
 Multiple intelligences in a MultiAgent System applied to telecontrol

 D. Oviedo ⇑, M.C. Romero-Ternero, M.D. Hernández, F. Sivianes, A. Carrasco, J.I. Escudero

 Departamento de Tecnología Electrónica, Universidad de Sevilla, Seville, Spain
⇑ Corresponding author. Tel.: +34 954554324.
E-mail addresses: oviedo@dte.us.es, mcromerot@us.es (D. Oviedo).
Keywords: a b s t r a c t
Agents
MultiAgent System
Multiple intelligences
Photovoltaic energy

Remote control
Expert Systems
Neural Network

Bayesian Network
Control systems
Solar panels
This paper presents a control system, based on artificial intelligence technologies, that implements
multiple intelligences. This system aims to support and improve automatic telecontrol of solar power
plants, by either automatically triggering actuators or dynamically giving recommendations to human
operators. For this purpose, the development of a MultiAgent System is combined with a variety of
inference systems, such as Expert Systems, Neural Networks, and Bayesian Networks. This diversity of
intelligent technologies is shown to result in an efficient way to mimic the reasoning process in human
operators.
1. Introduction 2009) that presents an agent-based control system for distributed
The main feature for the correct functionality of a control sys-
tem is the expert knowledge and how it is applied by humans.
These concepts should be applied heavily in the development of
these systems but they are often forgotten or minimized in order
to obtain reliability. To improve these systems, it is necessary to
establish mechanisms of intelligent human-like self-control.

MultiAgent Systems enable suitable models to be built for the
prediction of complex and dynamic systems in real time (Saleem,
Nordstrom, & Lind, 2011). Inference engines attempt to mimic
the behavior of the human brain by using various types of
algorithms and strategies (Dopico, De La Calle, & Sierra, 2008).
The combination of both these technologies should therefore allow
the construction of systems capable of solving problems satisfacto-
rily without previous knowledge of all the variants of solutions.

The work discussed here belongs to the field of distributed
control systems, particularly in the automatic telecontrol of solar
power plants (Li, Karray, & Basir, 2010; Yang, Yang, Zhao, & Jia,
2009). Furthermore, control systems based on MultiAgent theory,
and restricted to specific domains have been developed. For
instance, one of the early works (Junpu, Hao, Yang, & Shuhui,
2000) discusses the reliability of agent-based distributed hierarchi-
cal intelligent control. Another study examines the modeling of
MultiAgent control for energy infrastructures (Sebastian Beer,
energy resources in low voltage power grids.
Regarding the different possibilities to build an inference engine,

studies and applications have achieved excellent results for control
systems based on Expert Systems (Liebowitz, 1997). These solutions
provide a fast output and precise, and decrease state transitions in
the real environment to control. Other options in inference systems
might include Neural Networks (Cochocki & Unbehauen, 1993) or
Bayesian Networks (Costaguta, Garcia, & Amandi, 2011), to reinforce
the initial heuristic rules of any control system based on this kind of
logic. Finally, another significant option is the use of inference sys-
tems based on Fuzzy Logic (Leondes, 1999).

MultiAgent control system architectures have been considered
to reduce the computational complexity and manage the huge
amount of distributed data and coupling problems among many
subsystems. In many cases, implementations include only one
intelligent aspect (Gadallah & Hefny, 2010; Ouidad, 2006), and
often in a superficial way. This is due to the fact that intelligence
and learning are very complex features to implement at software
level. The inherent complexity of distributed systems causes a lack
of interest in their implementation, due to requirements and
reliability in such responses.

Within this domain, the most important aspect that we discuss
concerns the application of real and useful intelligence models in
conjunction for control systems based on MultiAgents. Studies
Lorenzi, Bazzan, Abel, and Ricci (2011) and Miyashita and Rajesh
(2010) use assumptions in the recommendation or coordination
techniques in the making-decision, being discarded inference
systems for their requirements. In this paper we focus in the orga-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.04.048&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.04.048
mailto:oviedo@dte.us.es
mailto:mcromerot@us.es
http://dx.doi.org/10.1016/j.eswa.2014.04.048
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

nization of the elements of inference and the flow of information
within the system, with the aim of creating an optimized and
intelligent control system that meets all requirements exposed.

