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ON SPECTRAL STRUCTURE OF BOUNDED LINEAR
OPERATORS ON REFLEXIVE BANACH SPACES

STANISLAV A. SHKARIN AND OLEG G. SMOLYANOV

ABSTRACT. A descriptive characterization of point, continuous, and resid-
ual spectra of operators acting on a separable Hilbert space is obtained.
The possible point spectra of bounded linear operators acting on £,
1 < p < oo are characterized.

1. INTRODUCTION

As usual C is the field of complex numbers, R is the field of real numbers,
7Z is the set of integers and N is the set of positive integers. We also denote
N = NU {co}. All vector spaces in this paper are assumed to be over the field
C and all topological vector spaces are assumed to be Hausdorff. For a vector
space X and a linear operator T': Dy — X defined on a linear subspace Dr
of X, the set

0p(T)={z€C:dim{z € Dy : Tz = zz} = v(z) > 0}

is called the point spectrum [2] of T. The number v(z) € N for 2z € 0,(T) is
called the multiplicity of z. For any n € N we denote

opn(T) ={2 € 0,(T) : v(2) =n} and o, (T) ={z € 0,(T) : v(2) = n}.

Note that o, (T) = oll,(T) and 0,°(T) = 0p,00(T).

For a topological vector space X, an operator 7' : Dy — X is said to be
closed [2] if its graph I'r = {(z,Tx) : * € Dr}is closed in X x X and T is called
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densely defined [2], if Dp is dense in X. The spectrum of T : Dp C X — X
is [2] the set

J(T):(C\{ZGC:

the operator T — zI has continuous
densely defined inverse ’

where I : X — X is the identity operator. The sets
0.(T)={2€0(T)\ op(T) : the set (T' — 2I)(Dr) is dense in X} and
o.(T)={z€o(T)\ 0,(T) : the set (T' — 2I)(Dr) is not dense in X}

are called continuous spectrum and residual spectrum [2] of T, respectively.
Obviously, o(T) is the disjoint union of three sets 0,(T), 0.(T") and o,(T).

For any non-empty compact set K C R, Kalisch [3] constructed a bounded
linear operator T acting on a separable Hilbert space such that o(T) = 0, (T') =
K. Using a similar construction, Nikolskaia [8] proved that a set A C C is the
point spectrum of a linear continuous operators on a separable Hilbert space if
and only if A is a bounded F,-set. R. Kaufmann [4, 5, 6, 7] proved that a set
A C C is a point spectrum of a bounded linear operator on a separable Banach
space if and only if A is bounded and is a Souslin set, that is, the continuous
image of a complete separable metric space. The result of Kaufmann was
strengthened by the authors in the following way [11].

Theorem S. Let A, B,C be three disjoint subsets of C. Then the following
conditions are equivalent.

(S1) There exists a bounded linear operator T acting on a separable Banach
space X such that A= o,(T), B = 0.(T) and C = o,(T).

(S2) The set AU B U C' is non-empty and compact, the sets A, C\ B and
C\ C are Souslin and there exists an F,-set D and an operator T such
that o,(T)U D = 0,(T) U o,.(T).

In the present work we provide the following characterization of the sets
opn(T), o (T), 0o(T) and o,(T) for bounded and for closed densely defined
linear operators acting on a separable Hilbert space.

Theorem 1. I. Let T be a closed densely defined linear operator acting on a
separable Hilbert space H. Then o, (T) is an Fy-set for any n € N and o.(T)
is a Gg-set.

II. Let K C C be non-empty and compact and K = AU B U C, where
ANB=ANC =BnNC =@, Ais an F,-set and B is a Gs-set. Let also
A, be a decreasing sequence of F,-sets such that A = A;. Then there exists
a bounded linear operator T acting on a separable infinite dimensional Hilbert
space such that o) (T) = A, for anyn € N, 0.(T') = B and o,.(T) = C.

II1. Let K C C be a closed set and K = AUBUC, where ANB=ANC =
BNC =@, Ais an F,-set and B is a Gs-set. Let also A, be a decreasing
sequence of F,-sets such that A = Ay;. Then there exists a closed densely
defined linear operator T acting on a separable infinite dimensional Hilbert
space such that o) (T) = A, for anyn € N, 0.(T') = B and o,.(T) = C.
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Since the spectrum of a bounded linear operator on a Hilbert space is non-
empty and compact and the spectrum of a closed densely defined linear operator
on a Hilbert space is closed, Theorem 1 provides a complete description of all
possible 0} (T), o.(T) and o,(T) for bounded and for closed densely defined
operators acting on ¢5. Note also that Theorem 1, even in its point spectrum
part, can not be obtained from the constructions used by Nikolskaia or Kalisch,
because the latter do not provide the full variety of the parts o, (T') of the
point spectrum. Unfortunately the proof of Theorem 1 does not admit any
straightforward modification applicable to any single Banach space different
from ¢5. The question whether Theorem 1 remains true if one replaces the
separable Hilbert space by, for instance, ¢, for 1 < p < 0o, p # 2 remains
open. However, using a completely different approach, we prove an analogue
of Nikolskaia’s theorem for these spaces.

