
PeMMAS: A Tool for Studying the Performance
of Multiagent Systems Developed in JADE

Alejandro Carrasco, Member, IEEE, Ma Dolores Hernández, Member, IEEE,
Ma del Carmen Romero-Ternero, Member, IEEE, Francisco Sivianes, Member, IEEE,

David Oviedo, and José Ignacio Escudero

Abstract:This paper describes the performance measurement
for multiagent systems (PeMMAS) tool, a system designed to
study and measure the performance of any multiagent system
(MAS) de-veloped in JADE. The tool itself is another MAS which
is deployed and coexists alongside the one being studied. This
characteristic allows us to adapt PeMMAS to any scenario in
which MAS de-ployment in JADE is used. PeMMAS extracts
information from the target MAS regarding the use of system
resources, the flight time for comprehensive messages according
to agent type, as well as the processing time for actions. After
processing this information, PeMMAS sends a report to the final
user for subsequent analysis.

Index Terms—Distributed artificial intelligence, multiagent
systems (MAS), performance systems, telecontrol.

I. INTRODUCTION
Ourgroup has been working to improve telecontrol oper-ation
and operator interfaces in control centers of power

facilities for a long time. In fact, we have developed several
solutions integrating multimedia information in the interfaces
used by telecontrol operators [1], [2].

In our search for a distributed solution to collect data from
different elements of the facilities, we realized that multiagent
systems (MAS) could provide a suitable solution and we decided
to adopt this paradigm.

This led us to design an MAS, called CARISMA (the
Spanish acronym for Remote Automatic Control of Solar
Facilities with multiagent technology) as part of a research
project supported by the Spanish government. This project
aimed to apply the multiagent paradigm to develop integrated
systems to automat-ically supervise and control renewable
energy facilities, in our case photovoltaic, by using distributed
intelligence.

CARISMA provides telecontrol operators with an interface to
support the automatic supervision of the correct operation of
the facility being telecontrolled. Its multiagent architecture
makes it suitable for environmental monitoring applications
and, in particular, solar facility maintenance.

We therefore decided to use a platform for the development
and execution of MAS in Java called JADE [3]. This platform
is widely used in many applications because of its flexibility,
its good documentation, and its ability to meet standards of
communication among FIPA agents [4]. Its strong points include
the following.

1) JADE provides a stable layer to develop distributed appli-
cations making lower layer complexity transparent for the
programmer.

2) JADE facilitates issues such as agent coordination, se-
curity, communication, mobility, redundancy, and other
basic services in a distributed architecture.

3) JADE is open code. Hence, many people contribute to
develop and maintain it.

4) As JADE has been developed in Java, it benefits from the
properties of this technology.

5) JADE is FIPA compliant; therefore, it can communicate
with agents developed in other environments that also
implement FIPA.

6) JADE API is intuitive, easy to learn, and simple to use,
thereby reducing development time.

7) JADE allows easy integration to other libraries to im-
plement logic reasoning, and to PROTÉGÉ to develop
ontologies.

Once CARISMA had been developed, implemented, and
tested, we had to measure its performance to find out whether
it was working correctly. The reason for this was that under
this scenario, many events occur which lead agents to inter-
act among themselves. They may send each other messages,
perform actions autonomously, or have to propagate rules for
their inference engine, among other possibilities. This require-
ment led us to create performance measurement for multiagent
systems (PeMMAS). Thus, this tool is closely linked to the per-
formance study of the MASs developed in JADE and, taking
advantage of the characteristics of JADE, we have also imple-
mented PeMMAS with JADE.

In short, we wanted to create a mechanism (a tool) to study the
performance of a MAS developed in JADE in run time. There-
fore, PeMMAS offers an interface that can be used by users who
work monitoring and supervising a certain environment with
connected elements. In our case, the telecontrol operator is the fi-
nal user. In general, this tool provides an interface to setup, start,
and stop a session test to analyze a MAS developed in JADE.

Fig. 1 shows the general layout for the use of PeMMAS with
our CARISMA system and Figs. 6 and 10 show the PeMMAS
user interface to report analysis results.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132466184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. General layout for using PeMMAS to analyze a MAS (CARISMA in
this case).

Section II gives an overview of the state of MASs, JADE,
and the different existing performance evaluation systems.
Section III then provides a thorough examination of what a
testing system is, how it works, and why one is needed. After
explaining how the system works, Section IV describes the tests
that were performed, how they behaved within the system, and
the results obtained. Finally, the paper provides the conclusions
about the work carried out.