The purpose of this research is to determine the best combina-
tion of the points indicated, and to provide a viable solution
through optimizing and ensuring the use of distributed artificial
intelligence technologies. The result of this research is the CARIS-
MA system, which is a new MultiAgent System application for
the development of integrated systems and automatic control with
distributed intelligence. This software is designed for application in
the field of industrial control systems for facilities based on solar
photovoltaic energy sources.

This paper is organized as follows: Section 2 shows an overview of
our system, while in Section 3 the proposed architecture for a Multi-
Agent System applied to a control system of a solar power plant is set
out. In Section 4, the implementation and integration of the infer-
ence systems are presented together with the MultiAgent System
developed. Section 5 shows the tests performed and the results
obtained. Finally, the concluding remarks are found in Section 6.
2. System overview

The combination of certain technologies, to which reference is
made in the introduction, leads to the integration of inference
engines in the MultiAgent System. This combination is intended
to provide the agents with the individual and collective intelli-
gence necessary to resolve problems common to the entire system.

The system has been developed within the so-called ‘‘CARISMA
Project: MultiAgent System for Remote Control of Solar Photovol-
taic Power Plants’’. The objective is to control and monitor solar
panel farms: in an automated way whenever possible and, the
cases when it is not possible, to provide human telecontrol opera-
tors with control recommendations. To this end, small hardware
devices are distributed with associated sensors and actuators in
various areas of a solar farm in order to do this. This MultiAgent
System employs the set of devices in order either to make deci-
sions of automated control or to send recommendations to techni-
cians of the solar plant based on the data and knowledge available.

2.1. Platform, environment and language development

We have made a study of the existing platforms, environments
and development languages in order to facilitate the development
and implementation of a MultiAgent System and the integration of
several inference systems. Currently there are several platforms,
frameworks and libraries that can help towards the development
of MultiAgent Systems (Weyns, Parunak, Michel, Holvoet, & Ferber,
2005). These tools minimize development time and enable work to
be carried out under accepted standards in MultiAgent System
development.

Each of these platforms offers certain features according to the
requirements of diverse applications. From among all the plat-
forms available for MultiAgent System development, JADE (2004)
has been selected since it encompasses both the features (standa-
rization and use of generic language) required for our purpose.
3. MultiAgent System architecture

Based on the philosophy of the development of the JADE
platform an architecture for MultiAgent System of the CARISMA
project on the JADE platform has been created. This architecture
is in accordance with the required specifications for a control sys-
tem (Oviedo et al., 2010, chap. 1).

In order to design this architecture, the methodology proposed
by the JADE developers (Bellifemine, Poggi, & Rimassa, 2001) has
been followed in a flexible way in order to minimize the costs
involved in the initial system architecture specification.

3.1. Types of agents defined in the system

From the study carried out for the modeling of intelligence,
learning and socializing, the following agents have been defined
in our system:

� Teleoperator Agent
This is an agent who holds overall control of the platform. The main
functions are to configure various aspects of the system, such as:
coverage areas, which agents belong to each zone, interface for
access to other agents in the system, and interface for human user
access. In terms of making decisions and offering recommenda-
tions, this is the agent that has global knowledge of the platform.
� Coordinator Agents

The responsibility of these agents is to coordinate global
solutions for an alarm situation or fault in a particular area.
Examples of tasks assigned to these agents include communica-
tion failures and recommendations of solutions to other agents
in this area.
� Operator Agents

These agents are responsible for controlling several Sensor-
Device Agents that are assigned by the human operator, or for
taking an action on a Sensor-Device Agent. They provide a
number of communication mechanisms to communicate faults
to other agents (coordinators or operators).
� Sensor-Device Agents

Reactive agents responsible for obtaining data from sensors and
performing actions on the actuators. These agents are unique
and customized to the type of device to be monitored and
controlled.