Theorem 2. Let1 < p < oo and A C C. Then there exists a bounded
linear operator T : ¢, — £, for which ¢,(T') = A if and only if A is a bounded
F -set.

Note also that there are separable reflexive Banach spaces X, for which
the family of the sets o,(T'), o.(T") and ¢,(T) for bounded linear operators T’
acting on X is much poorer than for X = /5. For instance, if one takes X
being hereditarily indecomposable [1], then o,.(T) U o (T) C {0} and 0,(T) is
countable for any bounded linear operator 7" acting on X.

It is also worth noting that the sets appearing as spectra of continuous linear
operators acting on a separable Fréchet space were characterized by Shkarin
[10] (necessary conditions on a set to be such a spectrum were earlier obtained
by Slodowski [12]); namely, A C C is the spectrum of some linear continuous
operator acting on a separable Fréchet space if and only if A is a Gg,-set.

2. PROPERTIES OF SPECTRAL PARTS FOR GENERAL
SEPARABLE REFLEXIVE BANACH SPACES

Proposition 1. Let X be a topological vector space and T : Dy — X be a
linear operator whose graph is a union of countably many metrizable compact
sets. Then for any n € N, o (T) is an Fy-set.

Proof. Let n € N and A, B be the sets defined by the formulas

A={((z1,11),--,(@n,Yn),2) €T x C:y; = zx; for 1 < j < n},

the vectors z1,...,2,
B:{(($17y1)7---,($n,yn),z)eA' 1 }

" are linearly independent

Since A is closed in the space I'}, x C, which is a union of countably many
metrizable compact sets, the set A is itself a countable union of metrizable
compact sets. One can easily verify that B is open in A. Since an open subset
of a metrizable compact set is a countable union of metrizable compact sets,
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we have that B is a countable union of metrizable compact sets. Let now

(IDZB—>(C, gp((:cl,y1),--.7($m@/n)7z):Z-

Since ¢ is continuous and a continuous image of a compact set is again a
compact set, we have that the set p(B) = o(T') is o-compact and, therefore,
is an F,-set. O
Corollary 1. Let a topological vector space X be a countable union of metriz-
able compact sets and T : Dy — X be a closed linear operator. Then for any
n €N, o7 (T) is an F-set.

For a locally convex topological vector space X, the symbol X’ stands for
the space of linear continuous functionals on X. As usual for y € X’ and x € X
we write (z,y) instead of y(x). If T : Dy — X is a densely defined linear
operator, then the symbol 7" stands for the dual operator T” : Dy — X',
that is, Dy is the set of ¢ € X’ for which the functional x — (Tz,p) is
continuous on Dr with respect to the topology of X and T"¢ € X' is the
(unique) continuous extension of this functional. Note that the operator T is
always closed when X' is endowed with the x-weak topology (X', X) (see, for
instance, [9]).

Corollary 2. Let X be a separable metrizable locally convex topological
vector space and T : Dr C X — X be a densely defined linear operator.
Then for any n € N, o7 (T") is an F-set.

Proof. Let {U,, : n € N} be a base of neighborhoods of zero in X. Then X’ is
the union of the sets US = {y € X' : |(z,y)| < 1 for any =z € U, }. Alaoglu’s
theorem [9] implies that U? are compact in the x-weak topology o(X’, X). Since
X is separable, the compact spaces (U2, o (X', X)) are metrizable [9]. Since T”
is a closed operator on (X', (X', X)), it remains to apply Corollary 1. O

Proposition 2. Let X be a locally convex topological vector space and
T : Dy — X be a closed densely defined linear operator. Then o,(T) U
or(T) = 0p(T) U op(T).