II. STATE OF THE ART

Nowadays, MAS technology is used in a multitude of fields,
from video games and films to defense systems, among many
others. Its application is ideal for environments where a large
amount of information has to be gathered from different points
in a system and used to make calculations. Each agent consists
of an independent entity capable of acting on its own. It has a
limited vision of its surroundings, never a complete vision of
the global system. Agents can be provided with specific knowl-
edge about their environment (ontology), or they can share an
available collection of comprehensive knowledge [5].

The scientific literature includes many applications based on
the multiagent paradigm, from those that solve complex prob-
lems, such as recognition of suspicious human behavior [6], to
the application of existing technology for MAS improvement,
such as the use of diffused logic to make agents capable of
reaching objectives in an optimal manner [7]. Some applications
include the control of diverse environments, as seen for example
in Abras et al. [8] which demonstrates a MAS responsible to
control energy use in a home, while trying to use the optimal
number of devices at any moment and informing with alarms if
problems arise. In the field of power utilities, our research group
proposed a MAS in [9] and [10] to supervise electrical facili-
ties using a SCADA (supervisory control and data acquisition).
In [11], an MAS was proposed capable of adjusting production
to electricity demand and rationalizing the appropriate use of
the installation based on market theories. In this field of MAS
for markets, the year 1999 saw the introduction [12] of an MAS

model capable of predicting changes in the stock markets, with
a certain margin of error.

There is an official web site [3] for JADE, the environment
of development and execution based on Java, where the number
of companies and universities currently using this software for
different purposes is shown. In [13], we can see an example
of JADE being used to substitute most human decision making
in an e-commerce system. In the field of the Internet, in [14],
JADE is integrated along with a platform that allows for the
installation of web services in servers during execution by using
agents. Furthermore, in [15], a modification of this software is
presented that includes a belief-desire-intention architecture for
the agents.

We did not find much literature about tools developed to study
MAS performance from the point of view of processing times,
communication parameters, and system limitations. For exam-
ple, Such et al. [16] presented a system to allow for the evalu-
ation of MAS performance, but it was only based on message
flight time. There have also been studies of MAS performance
such as the one in [17], which presented an application of MASs
in sensor networks. It included a study of MAS performance but
only in terms of network congestion. The authors in [18] pro-
posed network optimization using MAS, but they based this on
communication and did not provide a complete study of per-
formance. In [19], Serrano et al. proposed some techniques to
analyze software performance in terms of agent behaviors in
order to extract association rules.

In this paper, we propose a MAS developed in JADE to mea-
sure the performance of different parameters in any MAS that
has also been developed in JADE. This is not a study of JADE
efficiency as seen in [20], rather a way of checking whether the
operation of a MAS developed JADE serves its purpose.

III. TOOLS USED TO STUDY PERFORMANCE

The PeMMAS system is a tool with a complex develop-
ment that has been designed to help detect problems related to
the functioning of an MAS. The paper discusses later how the
idea to develop this system evolved, what it consists of, what
measurements we can study using the PeMMAS, and finally
provides a detailed explanation of how it works.

A. Antecedents and Motivation

In the paradigm of traditional programming, it is common
practice to use different to measure software performance. These
are known as “profiling” and the majority of programs such as
Eclipse

R©
and NetBeans

R©
already incorporate their own tools

to achieve this objective. They work by using time keepers to
measure the length of the execution process and observe how
CPU load and RAM memory vary. With this information, it is
relatively simple to study parts of the code that execute more
slowly. Nevertheless, one has to remember that with this type of
programming, the code is always executed within the machine
from which it is launched.

In the multiagent paradigm, agents are capable of moving
from one place to another. This process is called “migration,”

and it is done through the network. This means that an agent
begins execution within one machine, then migrates to another,
and continues with the execution in a new destination. The
agents’ ability to migrate from one place to another is one of
the main advantages of MASs, because it provides them with
great flexibility to adapt to almost any scenario. However, this
capacity can lead to problems when measuring process times.

Time keepers simply keep track of seconds. They can count
seconds from the moment a machine is turned ON or OFF from
a specified date of reference. For example, the date of reference
of the UNIX system as well as that of many programming
languages such as Java is 1 January, 1970. A priori, we might
think that if all machines use the same date of reference, it
should not matter whether an agent registers a time keeper, then
migrates and registers with another machine to verify how long
the process has taken. Nevertheless, slight to catastrophic errors
can occur depending on the synchronization of the clocks in the
machines.

All these problems are controlled by profiling tools that are
included in the programming areas; however, the most widely
used ones are not prepared for MASs. Although some of these
tools are prepared, such as the INGENIAS platform [21], they
are incapable of a performance study if the system has migrating
agents.