In addition to these four agents, in the system a fifth agent func-
tionality and platform boot, called ‘‘Remote Agent’’ (RA), exists.
This agent is responsible for creating and operating the structure
of agents in different physical systems that make up the software
platform (embedded systems, servers, etc). The agent’s life cycle
is limited to the system boot, creating a temporary container when
the functions are performed, and it disappears along with its con-
tainer when the functions have been completed.

3.2. MultiAgent System overview

The designed architecture is intended to integrate the various
types of agents described: Teleoperator Agent (TA), Coordinator
Agent (CA), Operator Agent (OA), and Sensor-Device Agent (SDA).
The number of Coordinator Agents, Operators and Sensor-Devices
remains unlimited. It is possible to define the number of agents
of each type in the system startup and remove or create them
dynamically with the system running. Moreover, the number of
Teleoperator Agents is limited to a single agent whose existence
in the system is compulsory.

An example of the network topology defined is shown in Fig. 1. In
this example, three zones or areas of communication have been
defined, although the network may expand or shrink according to
the number of solar panels to control or the complexity of the system
control.

The Teleoperator Agent constitutes the starting point to the sys-
tem, and provides a user interface that allows global configuration of
the platform (shown in Fig. 2). Additionally, this interface enables
the overall management of knowledge in the system. Coordinator
Agents perform the semi-global coordination of solutions for fault
or alarm conditions detected from multiple points in different areas
of the system. Operator Agents are responsible for monitoring the

Fig. 1. Example of architecture of agents in CARISMA.
Sensor-Device Agents on common tasks and for detecting faults and
local alarms according to information received by the SDA. In addi-
tion, Operator Agents can report detected faults and alarms to the
remaining system agents through Coordinator Agents.

Individually, each agent presents a general system architecture
based on the paradigm of Desires, Beliefs and Intentions (Rao,
1995). Multiple intelligences have been implemented for agents
by using different inference systems. Sensor-Device Agents are
hybrid. They have reactive abilities to enable them to operate in
tasks, alerts for direct detection of failures, and actions over
controlled devices (sensor readings and operations on the actua-
tors). Each SDA has a specific implementation to extract data from
a particular sensor or to perform actions on a specific actuator.

In terms of hardware, there are no restrictions on the number
and type of agents that can be located in a device. Furthermore,
Fig. 2. Global configuration
there are no restrictions in the type or functionality of these
devices in the system. In any case, the devices that host agents
should have sufficient computational capacity to run agents on
the JADE platform. These electronic devices are often embedded
systems with capabilities for various transmission technologies
(Radio Frequency, Ethernet, Bluetooth, etc), and can be assigned
to control one or several sensors or actuators. The sensors may
be from different types, such as temperature, humidity, CO2, and
radiation. Other types of specific sensors involve control sensor sig-
nals concerning parameters which should be analysed in a solar
power plant (voltage and intensity in the solar photovoltaic panel,
battery monitoring, etc). The actuators may include control valves,
on/off cooling systems, and electrical circuit drivers.
4. Intelligent control based on inference models

Once the structure of our MultiAgent System has been defined,
as well as its basic elements and possible communications that can
occur among agents, then it can be analysed to provide agents with
capabilities of intelligence and learning.

There are three objective inference systems that have been inte-
grated into agents to provide them with the multiple intelligences:

� An inference system based on an Expert System to provide the
agents with the capacity of logical inference.
� An inference system based on Neural Networks to provide the

agents with the capacity of statistical inference.
� An inference system based on Bayesian Networks to provide the

agents with the capacity of probabilistic inference.