Proof. Let z € 0,.(T). Then the linear space (T —zI)(X) is not dense in X. By
Hahn-Banach theorem [9] there exists y € X'\ {0} such that (T —zI)z,y) =0
and therefore (T'z,y) = (z, zy) for any x € X. Hence y € Dy and T'y = zy.
Thus z € 0,(T"). Let now z € 0,(T"). Then there exists y € Dp: \ {0} such
that T'y = zy. Hence (Tz,y) = (z,T'y) = (z,2zy) = (zz,y) and therefore
(T — zI)x,y) = 0 for any = € Dp. So we have (T — zI)(Dr) C kery. Thus
the set (T — 2I)(Dr) is not dense in X. It follows that z € 0,.(T) Uo,(T). O

Proposition 3. Let X be a separable reflexive Banach space andT : Dy —
X be a closed densely defined linear operator. Then for any n € N, JZ(T) is
an F,-set and o.(T) is a Gg-set.

Proof. Let X, be the space X endowed with the weak topology. Since a linear
subspace of a Banach space is closed if and only if it is weakly closed and
is dense if and only if it is weakly dense, we have that T is a closed densely
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defined linear operator on the space X,. Since closed balls of X are metrizable
and compact in the weak topology, we have that X, is a countable union of
metrizable compact sets. Applying Corollary 1, we obtain that O’;(T) is an
F,-set for any n € N. Corollary 2 implies that o,(7") is an F,-set. According
to Proposition 2, 0,(T) U o (T) = 0p(T) U 0,(T"). Hence 0,(T) U o (T) is an
F,-set. Since o(T') is closed, we have that o.(T) = o(T') \ (6,(T)Uo,(T)) is a
Gs-set. O

Remark 1. Recall that a Banach space X is called quasireflezive if dim X"/ X <
+00. In particular, any reflexive Banach space is quasireflexive. Slightly mod-
ifying the first part of the proof, one can see that Proposition 3 remains true
if reflexivity is replaced by quasireflexivity.

3. PROOF OF THEOREM 1

We need some additional notation and auxiliary lemmas.

Let S = S(R?) be the Schwarz space of rapidly decreasing infinitely differ-
entiable functions on the plane; let S’ be the dual space of the Fréchet space S
(it is usually called the space of Schwarz distributions [9]) and let ® : §' — 5’
be the Fourier transform. Let also o : R2 — R* be given by the formula
a(z,y) = (1+2?) " (1+y*) "

Consider the space E = {f € S’ : a- ®f € Ly(R?)} endowed with the inner
product

(f,9)E = (a-@f,a-Pg)r, () = // a2(x7y)<I>f(m,y)<I>g(ac,y) dx dy.
RZ

Since the map f — « - ®f is a linear homeomorphism of S’ onto S’, we have
that E is a Hilbert space and the topology of E defined by the inner product
(-,-)E is stronger than the topology of S’. Note also that Lo(R?) C E and the
topology of E is weaker than the natural Hilbert space topology of Ly(R?). We
shall also use the following notation. For two functions A and B defined on the
same set we write A < B if there exists ¢ > 0 such that |A| < ¢|B|. For p € S

denote
ply) = 4/’(1 + ;;) (1 + ;;) e(z,y)

Clearly p is a continuous norm on the locally convex topological vector space

S.
Lemma 1. [[¢- fllg < p(p)||flle for f € E and p € S.

Proof. By definition [l¢ - fl[z = [la- ®(¢- f)llL,®2) < lla- (P * Df)llL,m2),
where * denotes the convolution of functions. Using the definition of p and
the well-known properties of the Fourier transform, we obtain ®¢ < p(p) - 3,

dzx dy.
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where 3(z,y) = (1 +2%)71(1 + y*)~1. Hence

lo- F13 < R@lla- (85 )2, ) = (%) / / o2(2, ) %

/ |® £ (u,v)[*B(x —u,y —v) dudv//@f (5,0)|?B(x — s,y —t)dsdt dedy =

d t
/// |<I>fuv<1>fst| ﬂx ur—s)d [Bly—v,y— ydudvdsdt
(14 22) (1+9?)

One can easﬂy verify that

dz 1 1 1
R/ (+oP0+ @)+ @59 1+ =) [<1+u2>2+<1+s2>2}

Thus
|Df(u,v)Pf(s,t)] 1 1
Il Sl < p*(e //// 1+ (u—s)t {(1+u2)2+(1+52)2]x

1 1
1+(v—t) [(l—l-v 22 T (14 2)?
Performing the change of variables a = u— s, b = v —t (we pass from variables

u,v,t, s to variables w,v,a,b) in the last integral and denoting g = - ®f, we
have

e+ FIIZ < p*( /// g v)glu—av=b)|[1+(=af  1+u® ]
E 1+a4 1+u2 1+(u_a)2

R2 R2

] dudv dsdt.