Bearing in mind all these drawbacks, when an MAS is de-
signed, one of the most complicated aspects is knowing whether
it is working correctly. Although certain manual tests can be car-
ried out to track flight times of messages among agents as well
as how long certain tasks take, these processes are tedious and
slow. In addition, an MAS is generally used when knowledge
has to be distributed and the process divided into many parts,
making manual measurements in this environment virtually im-
possible. This is why we have created this measuring tool to
facilitate the task of checking whether a multiagent developed
in JADE is functioning completely, reliably, and properly.

B. System Architecture

Despite PeMMAS development having been complex overall,
its architecture has ultimately been designed in a very simple
way. It only has two kinds of agents: tester agent (ATester),
which is the main agent, and agent test board (ATP), which has
as many instances as are required.

This simplicity provides the tool with two desirable charac-
teristics from the point of view of any software development:
flexibility and scalability.

Our objective was to create a tool capable of studying the
performance of a MAS developed in JADE. Our proposal meant
creating a new MAS deployed under the same implementation
as the one being studied. Thus, PeMMAS architecture depends
solely and exclusively on the architecture of the target MAS.

This is the optimal option since MAS are capable of adapting
or even reconfiguring themselves if changes are produced in
the system [22]. Thus, we have obtained a flexible tool that is
scalable and can be adapted to any MAS that has been developed
in JADE, as well as any testing environment we desire.

Fig. 2. Example of MAS architecture (CARISMA in this case) with integrated
PeMMAS.

To achieve such a flexible system, everything has to be as
generic as possible, or proper functioning will suffer. For this
reason, we have employed an element found in all MASs devel-
oped in JADE: the container.

JADE containers are simply independent virtual areas where
agents reside. Our proposal is to define a container for each
physical machine found in the target system (the one being
analyzed). This way, we can visually control how our agents are
deployed. All JADE MASs have at least one “Main-Container.”
In this main container, there are a few internal JADE agents
necessary for it to work properly. This is where the main agent
of our measuring tool (ATester) will be incorporated.

As mentioned earlier, additional containers will be distributed
in the area, along with the main container, either in the same
machine or in other physical machines. They will have different
names and agents belonging to the target system in their inte-
riors. In each of these secondary containers, we are going to
incorporate another type of agent, ATP, as shown in Fig. 2.

This figure shows CARISMA architecture, which is the target
system in our case. It shows a set of solar panels from which
a set of values (temperature, humidity, solar irradiation, etc.) is
collected. These values are gathered by basic microcontroller
systems (motes) and sent through Zigbee and other wireless
protocols to the different CARISMA agents located in different
kinds of hardware devices, such as embedded systems, mobile
terminals, laptops, servers, etc.

From the point of view of the PeMMAS tool, the interesting
point is the total number of containers that exists in the target-
system infrastructure. This is because an ATester agent is created
in the main container and an ATP is created for each secondary
container existing in the target MAS.

To summarize, our MAS has two kinds of agents.
1) ATP (Agent Test Board): This type of agent will reside

in secondary containers. There will be as many ATPs de-
ployed as there are containers (other than main containers)
in the system. We have named this “-board,” since it will
typically be present in each of the physical hardware de-
vices. This agent is responsible to activate the testing mode

(which is explained later in this article) to begin collecting
data about the MAS we are going to measure. When the
main PeMMAS agent sends a finalization message to an
ATP, this will then send all of the information collected
for subsequent processing.

2) ATester (Tester Agent): This agent resides only in the
main container and it is in contact with the useŕs interface.
When ATester receives the order to start measuring sys-
tem performance from the user, ATester sends a migration
order to all the ATPs (one for each container in the tar-
get MAS) and waits for the stop order. When that order
arrives, ATester requests data from all the ATPs and pro-
cesses it. A summary of this data is displayed on a screen
for the user and a report file with the detailed results is
generated.

As we can see in Fig. 2, it does not matter how the MAS to
be measured is deployed. It is represented as a cloud because,
for these purposes, its characteristics and number of agents are
irrelevant. We are simply going to place an agent in each con-
tainer. It does not even matter if there is more than one container
in each physical device since we will be guided by the number
of containers that exist in the system, whatever that is.

C. Measurements Used

PeMMAS has an internally defined list of parameters to be
determined. These measurements are divided into six types in
an attempt to cover all the target information of the study which
is typical in any MAS, regardless of what it was designed for.
The following is a list of all parameter types which are described
later with each measurement:

1) system functioning;
2) system limits;
3) system reliability;
4) communication;
5) processing times;
6) system dynamics.

