - ||) and the family of
seminorms {Ry(-)} we get the following.

Main Theorem (Hernandez and Japén, 2010)

If every bounded sequence in X has a 7-convergent subsequence
then (X, [|||||) has the FPP.



L Some Examples

Example

Lin’s result can be derived from the Main Theorem defining the

seminorms
o0
E Ln€n
n=~k

and taking 7 as the weak-star topology associated to the duality
O’(fl, Co) o

Ry (x) =

1

The condition v, = % can be dropped.



L Some Examples

Example

We can obtain other renormings in ¢; that have the FPP. For
instance, let p > 1 and for k& > 2 define for z = (a,,) € {3

Z |an| + <2kzllan|p) :

n=2k

and Ry(z) = ||z]1.

Then (41, |||-]||) has the FPP.



L Some Examples

Corollary

Let {X,,} be a sequence of finite dimensional Banach spaces and
constider

X=&1 Y Xo= {x = (@n) : 7 € X 2l = 3 llzallx, < oo} .
n n

Then X can be renormed to have the FPP.

Proof: Define the seminorms
oo
Ri(x) = ) llallx,
n=k
and let 7 be the weak star topology where the predual of X is

E = {a: =(xpn): xp € Xy, lim||z,|x, =0, ||z||=sup ”l’nHXn} .
n



L Some Examples

Let 1 < p < 0o be and

X = @1252.

X can be renormed to have the FPP. Moreover X is
non-reflexive and it is not isomorphic to any subspace of ¢;.

If X were isomorphic to ¢; then

1 = type(l1) = type(X) = type({,) = min{2, p}



LSome Examples

Let G be a locally compact group. B(G) its Fourier-Stieltjes
algebra.

Theorem (A.T.-M Lau and M. Leinert, 2008)

B(G) has the FPP < G s finite.

Corollary (of the Main Theorem)

If G is a separable compact group, B(G) can be renormed to
have the FPP.

Proof:
B(G) = @1 Y _ T(Hy),

where H,, is a finite dimensional Hilbert space and T(H,,) is the
trass class operator on H,,.



LApplicatix,m to subspaces of L1 (u)

Application to subspaces of L1 (1)

Consider (X, €, 1) a o-finite measure space. Let Q = U,.A,, with
An C Ay and pu(A,) < +oo for all n € N. We define for all
x € Li(p)

Ri(z) = o] = /Q 2ldp,

1
Ry (z) = sup {/ lzldp - p(E) < k} + [lzxagll1; for k > 2.
ENA,

7 := the topology of locally convergence in measure (lcm)
(= the topology of convergence a.e., up to subsequences.)

— 1 1 |z — y]
dr(xz,y) = — du; x,y € L .

n=1



LApplicatiun to subspaces of L1 (u)

Application to subspaces of L1 (1)

For a nondecreasing sequence {7} in (0, 1) such that 111?1’)% =1

we define a equivalent norm on Lj(u) as

[l = sup . Ry ().

Theorem

The seminorms Ry(-) defined above satisfy the properties of the
Main Theorem. Thus the following holds:

If X is a subspace of Li(u) such that Bx is lem-relatively
compact then X can be renormed to have the FPP.
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Application to subspaces of L1 (1)

If 1 is finite. Consider Aj = 2, then

1
Ry(x) = sup {/ |z|dp = pw(E) < E}’ for k > 2.
E
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Application to subspaces of Li(u)

Remark 2

Assume now that 2 = N and p is the counting measure defined
on the subsets of N. Then the space L;j(p) becomes the
sequence space £1. Taken A1 =) and A, = {1,...,n — 1} for

n > 2 so

Ri(z) = |lzxagll = Z |z(n)|; for all k € N
n=~k

lem = o(¢1,¢p) in norm-bounded subsets.

In this case we recover the Lin’s renorming taken =&
g ,Yk 1+8k



LApplicatiun to subspaces of L1 (u)

Other results

Corollary

Let X be a closed subspace for Li(u). If X is a dual space such
that the lem-topology coincides with the w*-topology on Bx,
then (X, |||-|||) has the FPP.

Application: The Bergman Space
L,(D) :={f € Li(D) : f is an analytic function on D}.
L,(D) is a dual space and 7 = topology convergence in measure

= weak*-topology.
Then (Ly (D), |||:|||) has the FPP.



LApplicatiun to subspaces of L1 (u)

Other results

Example (Godefroy, N.J. Kalton, D. Li, 1995)

There exists a subspace X of L;[0, 1] such that the unit ball Bx
is compact for the topology of convergence in measure (but it is
not locally convex for this topology). Then X can be renormed
to have the FPP.

The topology of convergence in measure does not coincide with
any dual topology.



