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Fixed Point Introduction

Definitions

Definition

Let T : C → C be a mapping. We say that T has a fixed point
if there exists x ∈ C such that Tx = x.

Theorem (Banach contraction)

Let X be a Banach space and C a closed subset of X. If
T : C → C is a contraction, i.e.

‖Tx− Ty‖ ≤ k‖x− y‖,∀x, y ∈ C, with k < 1,

then T has a fixed point.



Fixed Point Introduction

Definitions

Definition

A mapping T : C → C is non-expansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Banach’s theorem does not hold for non-expansive mappings.

Definition

A Banach space X has the fixed point property (FPP) if every
non-expansive mapping T : C → C, where C is a closed convex
bounded subset of X, has a fixed point.



Fixed Point Introduction

Fixed Point and Reflexivity

Uniformly smooth(⇒ Reflexivity)
Uniformly Convex(⇒ Reflexivity)
Normal Structure + Reflexivity
Uniformly Kadec Klee + Reflexivity
Uniformly Opial Condition + Reflexivity
...
etc + Reflexivity


⇒ FPP

FPP ⇒ Reflexivity ?



Fixed Point Introduction

`1 does not have the FPP

Theorem

`1 does not have the FPP.

Proof: We consider

C = {x = (xi) ∈ `1 : ∀i ∈ N xi ≥ 0, ‖x‖1 = 1}.

The set C is a closed convex bounded subset of `1. Let
T : C → C be the mapping given by

T (x1, x2, . . . ) = (0, x1, x2, . . . .)

T is a non-expansive mapping and fixed point free.



Fixed Point Introduction

The main question.

If X fails to have the FPP, can X be renormed to have the
FPP?

In particular, can `1 be renormed to have the FPP?



Fixed Point Introduction

Some answers

Theorem (T. Doḿınguez Benavides, 2009)

Every reflexive Banach space can be renormed to have the FPP.

Theorem (P. N. Dowling, C. J. Lennard and B. Turett, 1997-1998)

`1(Γ), c0(Γ) and `∞ can not be renormed to have the FPP.



Fixed Point Introduction

Some answers

Theorem (P.K. Lin, 2008)

The Banach space `1 can be renormed to have the FPP.

In `1 consider the norm given by∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞∑
n=1

anen

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ = sup

k
γk

∥∥∥∥∥
∞∑
n=k

anen

∥∥∥∥∥
1

,

where {en}n is the canonical basis on `1 and γk = 8k

1+8k
.

Then (`1, |||·|||) has the FPP.



Fixed Point Introduction

Some answers

Remark

(`1, |||·|||) is the first known Banach space with the FPP and
non-reflexive.

FPP ��=⇒Reflexivity



Fixed Point Introduction

Objective

If X fails to have the FPP, we try to find a renorming, |||·|||, so
that (X, |||·|||) has the FPP.



Main Result

Our assumptions

Let (X, ‖ · ‖) be a Banach space. Let Rk : X → [0,∞) (k ≥ 1)
be a family of seminorms such that

R1(x) = ‖x‖, and ∀k ≥ 2 Rk(x) ≤ ‖x‖

Consider a nondecreasing sequence {γk} ⊂ (0, 1) so that

lim
k
γk = 1

and define
|||x||| = sup

k≥1
γkRk(x); x ∈ X.

Then
γ1‖x‖ ≤ |||x||| ≤ ‖x‖.



Main Result

Our assumptions

Consider (X, ‖ · ‖) endowed with a linear topology τ . Assume
that the family of seminorms and the linear topology
satisfy the following properties:

1 lim
k
Rk(x) = 0 for all x ∈ X.

For all k ≥ 1 and for every norm-bounded xn → 0 in τ :
2

lim sup
n

Rk(xn) = lim sup
n
‖xn‖.

3 For all x ∈ X,

lim sup
n

Rk(xn + x) = lim sup
n

Rk(xn) +Rk(x).



Main Result

Example

Consider (`1, ‖ · ‖1) with its usual norm. Let {Rk(·)} be a
family of seminorms given by

R1(x) = ‖x‖1,

Rk(x) =

∥∥∥∥∥
∞∑
n=k

xnen

∥∥∥∥∥
1

∀k ≥ 2,

where x =
∑∞

n=1 xnen ∈ `1.

Let τ = σ(`1, c0). Then the family of seminorms and the
topology τ are in the above conditions.



Main Result

Our result

With the above assumptions on (X, ‖ · ‖) and the family of
seminorms {Rk(·)} we get the following.

Main Theorem (Hernández and Japón, 2010)

If every bounded sequence in X has a τ -convergent subsequence
then (X, |||·|||) has the FPP.



Some Examples

Example

Lin’s result can be derived from the Main Theorem defining the
seminorms

Rk(x) =

∥∥∥∥∥
∞∑
n=k

xnen

∥∥∥∥∥
1

and taking τ as the weak-star topology associated to the duality
σ(`1, c0).

The condition γk = 8k

1+8k
can be dropped.