1

" 1+ (v—10)? 1+ v?
1+04

da db.
1+ 02 1+ (v—=10)2 “

] du dv

Since g € Ly(R?), we obtain

/ / 19, 0)g(u — a0 — B)] dudv < g2, ) = |13
]RZ

Hence,

1 1+ (u—a)? 1+ u? 1
2 2 2
: X
R e L e e
R2

1+ (w=0)?° 140 2 2// L1
dadb T2 T dadb
{ T+ 1+ -be] <P @Ie | | e T
R2

<)%
Thus |l¢ - flle < p(e)|flE- O

X sup
vER
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Let also v : R? — C, y(x,y) = x +iyand A CD={2€ C: |z] <1}
be an infinite locally compact set. Then there exists a sequence of compact
sets K,, C C such that K, is contained in the interior of K, ; in A for any
ne€Nand A=J,, K,. Since 4 is locally compact, we also have that the set
A\ A is compact. Hence for any n € N there exists an infinitely differentiable

function ¢, : R?> — [0,1] with bounded support such that ‘P"Lrl(K ) = 0

and %L’v‘l (@\4) = 1. Consider the space

Ea={f€E:suppfCy(A) and |[f]l1 < +oc},

where || fl|4 = | f1% + Yoy I - ©nll% and supp f is the support of the gener-
alized function f. It is straightforward to verify that (Ea4,| - ||4) is a Hilbert
space.

For any (x,y) € R?, the symbol 4, , stands for the Dirac’s §-function con-
centrated in the point (z,y). Since the function ®d, , is bounded, we have that
6zy € E. If (x,y) € R? is such that  + iy € A, then there exists n € N for
which = + iy € K,,. Hence 05,y - ¢, = 0 for m > n. Therefore

n—1
182y 11% = 119241 + (1 +> e, y)) < too.
k=1

It follows that 0, € E4 for x+iy € A. Let us verify that the map z+iy — 05 4
is continuous from A to the Hilbert space E4. Let x,, + iy, € A, (xn,yn € R),
Ty — T, Yp — y and x+iy € A. Then there exists n € N for which x+iy € K,,.
Since K, is contained in the interior of K, 1 in A, we have x,,, + iy, € K11
for sufficiently large m. For such m,

n

2

Hazm,ym*‘sﬂc,y”i = ||5mm,ym*5x,y||2E+Z H(pk(mm3ym)5l’m,y'm, - ‘Pk(xay)(sz,y ‘E .
k=1

The definition of ||-|| g and the Lebesgue theorem imply that ||05,, y,. —0z.y]l4 —
0 as m — +4o00. The continuity of the map = + iy — 0, is verified. Let now
H 4 be the closure in E4 of the linear span of the set {0, , : * +iy € A}. Since
the map x + iy — 4, , is continuous, H 4 is separable as a closed linear span of

a separable set. Thus (Ha, || - ||4) is a separable Hilbert space. Consider now
the operator T : 8" — S’ defined by the formula
Tf=~-Ff

Lemma 2. T(H,) C Hy and the restriction Ty of T to Ha considered as
an operator on the Hilbert space H, is bounded. Moreover, o(T4) = A,
0p(Ta) = 0p1(Ta) = A and the operator T4 — zI has dense range in H,4 for
any z € C which is not an isolated point of A. Moreover, there exist a constant
¢ > 1 and a decreasing continuous function a : (0, +00) — (0, 400), which do
not depend on A such that ||Ta|| < ¢ and ||[(Ta — 2I)71|| < a(dist(z, A)) for
ze€C\ A
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Proof. Let n € S. According to Lemma 1 for any f € Ha4,

In- 15 =ln-Flm+>lIn-f-enls

n=1

< p*(n) (Ilfll?; +>lIf %II%)

n=1
= I fII%-

Choose an infinitely differentiable function vy with compact support such that
vo(z,y) = v(z,y) for 22 +y* < 1. Since the support of any f € E4 is contained
in the set v~ 1(A) C {(z,y) € R? : 22 + y? < 1}, we have Tf = 7o - f and
suppTf C supp f € v '(A) for any f € E4. From the fact that Tf = v - f
and Lemma 1, it follows that ||Tf|la < p(70)||f|la for any f € E4, where
p is the norm defined by at the beginning of Section 3. Hence there exists a
constant ¢ > 1 such that ||Tf||a < ¢||f||a for any f € E4. Thus the operator
T|EA acts boundedly on the Hilbert space E4 and ||T‘EA | <ec Letz,y e R
be such that « + iy € A. Then T0,, = v(z,y)0s,y € Ha. Hence T maps the
dense in H,4 linear span of the set {d,, : (z,y) € v '(A)} into Ha. Since the
operator T‘EA is bounded with respect to the norm || - || 4 and H4 is complete,
we obtain that T(H4) € Ha and ||T4] < c.