Logical inference allows a reliable monitoring of actions and
decisions made by agents. Statistical inference allows behavior
patterns to be found that improve and optimize certain system
tasks, while probabilistic inference allows the provision of recom-
mendations for certain problems with uncertain data.
interface of CARISMA.

4.1. Intelligent control with Expert Systems

As a result of the increasing difficulty in problems to be solved
by a MultiAgent System, then the availability of systems that
independently enhance decision making and solutions is required.
The introduction of a MultiAgent inference system helps to solve
this problem, but it results in software of a more complex nature.
In order to avoid this problem initially, the easiest and fastest infer-
ence system to integrate into a MultiAgent System is an Expert
System.

In our implementation, an Expert System has been integrated in
each agent, which manages their own knowledge base (rules and
facts) and allows them to make logical decisions autonomously.
In order to implement the Expert System in each agent, a
rule-based system named Drools (2013) is used. This production
system uses an advanced implementation of the ‘‘Rete algorithm’’
(Forgy, 1982), thereby facilitating and improving the response
times.

Additionally, we have defined a set of rules and facts for the
control of a solar plant in Drools (by extension, this is omitted in
this article). To this end, a technique based on plain text files with
extension ‘‘.drl’’ and ‘‘.dsl’’ has been used that defines the language
domain, thereby making it possible to employ natural language
with rules. This technique facilitates maintenance by end users of
the application (telecontrol operators).

Moreover, it is worth bearing in mind that one of the features of
Drools is that rules are read every time they have to be executed.
This enables them to be changed even with the system running,
which allows the dynamic modification of the agent’s knowledge
base. This feature combined with the application of a learning
algorithm based on labeling (Oviedo et al., 2010) and applied about
knowledge managed for experts in power plants provides an
evolutionary learning in the Expert System. It allows the gradual
adaptation of the system to the needs raised by the environment.

The developed user interface (shown in Fig. 3) allows the rules
associated with the agents to be changed manually. Once the user
has modified all the desired rules using the rule editor, the Teleop-
erator Agent sends a message whose predicate is ‘‘deleteGlobal-
KnowledgeExchange’’ for each rule removed, and a predicate
‘‘AddGlobalKnowledgeType’’ for each new rule. Both predicates
include the rule to be changed and the type of agent that has to
make the change. When an agent receives the message, the agent
behavior can result in a modification or insertion of the rule in
its own knowledge base. If the agent type corresponds to the type
specified by the message, or if it can return the message to spread
it to the agents from the lower layers, then the message flows
through the hierarchy of agents.

In addition to the user interface discussed, there are different
ways as to how CARISMA sends data to Drools to be validated.
For example, as shown in Fig. 4, it is possible that when an SDA
reads data, then it can be sent directly to the rule engine, and in
case of the existence of a rule trigger, an alarm will be generated
to send the data to higher levels in the hierarchy. Whenever a
member of the hierarchy receives data, it is sent to Drools to per-
form the corresponding actions. Such actions may differ, since
the rules differ for each type of agent.

4.2. Intelligent control with Neural Networks

Initially, the Neural-Network-based model was defined for its
implementation and integration into the MultiAgent System
developed in order to provide an optimized solar tracking system.
The objective of this Neural Network is to provide predictions of
upcoming coordinates that a certain solar panel must use for
performance improvement. It depends on environment variables,
previous records and solar position (Oviedo et al., 2013).
Once patterns that will improve performance by the Neural
Network have been found, the system requires the conclusions to
be communicated to the Expert System implemented in CARISMA.
The Expert System is responsible for carrying out actions that lead
to optimal states. For the implementation of the integration with
the Expert System, it was necessary to validate the Neural Network
model through simulations and develop the final implementation
of the network. We have chosen the development framework for
Neural Networks called Neuroph (Sevarac, Goloskokovic, Tait,
Carter-Greaves, & Morgan, 2013). In Neuroph, the major classes
correspond to the basic concepts of a Neural Network, such as arti-
ficial neuron, layer neurons, neuron connections, weight, transfer
function, input function, and learning rule. Neuroph supports com-
mon Neural Network architectures, such as multilayer perceptron,
with backpropagation, Kohonen networks, and Hopfield networks.