1) System Functioning: The objective of these measure-
ments is to check for the correct functioning of the different
systems, and to process and analyze if there are errors in differ-
ent parts of the code.

1) [FUNC_BEHAVIOUR]: This function controls execution
errors in the programmed actions. If they exist, it stores
the action, the agent that had this behavior, and the error
that was produced. Its value is the number of errors that
have occurred.

2) [FUNC_STATES]: This function measures the time agents
spend in different states that are possible in a MAS: start
up, blocked, active, migrating, and finalizing. Its value is
the percentage of time that the agent stays in different
states.

3) [FUNC_INTERACTIONS]: This function monitors the
interaction between two agents with a focus on the type
of messages exchanged, and whether these messages are
expected or not. It tries to list the actions of each agent
that produce interaction with other agents. Its value is the
number of interactions between two agents.

2) System Limits: The following provides an idea of the
MAS limits to be measured. The maximum number and kind of
agents allowed affect the performance of the physical systems.

1) [LIM_NUMBER_AGENTS]: This measurement stores
the number of agents found in the system upon stop-
ping the test session, both throughout the system and
in each container. Its value is the total number of
agents in the whole system just before stopping the test
session.

2) [LIM_CAPACITY_PROC]: This measurement stores the
percentage of CPU used upon stopping the test session,
both throughout the system and in each physical machine.
Its value is the percentage of CPU used.

3) [LIM_CAPACITY_STORAGE]: This stores both the
RAM memory used and available upon stopping the test
session, both throughout the system and in each physi-
cal hardware device. Its value is the percentage of free
memory in the target system.

3) System Reliability: The following measurements to be
looked at aim to determine the reliability of the entire response
offered by the system in various kinds of possible scenarios. In
all cases, the measurement unit is the millisecond.

1) [FIAB_TMF]: This is the average time between system
failures. Failures that entail some type of system block
will be treated independently from those which provide
incorrect answers.

2) [FIAB_DISP]: Average time between failures that entail a
system crash and, as a result, generate a restart to be ready
again. These can be distinguished by:

a) [FIAB_DISP_MAS]: Availability of MAS/
platform.

b) [FIAB_DISP_AGENT]: Availability of agent which
can also be distinguished by agent type.

4) Communication: In an MAS, it is crucial for communi-
cation among agents to be as efficient as possible. It is therefore
just as important to study thoroughly the precision of the flight
times of all messages produced in the system. The following is
a list of all measurements to be gathered. The value of all these
communication parameters is given in milliseconds, barring the
last one.

1) [COM_REQUEST]: Flight time (minimum, average, and
maximum), of a REQUEST message, that is to say the
time it takes from leaving one agent to arriving at another.

2) [COM_RESPONSE]: Flight time (minimum, average, and
maximum) of a RESPONSE message.

3) [COM_AGENTS]: Flight time (minimum, average, and
maximum) of messages between any two agents.

4) [COM_MAS]: If the multiagent to be measured possesses
an organizational hierarchy system, this parameter mea-
sures the flight time (minimum, average, and maximum)
of the messages sent from the agents that are higher in the
hierarchy to those that are lower.

5) [COM_MEDIA_LAYERS]: Average flight time among
agents from different levels of the hierarchy. If the MAS
to be measured has a strict communication hierarchy in
which the agents cannot communicate with others at the
same time, this parameter will coincide with the average
time recorded in [COM_AGENTS].

TABLE I
PEMMAS METHODS

6) [COM_MEDIA_ZONES]: Average communication time
among agents in different zones (or containers) of the
system.

7) [COM_MEDIA_MOVE_AGENT]: Average time to move
an agent from one container to another in the system.

8) [COM_MEDIA_MSG_AGENT]: Average number of
messages exchanged among the same kinds of agents.
If the MAS to be measured has a strict communication
hierarchy, this parameter will equal 0, since messages of
this type cannot be sent. Its value is that average.

5) Processing Times: The following is a list of measure-
ments designated to find the times required by an agent to carry
out a given task. The value of all these parameters is given in
milliseconds.

1) [PROC_START_AGENT]: Processing time necessary for
an agent to be in active mode, that is to say, the start-up
time.

2) [PROC_END_AGENT]: Processing time necessary to
stop the activity of an agent, that is to say, the time it
takes from the moment the elimination of an agent is or-
dered until this action is actually carried out.

3) [PROC_RESPONSE_MSG]: Processing time necessary
to generate a RESPONSE type answer after receiving a
REQUEST message.

4) [PROC_REQUEST_MSG]: Processing time necessary to
create a request for another agent.