Let p € C*°[0, 00) be such that p‘[071/2)u[967+m) =0, p|[178C] =1 and zg,yg €
R be such that z = z + iy € C\ A and |z| < 2¢. Denote

1 ( |z + iy — z|)

x+iy—z"\ dist(z, A) /
Clearly n is an infinitely differentiable function with bounded support and
77|7*1(K) = ﬁh*l(ﬁ)' Since the support of any f € H4 is contained in the
set y~1(A), we have that - (Ta — zI)f = (T — zI)(n- f) = f for any f € Ha.
Since T'f =« - f, the operator T — zI is invertible and |(Ta — zI) Y| < p(n).
It is straightforward to verify that p(n) < (dist(z, 4)) 7. Hence there exists a
constant ¢y > 0 for which [|(Ta — 2I) 7| < cadist(z, A)~6 for 2 € C, |z| < 2¢
and z ¢ A. If |2] > 2c then the estimate ||T4|| < c implies that Ty — 21 is
invertible and ||(T4 — zI)~ Y| < 2|2|7! < 4dist(z,A)~. Hence o(T4) C A
and |[(Ta —2I)71|| < a(dist(z, A)), where a(t) = max{cot=6,4¢~1}. Obviously,
a: (0,4+00) — (0,400) is continuous and decreasing.

Note that the spectrum of the operator T is the entire complex plane C, is
purely point spectrum of multiplicity 1 and for any z = x + iy € C (z,y € R)
the one-dimensional space ker (' — zI) is spanned by ¢, ,. Hence

n(z,y) =

0p(Ta) =0p1(Ta) ={z+iy:z,y € Rand d,, € Ha}.

For z+iy € A, 0, € Ha by definition of Ha. If z+iy ¢ A, then suppd, , € A
and therefore &, , ¢ E4. Hence 8., ¢ Ha. If v +iy € A\ A, then ¢, (z,y) =1
for any n € N. Hence 0,y - ¢ = 05,y for any n € N and the terms of the
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series from the definition of the norm ||d, || 4 are all equal to the same positive
number and therefore the series diverges. Hence 6., ¢ E4 and therefore
0zy ¢ Ha. From the last display we have 0,(T4) = 0p1(Ta) = A. This
equality together with the already proven inclusion o(T4) C A imply that
o(Ty) = A.

It remains to verify the density in H4 of the range of the operator Ty — zI
when z = zg+iyy € Cis not an isolated point of A. By definitions of T4 and H 4
we have that 0, € (Ta—2I)(Ha) for any (z,y) € v (A)\{(zo,y0)}. If 2 ¢ A
we have that {8, : (z,y) € v (A)} C (Ta — 2I)(Ha). Let z € A. Since z is
not an isolated point of A and the map x+iy + 6, , from A to H 4 is continuous,
we have that 65y, is a limit point of the set {05 : (z,y) € v~ (A)\{(z0,%0)}}
in Hy. Thus, in any case the set {d,, : (z,y) € v '(A)} is contained in the
closure of (T'a — zI)(H,). Hence (T4 — zI)(H,) is dense in Hy4 since the set
{04 : (z,y) € v71(A)} has dense linear span H4. O

Lemma 3. Let K C C be a nonempty compact set. Then there exists a
bounded linear operator C'x acting on a separable infinite dimensional Hilbert
space such that 0(Ck) = 0.(Cx) = K.

Proof. Let Hy = L9[0, 1] and Ty : Hy — Hy be the classical Volterra operator:
Tof(t) = ft f(s)ds. It is well-known that Tj is a bounded linear operator and
o(Ty) = UOC(TO) = {0}. Let {z,} be a sequence dense in K, H, = H for any
n € Nand H = é H,, be the Hilbert direct sum of the Hilbert spaces H,,.

n=1
Then H is a separable Hilbert space. Define the operator Cx : H — H by
the formula (Cxx), = (To — 2nl)xy. It is straightforward to verify that this
operator satisfies the desired properties. O

Lemma 4. There exists a bounded linear operator 11 acting on {5 such that
ITu|| <1, 0p(Th) = o(Th) = 0p1(Th) = {0} and the range of T} is dense.