It was decided to use a fully connected multilayer perceptron
Neural Network with the training algorithm ‘‘Backpropagation
with Momentum’’ (Hertz, Krogh, & Palmer, 1991), which allows
temporal predictions similar to recurrent Neural Networks.

The Neural Network has received thirteen input parameters:
Azimuth and Zenith solar panel coordinates, solar time UTC,
Azimuth and Zenith sun coordinates, day and year, solar radiation
(Kw/m2), temperature, humidity, wind speed, atmospheric pres-
sure, weather conditions (sunny, cloudy, rain, etc) and, finally,
energy performance (kWh). The output parameters correspond to
the Zenith and Azimuth coordinates recommended by the Neural
Network for the solar panel.

Input data must be normalized in order to be used for the
network. Normalization of the data was performed using theoreti-
cal minimum and maximum according to where our study (Seville,
Spain) was completed. For those cases where one of the input
parameters lies outside the specified target range, the system does
not make use of the Neural Network to calculate the new coordi-
nates, but instead the Expert System is responsible for making
the decision directly. Finally, the function transfer selected is the
sigmoid function because the range of the input data is normalized
between 0 and 1, and this transfer function not only allows the
output to be restricted, but it is also differentiable.

The simulation process enabled a set of different network
parameters (maximum error, learning rate, momentum, impulse,
etc) to be defined, the network to be trained by a preset maximum
pattern training theory, and its behavior under different tests to be
verified. The number of iterations required to train the network
and the minimum error were evaluated in these results. The result
of the simulations was the choice of the network, as shown in
Fig. 5. This network of eight neurons in the hidden layer obtained
the best results on the tests performed, and shown minimal errors
in most cases, and a rapid rate of learning.
4.2.1. Integrating a Neural Network and an Expert System for final
decision-making

The Expert System provides the necessary information to the
Neural Network and, additionally, serves as a control element in
the learning of the Neural Network using feedback. In all cases,
the responsibility for the final actions carried out in the system lies
with the Expert System. The Neural Network’s function is that of
adaptive control, and it seeks the best adaptation for the system
to achieve its best performance.

In this way, the Neural Network calculates the optimal
movement patterns for the solar panels to maximize energy pro-
duction, by analysing the system’s responses to small disturbances
generated by the Expert System. Note that each type of agent has
its own Neural Network controlling the set of variables in terms
of its level of knowledge.

Fig. 3. Interface management rules for Drools Expert System integrated into an agent in CARISMA.

Fig. 4. Example of execution of Drools during the spread of knowledge.
Fig. 6 shows how the Neural Network interacts with the Expert
System in CARISMA to perform suitable training for the movement
on solar panels under certain environmental circumstances.
Fig. 5. Final topology selected for th
4.3. Intelligent control with Bayesian Networks

In order to add a type of probabilistic reasoning to our
MultiAgent System, we have developed a Bayesian model to deter-
mine the lifespan of a battery controlled by the MultiAgent System
CARISMA. Once the Bayesian Network is developed, it is integrated
with the Expert System. As with Neural Networks, the ultimate
responsibility for final decisions lies with the Expert System, based
on the probabilistic values supplied by the Bayesian Network.

In this way, as shown in Fig. 7, after obtaining the probability of
the unknown variables, this information is supplied to the Expert
System, which has a set of rules to determine an action based on
the probability values of these variables.

At any time, the probabilistic information provided by the
Bayesian Network of each agent can be analysed by other systems.
It should also be borne in mind that each type of agent has its own
Bayesian Network, which controls the set of variables in terms of
its level of knowledge.
e Neural Network in CARISMA.

Fig. 6. Integration model for the Expert System and Neural Networks in CARISMA.