5) [PROC_MEDIA_TASK_xx]: Average process time nec-
essary for an agent to perform certain tasks (indicated by
“xx”). This type of parameter is reserved for when we

wish to measure times of a specific MAS task we want to
evaluate.

6) [PROC_READ_SENSOR]: If there is an agent responsi-
ble to read the information at given intervals in a MAS,
this parameter records average times that the mentioned
agent takes to do the reading.

7) [PROC_EXECUTE_ACTUATOR]: If an MAS that is go-
ing to be evaluated has an agent deployed that is solely
responsible to carry out actions, this involves physical
changes in the environment.

6) System Dynamics: The following is a list of measure-
ments designated to find the times required for specific events
that could occur in the system. The value of all these parameters
is given in milliseconds.

1) [SYS_INI_PLATFORM]: The average time needed to ini-
tialize a platform, from the feed or from the point of restart,
until it is ready.

2) [SYS_POLL_AGENT]: Time needed for an interview of
agent availability. Average time needed to know which
agents are available to test or control.

3) [SYS_REC_COM_PLATFORM]: Average recovery time
of a platform that has crashed due to failure in the com-
munication system.

4) [SYS_REC_PLATFORM]: Average recovery time of a
platform that has crashed due to another kind of failure
(hardware or software failure, a problem with the feed,
etc.).

Table I shows a summary of the methods used by PeMMAS
classified by type.

D. How Does PeMMAS Work?

Although the PeMMAS system has been prepared to work
with any MAS developed in JADE, certain elements must be
included in the MAS that is going to be measured.

First, the comprehensive Boolean variables must be defined:
1) Tester mode: This variable allows the agents to store text

files with the measurements gathered in the physical ma-
chine where they are found. They can be activated without
executing the PeMMAS, the only difference is that the in-
formation is always gathered although it will not be sent
to the main agent for processing.

2) Testing: This variable is activated when the PeMMAS
begins the testing session and registers a false value when
it concludes.

Once the comprehensive variables have been defined, a li-
brary with the MAS aspect to be measured should be included.
This library contains a series of utilities that facilitate the task
of measuring the desired parameters for the user. There are
basically two kinds of parameters to be measured: those that re-
quire a time and those that only need text. Therefore, the library
contains the methods required for timer use and text writing.

Now that we have obtained the tools to gather information, we
have to focus on the desired points of the code with the necessary
lines to store the parameters with the appropriate format. For
example, when measuring the flight time of a message from one
agent to another, various aspects may be of interest, such as the
origin of the agent, the agent’s destination, the type of message
(REQUEST, AGREE, etc.), the time it is sent, and the behavior
requested by the message. All of this information has to be
linked together according to the determined format so that the
ATester will be able to process it all later and show the correct
results.

Finally, before carrying out the first test session, the most
precise synchronization possible of all platforms is fundamental.
We used a network time protocol (NTP) server located in Spain
due to its geographic proximity. Thanks to this server, we were
able to calculate the differences between its clock and the clock
in our machine. Nevertheless, Java does not allow the internal
time of all its operating systems to be manipulated in a normal
way. To remedy this, we created a function that sets the time with
the applied difference. We can employ this function whenever
we need to note the time.

At this point, we can create the ATester agent in the “Main-
Container” using the JADE libraries. When the ATester is cre-
ated, it contacts the AMS1 agent of JADE to find out how many
containers there are in the MAS we want to measure. When
this number has been obtained, the “Main-Container” creates
as many ATPs as there are containers. After creating all of the
ATPs, each one is sent in the order of migration to the corre-
sponding container. After they have all migrated, as shown in
Fig. 3, the ATester becomes inactive as it waits for the finaliza-
tion orders.

When the ATP arrives at its destination container, the “Tester
mode” and “Testing” Boolean variables activate. This simple

1Agent Management System: an internal JADE agent that takes control of
the agents working in the system.

Fig. 3. ATP migrates from the main-container.

Fig. 4. One file for each measured parameter is saved in each container.

Fig. 5. ATester combines all received lines.

operation allows all the MAS agents we are measuring to begin
storing information due to the lines of code that have been
previously integrated along with the codes of the MAS that are
to be measured. For each defined test parameter, a file consisting
of different text will be created, as seen in Fig. 4. After this point,
the ATP waits for the finalization order, just like the ATester
agent.