Proof. One can easily verify that the weighted backward shift (Tix), =
ZTni1/(n + 1) satisfies the desired conditions. O

Lemma 5. There exist a constant ¢; > 0 and a decreasing continuous function
ay : (0,400) — (0,4+00) such that for any non-empty o-compact set A C
D there exists a bounded linear operator (s acting on a separable infinite
dimensional Hilbert space such that 0(Qa) = A, 0,(Qa) = 0,1(Qa) = A,
the range of the operator (Qa — zI) is dense for any z € C, |Qal < ¢1 and

1(Qa — 2I)~ Y| < ay(dist(z, A)) for z € C\ A.

Proof. Pick an increasing sequence K, (n € N) of compact sets such that
A=, K, Let Ko = @ and A, = K,, \ K,,_1 for n € N. Then the sets
A,, are locally compact as open subsets of compact spaces. The set A,, (as for
any subset of a separable metrizable set) can be decomposed as A,, = AS U AY,
where the set AS is finite or countable, A¥ is closed in A,, and does not have
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isolated points and A5 N AY = @. Let A° = J., AS. Clearly A€ is finite or
countable. Let N' = {n € N: Al # &}.

If n € NV, then let H,, = Hu be the space from Lemma 2 and L, = Thu.
By Lemma 2

(1) o(Ln) = A3 and  0p(Ln) = 0p1(Ln) = Ay;
(2) Lol <c, and  [[(Ln = 2D) 7" < a(dist(z, A7)).

If w e A¢, let Gy, = {5 and consider the linear operator M,, acting on G,
defined by the formula M,, = T} — wl, where T} is the operator furnished by
Lemma 4. Taking into account the inclusion A¢ C {z € C : |2|] < 1} and
Lemma 4 we obtain that for any w € A¢,

®3) o(My) ={w} and  op(My) = 0p,1(My) = {w};
(4) 1Myl <2 and  [[(Ly —wl) M| <a(lz — wl),

~1||. Clearly the function @ : (0, +00) —

where a(t) = SUP.cc, |2(>t Ty — 2)
(0, +00) is continuous and decreasing.

Let now H = P nenN Hn, G = &P weae G- and the operators L : H —
H, M : G — G are defined by the formulas (Lx), = Lz, and (Mz), =
Myxy. Finally let X = H® G and Q4 : X — X, Qa(h+g) = Lh+ My.
The first inequalities from (2) and (4) imply that @ 4 is a well-defined bounded
linear operator acting on the separable infinite dimensional Hilbert space X
and ||Qa|| € ¢1 = max{c, 2}. The second inequalities from (2) and (4) imply
that 0(Q4) C A and ||[(Qa —2I)7Y| < ay(dist(z, A)) for z € C\ A, where a; =
max{a,a}. Moreover, the second relations from (1) and (3) and disjointness of
AY and A° imply that

0p(Qa) = 0p1(Qa) = | J A UA° = A.
neN

This formula, the inclusion 0(Q4) C A and closeness of 0(Q4) imply that
(Qa) = A. Density of the range of Q4 — zI for any z € C follows from the
fact that the operator Q4 — z[I is a direct sum of the operators L,, — zI and
M,, — zI, which have dense ranges according to Lemmas 2 and 4. (|

Lemma 6. Let K C C be non-empty and compact and A C K be a o-
compact set. Then there exists a bounded linear operator Rx 4 on a separable
infinite dimensional Hilbert space such that o(Rx a) = K, 0,.(Rk,4) = A and
CTC(RKA) =K\ A.

Proof. Without loss of generality we may assume that K C D. If A = &,
then we can take Ri 4 = Ck, where Ck is the operator furnished by Lemma
3. If A+ @ consider the set A = {z: z € A}. Let H; and H, be separable
infinite dimensional Hilbert spaces. By Lemma 3, there exists a bounded linear
operator Cx : Hi — Hj such that ¢(Ck) = 0.(Ckx) = K. By Lemma 5,
there exists a bounded linear operator Q7 : Hy — Hj such that o(Q3) =
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A, 0p(Qz) = A and the operator Q7 — zI has dense range for any z € C.
Let H = Hy ® Hy and Rk 4 : H — H be the direct sum of Q} and Ck:
Ry, a(h1 + ho) = Cxhy + Q}hg, where Q} is the adjoint of @ 3.