Fig. 7. Integration of the Bayesian Network with the Expert System in CARISMA.
The modeling for the prediction of the lifespan of a battery is
based on a learning model of event patterns and information
provided by sensors about the physical state of the battery. Three
tasks were carried out for the implementation of the network:
(1) definition of probability tables; (2) implementation of the
Bayesian Network using specific software; and (3) integration of
the Bayesian Network by defining new control rules for the Expert
System.

The definition of probability tables is performed by taking into
account previous studies on battery lifespan (Oviedo et al., 2014)
(by extension, omitted in this article). From that study observable
variables have been defined: temperature, intensity, and voltage of
the battery. Unobservable variables correspond to elements or
processes that can occur in a battery but cannot be read by a sensor
(density, load, depth of discharge, etc). The output variable corre-
sponds to the probability of the analysed battery lifespan.

In order to carry out the task of implementing the Bayesian
Network, an external library was employed to achieve stability
and robustness through an stablished working system: SMILE
(Loboda & Voortman, 2013). In Fig. 8, the main window of the
application with the developed Bayesian Network is shown.

The battery used consists of 6 stationary SUNLIGHT 2OPzS100-
150A vessels (150 Ah C-100) (TechnoSun, 2012). This system of
accumulation is for the storage of energy produced by the
photovoltaic farm during sunshine hours, for later consumption.
These Pb-acid stationary batteries are the most common in photo-
voltaic systems. In addition to the batteries, a controller is included
for TriStar MPPT Morningstar solar panels (Morningstar, 2012),
which is able to control the battery charging by detecting the max-
imum power point, MPPT, for independent photovoltaic panels.
4.3.1. Integrating a Bayesian Network and an Expert System for final
decision-making

Finally, the integration with the Expert System consists in the
definition of a new set of rules for the interpretation of the moment
when there is a high probability of the battery lifespan coming to
an end. In this case, the agent sends an alarm to the Teleoperator
Agent with a warning about the imminent shortage.

On the other hand, the input of the Bayesian Network is con-
nected to the output of the Expert System in order to enable the
system to generate a response for a specific event input. These
events have to be able to change the Bayesian Network inputs so
that its probability tree can be restored. However, due to the
Bayesian Network implementation in SMILE, this cannot be carried
out directly without using the Expert System to update the net-
work input. To this end, new rules have been laid down for the
Expert System which involve setting the Bayesian Network input
values to new values defined by the Expert System itself.

On this way, in a scenario where the Bayesian Network makes
decisions, it makes no sense for the actions to be directly linked
to outputs. Instead, the new system sets the corresponding value
in the Bayesian Network, preventing the probability trees from
being updated.
5. Measurements and results

The studies performed are focused on the overall performance
of the developed MultiAgent System CARISMA, as well as on the
elements that provide intelligence to agents: Expert Systems, Neu-
ral Networks and Bayesian Networks. This research has studied
these last elements in depth, since they constitute the main object
of this contribution.

Various configurations and scenarios of CARISMA have been
established for testing. The scenarios have been chosen in order
to carry out both a study of performance of the overall system,
and as well as an analysis of certain parameters for each integrated
inference system, which are of interest in the research accom-
plished here.

5.1. Technique for MultiAgent System analysis

In the study of the CARISMA system, use has been made of an
external measuring system for MultiAgent Systems on the JADE
platform called PeMMAS (Carrasco et al., 2014). Additionally, this
system has been combined with the use of internal implementa-
tions of specific and precise measures, focused on the study of
the implemented inference systems.

The PeMMAS system allows the performance of a MultiAgent
System developed within the JADE platform to be studied and
measured. This tool is another MultiAgent System that is deployed
along with the MultiAgent System under study. With this tool, data
can be analysed concerning the use of system resources, mean
times of global messages in communications, as well as processing
times of the behaviors. It can also be used for other feasible mea-
sures external to the system agents. The data collected by the mea-
suring agents of PeMMAS are processed to generate various reports
that allow the analysis of the MultiAgent System under study.