Once the established testing time is over, the interface stops
the test session, and a finalization message is sent to the ATester.
Upon receiving the message, the ATester sends another message
to the ATPs. This message indicates that the ATPs have to begin
sending all the information from the different physical machines
to the ATester. At this point, each ATP scans the folder in which
all text files with the stored data are located. It then reads each
text file line by line and at 25 line intervals, it sends a message
to the ATester. The ATester is in charge of collecting these
messages and combining all the received lines to create a single
text file for each testing parameter that has been read, as seen in
Fig. 5. Thus, if we want to read ten test parameters, we will have
ten text files in each physical machine, or one per parameter.
When all the lines have been sent to the ATester, it groups them

Fig. 6. PeMMAS interface with all the calculated data.

by parameter to obtain the ten text files in which all lines are
combined.

After a few minutes, depending on how long each testing
session lasts, the ATester will begin to process the data when all
lines of the text have arrived. This process varies depending on
the parameters used. Some only need to add up all the registered
values, while others require averages and others, such as the
communication parameters, require a more complicated process
since they have to look for pairs of messages (sent/received). All
calculated data is stored in a report file to facilitate subsequent
study. In addition, a screen presents a summary of all calculated
data for rapid user analysis, as seen in Fig. 6.

In the last phase of the process, the ATester creates a new
folder with a newly created report file available, along with the
other files containing the text of all the different parameters
that have been gathered in the testing session. Finally, it com-
presses the folder and generates a .zip file with all the necessary
information for later in-depth study.

At this point, the test is finalized and processed. As a result,
all PeMMAS agents die including the ATester and all ATPs.
Thus, the system is prepared to initiate a new test session.

IV. SYSTEM TESTS

The PeMMAS system attempts to evaluate the performance
of any MAS; therefore, it needs to be optimized to ensure there
is no interference with the measurements. To achieve this, we
need to address two critical points: synchronization and data
dispatch.

A. NTP Synchronization

A crucial aspect in the study of performance output is based
on the calculation of flight time of all messages produced by the
system. To complete this task successfully, we need to use time

Fig. 7. Delay in the NTP server request. Simultaneous requests in two
platforms.

Fig. 8. Delay in the NTP server request. Nonsimultaneous requests of five
platforms.

indications for the exit and entrance of the messages, therefore
checking the time they take to arrive. Nevertheless, as mentioned
earlier, taking this step alone is unviable since the watches are
not synchronized and could record negative flight times, which
is almost impossible.

As a solution, we decided to synchronize all system equip-
ment to an NTP server. These servers use NTP protocol to
maintain synchronization with an external element, such as an
automatic clock or a GPS clock. In this case, we used the NTP
“hora.roa.es” server [23] that provides the official time in Spain.

As we began the execution of the system, and even before
loading the JADE element, the NTP server was consulted and
the time difference was calculated. After this point, whenever
we wanted to use the time, we obtained the most precise results
possible in all systems because any differences had already been
accounted for.

To check that the system was working properly, we carried out
tests with different platforms to measure the delay in each one.
The possibility of the time request being made simultaneously
from all the physical platforms should be noted, since this could
produce eventual delays. Results are shown in Figs. 7 and 8.

As one can see, the delays among the different platforms
are consistently very regular, with a 15 to 31 ms delay range
per request. Likewise, delays are closer for similar operative
systems.

Our specifications indicate that there is a 10–15 ms margin of
uncertainty in the results. Nevertheless, although we are refer-
ring to communications in the local network, the entrance and
exit of the message is actually measured long before leaving the
network since an internal JADE code is executed beforehand
and this produces delays. For this reason, in the majority of
cases, the 10–15 ms in these delays are insignificant.

Fig. 9. Time spent sending 50 000 lines of text in various blocks of quantity.

Fig. 10. Detail of the interface with the obtained results.

B. Sending Data

We mentioned earlier that one of the last phases of the entire
testing session consisted of sending all of the gathered data to
the ATester. This process is relatively important because while
some testing parameters have an average value of thousands
of pieces of information, others only have a total of two or
three. In these cases, the loss of a message enroute is fatal and
unacceptable.

This information is sent line by line by reading text files. Bear-
ing in mind that a test session can gather dozens of thousands of
messages, and that they have to be sent in a reasonable amount
of time, sending the lines one by one is unfeasible because it
would take too long.

To overcome these problems, we have implemented a
stop&wait protocol in which the ATP waits for a confirma-
tion (ACK), of each message sent to the ATester. This way, the
following message is not sent until confirmation is received.
Additionally, a time-out has been included; if a message is not
received in 100 ms, it is resent with a maximum of three at-
tempts. Instead of sending the lines one by one, they are sent
in groups of 25. The idea of using 25 lines comes from the
tests carried out in the system to study how it reacts. Results are
shown in Fig. 9.