Since for any bounded linear operator ) acting on a Hilbert space, o(Q*) =
{z: 2 €0(Q)}, we have that o(Q%) = A C K. Let us verify that 0,,(Q%) = &.
Indeed, let © € Hy and Q}x = zx for some z € C. Then (Q}:r,y) = (zx,y)
for any y € Hy. Hence (z,Qzy — Zy) = 0 for any y € H,. Density of the
range of Q7 — zI implies that 2 = 0. Hence 0,(Q%) = @. Taking into
account the mentioned properties of @ 7 and C, we obtain that o(Rx 1) = K,
op(Ri,4) = @ and 0 (Rk,4) = 0-(Q%). It remains to verify that 0, (Q%) = A.

Let z € C. Then (Q% — 2I)(Hz) = ker (Qz — zI)*. Since op(Q%) = @, we

have that z € ap(Q%) if and only if Z € 0,(Q 7) = A, which implies the equality
O',«(Q*g) =A. O

Now we can prove Theorem 1. Part I follows from Lemma 5.

Part II. Without loss of generality we may assume that K is contained in D.
By Lemma 6, there exists a bounded linear operator Ly = Rk auc acting on
a separable infinite dimensional Hilbert space Hy such that o,.(Lg) = AUC,
o(Ly) = K and o.(Lg) = B. Since A,, is o-compact, Lemma 5 implies the
existence of a bounded linear operator L, = () 4, acting on a separable infinite
dimensional Hilbert space H,, such that o(L,) = Ay, 0,(Ly) = 0p1(Lyn) = An,
(L, — z)(H,) is dense in H,, for any z € C, ||L,|| < ¢; and ||(L, — 2I)7!|| <
ay(dist(z, A,)) for z € C\ A,,, where the constant ¢; and the function a; are
furnished by Lemma 5.

Let now H be the Hilbert direct sum of H,: H = ZOZO H,, and L :
H — H be the linear operator defined by the formula (Lz),, = L,x,. The
estimates ||L,| < c¢; imply that L is well-defined and bounded. From the
inequalities ||(L, — 2I)™Y| < ay(dist(z, 4,)) it follows that

o(L) = U o(L,) =K and op(L) = U op(Ly) = A.
n=0 n=0

For any z € A = A;, the multiplicity of the element z of the point spectrum
of L is equal to the number of n’s for which z belongs to the point spectrum
of L,. Since 0,(L,) = A,, for any n € N, and o,(Lg) = @, we have that

o, (L) = Ay, for any n € N. Furthermore,

on(L) = <[°j ar<Ln>) \op(L) = 0,(Lo) \ op(L) = (AUC)\ A = C.

n=0

Hence the operator T' = L satisfies all desired conditions.

Part III. Let K’ = {# € K : Rez > 0}, K" = {# € K : Rez < 0},
A ={z¢€ A, : Rez 20, 2z # 0}, ¢'" = {z € C : Rez > 0,z # 0},
Al ={z€ A, Rez<0,2#0}and C"”" = {z € B: Rez <0,z # 0}. Consider
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the functions f(2) = 2% and fa(2) = £, Let K' = fi(K') U {1}, K* =
BK") U1}, AL = [i(AL), A2 = fo(A%), CY = [1(C"), C2 = fo(C"), B =
K'\ (A1UC?) and B2 = K2\ (A2U C?). Since f; and f are automorphisms
of the Riemann sphere, f; maps the upper half-plane onto D and fo maps
the lower half-plane onto DD, we obtain that K' and K? are non-empty closed
subsets of D, AL and A2 are decreasing sequences of F,-sets, B! and B? are
Gs-sets and K! = ALUB*UCY, K2 = A2UB?UC? AlnB = AlNnC! =
BINnC' =2, A3NB?= A2NC? = BN (C? = @. The already proven Part 11
of Theorem 1 implies the existence of bounded linear operators 717 and T,
acting on separable infinite dimensional Hilbert spaces H; and Hs respectively,
such that o(T;) = K7, o}(T;) = A}, 0,(T;) = C7 and o0.(Tj) = B’ for
Jj € {1,2}. Let S; = Z(l + Tl)(l — Tl)_l and Sy = —i(l +T2)(1 — TQ)_l.
Since 0 ¢ A UC"UAf UC” and co ¢ A} UC" U A} UC” we have that
—1¢ 0,(T;)Uo.(T;) and 1 ¢ 0,(T;)Uo.(T}) for j € {1,2}. Hence the operators
S; are well-defined closed densely defined linear operators. Moreover, one can
casily verify that o(S;) = f; ' (K7), 0(S;) = f; 1(A}) and 0.(S;) = f;'(C7)
for j € {1,2}. Now we see that if 0 ¢ K, then the direct sum of S; and S
satisfies the desired conditions. If 0 € K, then Part II of Theorem 1 implies
the existence of a bounded linear operator S3 on a separable Hilbert space
Hj;, whose spectrum is the one-point set {0} and is point of multiplicity n if
0 € A, \ Apy1, is point of infinite multiplicity if 0 € (.2, A,,, is residual if
0 € C and is continuous if 0 € B. The direct sum of S1, Sy and S3 then satisfies
all desired conditions. U