Some Examples

Example

We can obtain other renormings in `1 that have the FPP. For
instance, let p > 1 and for k ≥ 2 define for x = (an) ∈ `1

Rk(x) =
∞∑

n=2k

|an|+

(
2k−1∑
n=k

|an|p
) 1

p

,

and R1(x) = ‖x‖1.

Then (`1, |||·|||) has the FPP.



Some Examples

Corollary

Let {Xn} be a sequence of finite dimensional Banach spaces and
consider

X = ⊕1

∑
n

Xn =

{
x = (xn) : xn ∈ Xn, ‖x‖ =

∑
n

‖xn‖Xn <∞

}
.

Then X can be renormed to have the FPP.

Proof: Define the seminorms

Rk(x) =
∞∑
n=k

‖xn‖Xn

and let τ be the weak star topology where the predual of X is

E =
{
x = (xn) : xn ∈ Xn, lim ‖xn‖Xn = 0, ‖x‖ = sup

n
‖xn‖Xn

}
.



Some Examples

Example

Let 1 < p <∞ be and

X = ⊕1

∑
n

`np .

X can be renormed to have the FPP. Moreover X is
non-reflexive and it is not isomorphic to any subspace of `1.

If X were isomorphic to `1 then

1 = type(`1) = type(X) = type(`p) = min{2, p}



Some Examples

Let G be a locally compact group. B(G) its Fourier-Stieltjes
algebra.

Theorem (A.T.-M Lau and M. Leinert, 2008)

B(G) has the FPP ⇔ G is finite.

Corollary (of the Main Theorem)

If G is a separable compact group, B(G) can be renormed to
have the FPP.

Proof:
B(G) = ⊕1

∑
n

T(Hn),

where Hn is a finite dimensional Hilbert space and T(Hn) is the
trass class operator on Hn.



Application to subspaces of L1(µ)

Application to subspaces of L1(µ)

Consider (Σ,Ω, µ) a σ-finite measure space. Let Ω = ∪nAn with
An ⊂ An+1 and µ(An) < +∞ for all n ∈ N. We define for all
x ∈ L1(µ)

R1(x) = ‖x‖1 =
∫

Ω
|x|dµ,

Rk(x) = sup
{∫

E∩Ak
|x|dµ : µ(E) <

1
k

}
+ ‖xχAck‖1; for k ≥ 2.

τ := the topology of locally convergence in measure (lcm)
(≡ the topology of convergence a.e., up to subsequences.)

dτ (x, y) =
∞∑
n=1

1
2n

1
µ(An)

∫
An

|x− y|
1 + |x− y|

dµ; x, y ∈ L1(µ).



Application to subspaces of L1(µ)

Application to subspaces of L1(µ)

For a nondecreasing sequence {γk} in (0, 1) such that lim
k
γk = 1

we define a equivalent norm on L1(µ) as

|||x||| = sup
k
γkRk(x).

Theorem

The seminorms Rk(·) defined above satisfy the properties of the
Main Theorem. Thus the following holds:
If X is a subspace of L1(µ) such that BX is lcm-relatively
compact then X can be renormed to have the FPP.



Application to subspaces of L1(µ)

Application to subspaces of L1(µ)

Remark 1

If µ is finite. Consider Ak = Ω, then

Rk(x) = sup
{∫

E
|x|dµ : µ(E) <

1
k

}
; for k ≥ 2.



Application to subspaces of L1(µ)

Application to subspaces of L1(µ)

Remark 2

Assume now that Ω = N and µ is the counting measure defined
on the subsets of N. Then the space L1(µ) becomes the
sequence space `1. Taken A1 = ∅ and An = {1, . . . , n− 1} for
n ≥ 2 so

Rk(x) = ‖xχAck‖1 =
∞∑
n=k

|x(n)|; for all k ∈ N

lcm = σ(`1, c0) in norm-bounded subsets.

In this case we recover the Lin’s renorming taken γk = 8k

1+8k
.



Application to subspaces of L1(µ)

Other results

Corollary

Let X be a closed subspace for L1(µ). If X is a dual space such
that the lcm-topology coincides with the w∗-topology on BX ,
then (X, |||·|||) has the FPP.

Application: The Bergman Space

La(D) := {f ∈ L1(D) : f is an analytic function on D}.
La(D) is a dual space and τ = topology convergence in measure
= weak∗-topology.
Then (La(D), |||·|||) has the FPP.



Application to subspaces of L1(µ)

Other results

Example (Godefroy, N.J. Kalton, D. Li, 1995)

There exists a subspace X of L1[0, 1] such that the unit ball BX
is compact for the topology of convergence in measure (but it is
not locally convex for this topology). Then X can be renormed
to have the FPP.

Remark

The topology of convergence in measure does not coincide with
any dual topology.



Application to subspaces of L1(µ)

Other results

Example (J. Bourgain, H.P. Rosenthal, 1980)

There exists a subspace X of L1[0, 1] such that X fails to have
the Radon-Nikodym property and every bounded sequence has
a subsequence converging in measure. Therefore, X can be
renormed to have the FPP.