5.2. General scenario of system operation

A general structure of the system is shown in Fig. 9, as it covers
all areas of solar energy distributed across several solar farms.

A set of various configurations and scenarios has been defined
from this general architecture in order to comprehensively test
the performance of CARISMA. All scenarios were created and tested
in the laboratory, where hardware devices are necessary to

Fig. 8. Bayesian Network for calculating the battery lifespan in SMILE.
simulate the operation of a photovoltaic system correctly. In total,
four possible scenarios with a variety of objectives have been stud-
ied, although numerous variants have been developed and studied
in order to determine limits on the system and verify its operation.

Tests and measurements have enabled interpretation of the
developed architecture, as well as the obtainment of conclusions
and proposals for improvements in the MultiAgent System and in
its integrated inference systems.
5.2.1. Hardware used in the tests
As a test environment, a free space was available that could be

dedicated to placing the infrastructure of solar panels, and a labo-
ratory where control devices, such as computers and embedded
systems, of the solar panels and the global energy system could
be located.

The set of devices along with their technical information
includes:
� Sensor network based on motes ‘‘SquidBee’’ (SquidBee, 2013)
and connected by ZigBee (2014) technology. This network
obtains environment information for the agents. These motes
are the first ‘‘open mote’’ in the world and have been developed
by Libelium (2014), and have the following characteristics:
– Arduino + XBee module
– Open source mote
– 9 V battery
– Easy software programming
– 12 I/O digital lines
– 6 analog input lines
– 5 PWM analog output lines
– USB connection to PC (windows, linux and mac compatible)
– Wireless communication, based in XBee module (ZigBee)
– Sensors:

⁄ Temperature
⁄ Humidity
⁄ Brightness

Fig. 9. General scenario of system operation in CARISMA.
Embedded systems based on AMD Geode chip AMD Geode chip
�
(2013), designed to accommodate field control agents. Techni-
cal specifications:
– CPU 233 MHz, AMD Geode SC1100 CPU (fast 486 core)
– 128 MB SDRAM
– Linux operating system based on Debian
– Connection to network via Ethernet or Wi-Fi
� Controller for solar panels Tristar MPPT. This enables system

monitoring for solar panels, log data and for set parameters. It
has wireless network through Ethernet.
� Sunlight Batteries 2OPzS 100, 2 V – 100 Ah.
� Photovoltaic solar panels: Model Kaneca G-EA060, with nomi-

nal power of 60 Wp.
� Sunlight inverter 1100 W.

The various devices can be connected via Ethernet, and WiFi,
or Zigbee in the case of motes designed to collect data from
sensors.

5.3. Tests and results

In this section the four specific scenarios defined for the study
of parameters related to performance and resolutions by inference
systems integrated in CARISMA are detailed. The inference systems
are implemented into various types of agents according to their
specifications and requirements. Although it is possible to inte-
grate inference systems developed in all agents, their use is
restricted to only those agents that require it:

� Every agent implements a workspace within the Expert System.
In each machine or hardware device that contains an agent, an
instance of the inference engine ‘‘Drools’’ runs, and each agent
has its own database knowledge and workspace.
� Coordinator Agents integrate the developed Bayesian Network

when they are responsible for controlling batteries in a solar
farm.
� Operator Agents integrate the developed Neural Network when
they are responsible for controlling the movement of solar
panels.

5.3.1. Tests on Expert Systems
In order to study the operation of CARISMA, once behaviors are

implemented and integrated into the Expert Systems in agents, a
specific scenario arises where the system performance and
response times are analysed. In this scenario, a solar farm consists
of five areas where all areas have the Teleoperator Agent in com-
mon. Additionally, each area has its own Coordinator Agents and
Operator Agents. This scenario is shown in Fig. 10.