LApplicatiun to subspaces of L1 (u)

Other results

Example (J. Bourgain, H.P. Rosenthal, 1980)

There exists a subspace X of L1[0,1] such that X fails to have
the Radon-Nikodym property and every bounded sequence has
a subsequence converging in measure. Therefore, X can be
renormed to have the FPP.

X is not isomorphic to a subspace of /1 because X fails the
Radon-Nikodym property.

C.A. Herndndez-Linares and M.A. Japén. A renorming in some
Banach spaces with applications to fixed point theory. J. Funct.
Anal. 258 (2010), 3452-3468.
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Non-commutative L;-spaces

Let M be a finite von Neumann algebra.
Let Li(M) be the non-commutative Li-space corresponding to

M, ie. Li(M) is the predual of M (M,).

M commutative = Li(M) = Li(p).

We can generalize our renorming techniques to
non-commutative Lj(M)-spaces.

L1 (M) does not have the FPP.

Can Li(M) be renormed to have the FPP?



LApplicatiun to non-commutative Lq

A little bit of background

Definition

A von Neumann algebra is a subalgebra M of B(H) which is
self-adjoint (if x € M implies z* € M), contains 1 (the identity
operator) and it is closed in the weak operator topology (WOT).

RENEILS

If H is a separable infinite dimensional Hilbert space, every
T € B(H) has a matrix representation in the form

T = ((Teia ej))iZLjZl 9

so a von Neumann algebra is a unital sub-algebra of B(H)
which is closed in the topology of coordinatewise convergence
(WOT).



LApplicatiun to non-commutative Lj

A little bit of background

Assume H is a separable Hilbert space.

A von Neumann algebra M is finite when

TeMand TT  =1=T"T =1.

Let M4 be the cone of all positive elements of M, that is,

My ={x e M:(zhlh) >0, for all h € H}.

P(M) :={p € M:pis a projection}



LApplicatiun to non-commutative Lj

A little bit of background

A trace on a von Neumann algebra M is a map
T : M4 — [0, 00] satisfying:

1) 7(z+vy) =7(x) +7(y), for all z,y € M.
2) T(Az) = A (z); x € My, A € [0,400].
3) 7(zx*) = 7(x*x) for all z € M.

The trace 7 is said to be

4) normal: if for each z, T 2 in M we have 7(z,) T 7(2).
5) faithful: if 7(x) = 0 implies that z = 0 for all x € M.
6) finite: if 7(1) < +o0.
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A little bit of background

A little bit of background

In a finite von Neumann algebra there always exists a normal
faithful finite trace.

Example

M = Loo(/*‘)? H= L2(p’) For f € Loo(:u)

fo La(p) — Lao(u)

0 g T =[fdu

and M, = Lq(p);
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A little bit of background

Define for all z € L1(M)
Ri(z) := [Jz]ly = 7(|z])

Ry (z) :=sup{||zp|1 : p € P(M),7(p) < 1/k}, k > 2.

The linear topology

Assume that M is a finite von Neumann algebra (7(1) < 400).
Consider the measure topology defined by the neighborhoods of
Zero

N(e,6) = {xreM:3peP(M)such that ||zp|lec <€
and 7(1 —p) <0}

for €,0 > 0. (E. Nelson, 1974)
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The theorem

Theorem (Hernandez and Japén, 2010)

Let M be a finite von Neumann algebra. If the unit ball is

compact for the measure topology, then Li(M) can be renormed
to have the FPP.
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Applications

Example (The hyperfinite 11; factor)

Let (R, 7) = @,,>1(M2,02) be the von Neumann algebra tensor
product, Ms> denotes the complex 2 x 2 matrices and

0’2(62 Z>=%(a+d).
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A von Neumann algebra is:

a factor if z € M and xy = yx for all y € M implies
x = A1 for some A\ > 0.

of type I1 if it is finite and it does not contain any
nonzero abelian projection.

hyperfinite if there exists a sequence M,, C M1 of
finite-dimensional von Neumann algebras such that M is
the closure of U, M,, with respect to the WOT.

Theorem (F.J. Murray and J. von Neumann, 1943)
(R, T) is the unique, up to isomorphism, hyperfinite I1; factor.
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Applications

Li(R) can be renormed to have the FPP.

Theorem (U. Haagerup, H. P. Rosenthal & F. A. Sukochev, 2000)

If M is an arbitrary hyperfinite von Neumann algebra of type
11y, then Li(M) is isomorphic to L1(R).

Corollary

If M is any hyperfinite von Neumann algebra of type I1,. Then
Li(M) can be renormed to have the FPP
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Applications

Carlos A. Herndndez-Linares and Maria A. Japén Pineda,
Renormings and Fixed Point Property in non-commutative
L1-spaces. Preprint.
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