Remark

X is not isomorphic to a subspace of `1 because X fails the
Radon-Nikodym property.

C.A. Hernández-Linares and M.A. Japón. A renorming in some
Banach spaces with applications to fixed point theory. J. Funct.
Anal. 258 (2010), 3452-3468.



Application to non-commutative L1

Non-commutative L1-spaces

Let M be a finite von Neumann algebra.
Let L1(M) be the non-commutative L1-space corresponding to
M, i.e. L1(M) is the predual of M (M∗).

M commutative ⇒ L1(M) = L1(µ).

We can generalize our renorming techniques to
non-commutative L1(M)-spaces.

L1(M) does not have the FPP.

Can L1(M) be renormed to have the FPP?



Application to non-commutative L1

A little bit of background

Definition

A von Neumann algebra is a subalgebra M of B(H) which is
self-adjoint (if x ∈M implies x∗ ∈M), contains 1 (the identity
operator) and it is closed in the weak operator topology (WOT).

Remark

If H is a separable infinite dimensional Hilbert space, every
T ∈ B(H) has a matrix representation in the form

T = ((Tei, ej))i≥1;j≥1 ,

so a von Neumann algebra is a unital sub-algebra of B(H)
which is closed in the topology of coordinatewise convergence
(WOT).



Application to non-commutative L1

A little bit of background

Assume H is a separable Hilbert space.

Definition

A von Neumann algebra M is finite when

T ∈M and TT ∗ = 1⇒ T ∗T = 1.

Let M+ be the cone of all positive elements of M, that is,

M+ = {x ∈M : 〈xh|h〉 ≥ 0, for all h ∈ H}.

P (M) := {p ∈M : p is a projection}



Application to non-commutative L1

A little bit of background

Definition

A trace on a von Neumann algebra M is a map
τ :M+ → [0,∞] satisfying:

1) τ(x+ y) = τ(x) + τ(y), for all x, y ∈M+.
2) τ(λx) = λτ(x); x ∈M+, λ ∈ [0,+∞].
3) τ(xx∗) = τ(x∗x) for all x ∈M.

The trace τ is said to be

4) normal: if for each xα ↑ x in M+ we have τ(xα) ↑ τ(x).
5) faithful: if τ(x) = 0 implies that x = 0 for all x ∈M+.
6) finite: if τ(1) < +∞.



Application to non-commutative L1

A little bit of background

A little bit of background

In a finite von Neumann algebra there always exists a normal
faithful finite trace.

Example

M = L∞(µ), H = L2(µ). For f ∈ L∞(µ)

f : L2(µ) → L2(µ)
g 7→ fg

, τ(f) =
∫
fdµ

and M∗ = L1(µ);



Application to non-commutative L1

A little bit of background

Define for all x ∈ L1(M)

R1(x) := ‖x‖1 = τ(|x|)

Rk(x) := sup{‖xp‖1 : p ∈ P(M), τ(p) < 1/k}, k ≥ 2.

The linear topology

Assume that M is a finite von Neumann algebra (τ(1) < +∞).
Consider the measure topology defined by the neighborhoods of
zero

N(ε, δ) = {x ∈M : ∃ p ∈ P(M) such that ‖xp‖∞ ≤ ε
and τ(1− p) ≤ δ}

for ε, δ > 0. (E. Nelson, 1974)



Application to non-commutative L1

The theorem

Theorem (Hernández and Japón, 2010)

Let M be a finite von Neumann algebra. If the unit ball is
compact for the measure topology, then L1(M) can be renormed
to have the FPP.



Application to non-commutative L1

Applications

Example (The hyperfinite II1 factor)

Let (R, τ) =
⊗

n≥1(M2, σ2) be the von Neumann algebra tensor
product, M2 denotes the complex 2× 2 matrices and

σ2

(
a b
c d

)
= 1

2(a+ d).



Application to non-commutative L1

Definition

A von Neumann algebra is:
1 a factor if x ∈M and xy = yx for all y ∈M implies
x = λ1 for some λ > 0.

2 of type II1 if it is finite and it does not contain any
nonzero abelian projection.

3 hyperfinite if there exists a sequence Mn ⊂Mn+1 of
finite-dimensional von Neumann algebras such that M is
the closure of ∪nMn with respect to the WOT.

Theorem (F.J. Murray and J. von Neumann, 1943)

(R, τ) is the unique, up to isomorphism, hyperfinite II1 factor.



Application to non-commutative L1

Applications

Theorem

L1(R) can be renormed to have the FPP.

Theorem (U. Haagerup, H. P. Rosenthal & F. A. Sukochev, 2000)

If M is an arbitrary hyperfinite von Neumann algebra of type
II1, then L1(M) is isomorphic to L1(R).

Corollary

If M is any hyperfinite von Neumann algebra of type II1. Then
L1(M) can be renormed to have the FPP



Application to non-commutative L1

Applications

Carlos A. Hernández-Linares and Maria A. Japón Pineda,
Renormings and Fixed Point Property in non-commutative
L1-spaces. Preprint.
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