One can see that increasing the number of lines in each mes-
sage group decreases the logarithmic form of the time it takes
for the ATester to receive them all. Nevertheless, when too many
lines are sent simultaneously, JADE cannot manage such a large
block of messages and begins to discard messages. In contrast,

as the number of lines in the block decreases the time taken to
gather all the information increases significantly.

To avoid these extremes, we feel that an acceptable interval
lies between 20 and 500 lines per block as seen in Fig. 9. This
interval collects 50 000 lines in 20-line blocks in the approxi-
mately 6 to 7 min used when making blocks of 500. Therefore,
bearing in mind that there is a 1-min time difference, we de-
cided to set the number of messages at 25, thus avoiding prob-
lems while maintaining an acceptable time. This way, we are
not overloading the network, we obtain an acceptable time, and
we avoid problems with JADE related to block size.

V. RESULTS

After optimizing the most important aspects of PeMMAS, we
tried it out in a real system. As we mentioned earlier, we selected
the CARISMA system, a MAS developed at the University of
Seville which has a hierarchy structure of communication with
various types of agents and can be found distributed among
various containers in different physical hardware devices.

PeMMAS was integrated in the interface of the CARISMA
user to make it simpler to use. As a result, we were able to
initiate the execution of the MAS to be measured with its own
interface. After everything had been configured, PeMMAS was
executed to begin the tests. While all the data was being gath-
ered, CARISMA continued working without any problem. This
is sometimes necessary when something specific that requires
external interaction, whether it be real or simulated, needs to be
tested.

The results obtained were unexpected in that several commu-
nication parameters that should have obtained similar values,
did in fact show very different values. However, the unexpected
aspects were not provoked by PeMMAS, but by CARISMA.
We therefore realized that CARISMA had problems with com-
munication and with the processing of received messages. This
meant that the developers of CARISMA were able to make
improvements to its system and find solutions to a number of
errors. For instance, after detecting that the manufacturer driver
of the management software for solar panels was a bottleneck
for our system, one adopted solution was to move the affected
agent to another kind of higher-performance device.

After a series of modifications to CARISMA, we repeated the
testing and this time, we did obtain the expected results. PeM-
MAS had completed its task and we now know that CARISMA
is working properly.

When CARISMA is closed, we will publish our work present-
ing all the numeric results obtained and the experiences arising
during the series of tests.

VI. CONCLUSION

When we began to develop PeMMAS, we based our thinking
on the fact that no tool had been developed to study the perfor-
mance of multi-agent systems in a distributed way. Now, we can
affirm that we have created a tool that:

1) is capable of measuring any multi-agent system that has
been developed in JADE;

2) has the capacity to distribute itself and in this way can
adapt to any environment;

3) checks whether communication is carried out properly in
a multitude of situations;

4) ensures that agent behavior does not produce any execu-
tion errors;

5) analyses MAS reaction times in the event of a system
crash;

6) measures the use of the MAS and studies system resources,
such as the CPU and the RAM memory;

7) generates a report with all the results obtained after pro-
cessing the data;

8) saves the data gathered in case the user should wish to
conduct further study.

Looking ahead, we propose improvements in certain aspects
of PeMMAS. For example, we would like to increase the pre-
cision of synchronization as much as possible. Additionally, we
want to adapt our system to platforms other than JADE to make
PeMMAS adaptable to as wide a range of MASs as possible.
When we achieve this, we will be closer to our objective: to
make PeMMAS capable of measuring the performance of any
multi-agent system, regardless of its implementation.

ACKNOWLEDGMENT

The authors would like to thank those at the Aljamir Software
Company for their collaboration in the development of the tool
and the Java knowledge transfer platforms.

REFERENCES

[1] J. I. Escudero, J. A. Rodrı́guez, and M. C. Romero, “IDOLO: Multimedia
data deployment on SCADA systems,” presented at the IEEE Power Eng.
Syst. Conf. Expo., New York, NY, USA, 2004.

[2] M. C. Romero, F. Sivianes, A. Carrasco, M. D. Hernández, and
J. I. Escudero, “Multi-agent system and embedded system technologies
for automatic surveillance,” presented at the 10th Int. Conf. Enterprise Inf.
Syst., Barcelona, Spain, 2008.

[3] JADE. (2013). Java Agent DEvelopment Framework [Online]. Available:
http://jade.tilab.com/

[4] FIPA. (2013). Foundation for Intelligent Physical Agents [Online]. Avail-
able: http://www.fipa.org

[5] M. Wooldridge, An Introduction to Multiagent System. Hoboken, NJ,
USA: Wiley, 2002.