Remark 2. Let A C C be a bounded set. By Theorem 1 there exists a bounded
linear operator T on a separable Hilbert space Hy such that o,(T) = A. For
any z € A pick x, € Hy \ {0} such that Tz, = zx,, let L be the linear span
of the set {x, : z € A} and H = L. Then T|, : L — H is a densely defined
linear operator on the separable Hilbert space H with point spectrum A. Thus

the closeness condition is essential in Theorem 1.

4. PROOF OF THEOREM 2

Lemma 7. Let p € [1,00) and K C D be a compact set such that 0 ¢ K.
Then there exists a bounded linear operator T acting on ¢, such that ||T|| <5
and op,(T) = 0p1(T) = K.

Proof. We would like to interpret ¢, as the space E = €,(Zy x Z.) of sequences
x = {Tn k }n,kez, for which

lz][? = D JanplP < oo
n,k=0
Let U ={2€ C: |zl <2and z ¢ K}. For any z € U let d(z) be the
distance from the point z to the compact set K and let U(z) = {w € C :

|w — z| < d(z)/2}. Clearly U is contained in |J,.; U(2). Since any family of
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open subsets of a separable metric space has a countable subfamily with the
same union, we have that there exists a sequence z; of elements of U such that
U C Up—, U(zk). Denote i = d(z) /2.

Consider the operator T': E — E defined by the formula

220, k+1 ifn=0,
(5) (Tz)pp =9 2 "To0 if k=0andn > 1,
Z'I‘an,k + Tnx7l7k—1 lf k 2 1 and n 2 1

One can easily verify that T is bounded, |T'|| < 5 and 0 ¢ 0,(T"). We are going
to compute the point spectrum of 7. Let z € E '\ {0} and z € C\ {0} be such
that Tx = zx. Using (5) we obtain that the equation Tx = zz is equivalent to
the following system

Tk2—n

(6) Tk = { (Z/Q)kfo,o if n =0,

ml’uo ifn 2 1.
The last formula implies that = 0 if £ o = 0. Hence 299 = ¢ # 0. From
(6) we have zg = c(z/2)*. Since z € E, we have |z| < 2. Applying (6) once

z?iiizk Since z € E, we have
that |z — 2| > rg, that is z ¢ U(zx). Since the union of U(z;) contains U,
we obtain that |z] < 2 and z ¢ U. Hence z € K. The inclusion 0,(T) C K
is proved. Let now z € K and x be the sequence defined by the formula (6)

with x99 = 1. Since |z| < 1 and |z — z,| > 2r,, for any n € N, we obtain that
|znk] < % Hence = € E. Since (6) is equivalent to the equation Tx = zx,

again, we obtain that for any n € N, z,, ;, =

we have that z is an eigenvector of T' corresponding to the eigenvalue z. Hence
op(T) 2 K. Thus, 0,(T) = K. Since, as we have already mentioned, a vector
x satisfying (6) is uniquely determined by its coordinate x o, we have that all
eigenvalues of T are of multiplicity 1. Hence 0,(T) = 0p1(T) = K. O
Now we can prove Theorem 2. If A = 0,(T) for some bounded linear
operator acting on £, with 1 < p < oo, then according to Proposition 3, A is a
bounded F,-set. Let A be a bounded F,-set. We have to construct a bounded
linear operator T on ¢, such that o,(T) = A. Without loss of generality, we
may assume that 0 ¢ A and A C D. Pick a sequence K,, of compact sets for
which A = |J7"; K,,. According to Lemma 7, for any n € Z, there exists a
bounded linear operator T,, on ¢, such that ||T,,|| < 5 and 0,(T},,) = K,,. Now
the direct £,-sum T of the operators T, satisfies 0,(T") = A and we are done.
Finally we would like to mention a few open problems.
Question 1. Is Theorem 1 true for operators acting on ¢,, 1 < p < 00? The
same question can be asked about other natural reflexive Banach spaces.
Question 2 (E. Gorin). Does there exist a non-normed separable Fréchet
space X such that the spectrum of any linear continuous operator acting on X
is bounded?
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