[6] O. Popoola, “Video-based abnormal human behavior recognition—a re-
view,” IEEE Trans. Syst., Man Cybern. C, Appl. Rev., vol. 31, no. 3,
pp. 383–391, Aug. 2001.

[7] J. Y. Kuo, H. K. Cheng, Y. Y. FanJiang, and S. P. Ma, “Multi-agent au-
tomatic negotiation and argumentation for courses scheduling,” in Proc.
IEEE Int. Conf. Fuzzy Syst., Jun. 27–30, 2011, pp. 2690–2695.

[8] S. Abras, S. Ploix, S. Pesty, and M. Jacomino, “A multiagent home au-
tomation system for power management,” in Proc. Int. Conf. Informatics
Control, Autom. Robot., Intell. Control Syst. Optim., 2006, pp. 3–8.

[9] A. Carrasco, M. C. Romero-Ternero, F. Sivianes, M. D. Hernandez, and
J. I. Escudero, “Multiagent and embedded system technologies applied
to improve the management of power systems,” in Proc. Int. J. Digital
Content Technol. Appl., 2010, vol. 4, no. 1, pp. 79–85.

[10] M. C. Romero, F. Sivianes, A. Carrasco, M. D. Hernandez, and
J. I. Escudero, “Managing emergency response operations for electric
utility maintenance,” IEEE Ind. Electron. Mag., vol. 3, no. 3, pp. 15–18,
Sep. 2009.

[11] J. K. Kok, C. J. Warmer, and I. G. Kamphuis, “PowerMatcher: multiagent
control in the electricity infrastructure,” in Proc. 4th Int. Joint Conf. Auton.
Agents Multiagent Syst., New York, NY, USA, 2005, pp. 75–82.

[12] T. Lux and M. Marchesi, “Scaling and criticality in a stochastic multi-agent
model of a financial market,” Nature, vol. 397, pp. 498–500, 1999.

[13] E. Cortese, F. Quarta, G. Vitaglione, and P. Vrba, “Scalability and perfor-
mance of the JADE message transport system,” Anal. Suitability Holonic
Manuf. Syst., Exp., vol. 3, no. 3, pp. 52–65, 2002.

[14] X. T. Nguyen, R. Kowalczyk, M. B. Chhetri, and A. Grant, “WS2JADE:
A tool for run-time deployment and control of web services as JADE agent
services,” Softw. Agent-Based Appl., Platforms Develop. Kits, pp. 223–
251, 2005.

[15] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: Implementing a
BDI-Infrastructure for JADE Agents,” EXP—Search Innovation, vol. 3,
pp. 76–85, 2003.

[16] J. M. Such, J. M. Alberola, L. Mulet, A. Espinosa, A. Garcı́a-Fornes, and
V. Botti, “Large-scale multiagent platform benchmarks,” in Languages,
Methodologies, and Development Tools for Multi-Agent Systems. New
York, NY, USA: Springer, 2007, pp. 192–204.

[17] O. Hairong, S. Iyengar, and K. Chakrabarty, “Multiresolution data inte-
gration using mobile agents in distributed sensor networks,” IEEE Trans.
Syst., Man Cybern. C, Appl. Rev., vol. 31, no. 3, pp. 383–391, Aug. 2001.

[18] A. Nedic, A. Ozdaglar, and A. P. Parrilo, “Constrained consensus and op-
timization in multiagent networks,” IEEE Trans. Autom. Control, vol. 55,
no. 4, pp. 922–938, Apr. 2010.

[19] E. Serrano, J. J. Gómez-Sanz, J. A. Botı́a, and J. Pavon, “Intelligent data
analysis applied to debug complex software systems,” Neurocomputing,
vol. 72, no. 13–15, pp. 2785–2795, 2009.

[20] K. Chmiel, D. Tomiak, M. Gawinecki, P. Kaczmarek, M. Szymczak, and
M. Paprzycki, “Testing the efficiency of JADE agent platform,” in Proc.
Int. Symp. Parallel Distrib. Comput. Conf., Los Alamitos, CA, USA, 2004,
pp. 49–57.

[21] INGENIAS Development Kit. (2013). [Online]. Available: http://grasia.
fdi.ucm.es/main/?q=en/node/127

[22] M. Khalgui and H. M. Hanisch, “Reconfiguration protocol for multiagent
control software architectures,” IEEE Trans. Syst., Man Cybern. C, Appl.
Rev., vol. 41, no. 1, pp. 70–80, Jan. 2011.

[23] ROA Time. (2012). [Online]. Available: http://en.wikipedia.org/wiki/
ROA_Time

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