Various basic performance tests have been executed in order to
verify the correct implementation of Expert Systems into agents.
These tests, which were carried out on different scenarios, resolved
minor issues of implementation and enabled a stable system to be
attained without any problem concerning alarm resolutions and
recommendations offered by the Expert System.

The percentage of successful recommendations for the devel-
oped system is very high; almost 95% compared with expectations.
This high percentage is due to the application of an Expert System,
since once it is well modeled in its rules and facts, it becomes very
reliable owing to the predefined business rules. Erroneous recom-
mendations (average of 2%) or uncertain recommendations
(between 2% and 6%) result from the knowledge propagation
model implemented in the system which can lead to inconvenient
rejections and inconvenient changes in rules. This propagation
model compensates for any possible inconsistencies. It allows a
progressive increase of knowledge into the agents, thus avoiding
unnecessary traffic through the data network.

In terms of time measurements, in these tests an average
response time of one second by inference engine Drools has been
observed, as can be seen in Fig. 11. Response time depends on sev-
eral factors, such as the amount of information handled by the
agent in question. In tests, Sensor-Device Agents employ fewer
rules and facts because they are essentially reactive and focus on

Fig. 10. Testing scenario for Expert Systems.
direct implementation tasks and reading data. The quantity of
knowledge handled by an agent is reflected in the response times.
The amount of knowledge handled by an agent varies depending
on the role of the agent in the system architecture (OA, CA, and
finally TA).

In Fig. 11, the average response time for agents handling a high
quantity of knowledge is shown. These times are a bit slow for
real-time applications although they are suitable for control tasks
where response time requirements are fast but not immediate
(below 2 s in TA inferences and below 200 ms for SDA). In any case,
the quantity of knowledge rises incrementally in the hierarchy of
agents, thereby adjusting the system response time according to
the needs of a particular control system.

Finally, as shown in Fig. 12, the times required by Expert Sys-
tems to learn are very low. This is due to the inference engine opti-
mization offered by Drools. The inclusion of new facts or rules is
immediate but there is a small time increase in changes and rejec-
tions of rules as a result of the requirement for previous analysis.

5.3.2. Tests on Neural Networks integrated with the Expert System
Research of the built-in-agent Neural Network has been per-

formed on a solar farm composed of five areas. Each Operator
Agent is responsible for the movement of a solar panel or a group
governed by the same engines. The scenario for testing is shown in
Fig. 13. Our implementation meets the following requirements:

� Operator Agents integrate a Neural Network in order to deter-
mine new moves to be made by the solar panels under its con-
trol. Use of the Neural Network is limited only those cases
where the performance has decreased considerably from that
expected (<10% of the expected performance). Otherwise, the
Expert System governs the motion of the solar panels, according
to the theoretical tracking.
� The information needed to supply the Neural Network is
obtained from Sensor-Device Agents (SDA) in the area, which
communicate such data to Operator Agents (OA) for inclusion
in the Neural Network.
� Responsibility for final decisions for actions based on such mon-

itoring processes lies with Operator Agents (automated
actions).
� When the system detects a decrease of energy performance

obtained in an area, the Teleoperator Agent (TA) may seek to
optimize performance in said area. Control and communica-
tions are governed by Coordinator Agents (CA) in an area.

The main purpose of this Neural Network is to provide adaptive
control for the movement of solar panels in order to maximize the
energy obtained. Therefore, the set of tests is performed to verify
the proper operation of the Neural Network, as well as the results
obtained in the overall system. Such tests have focused on the anal-
ysis of energy efficiency obtained during the same day. For this pur-
pose, we have arranged a history of performance measures obtained
for various days of the year in the position where the panels are
located. Such measures have three variants: with fixed solar panels,
solar panels with classic solar tracking (based on theoretical solar
position), and maximum performances for various hours of the day.

Once the different tests have been carried out, we obtain an
average measure of the most relevant values in the system for
the set of all agents (Oviedo et al., 2013). In these tests, the system
has obtained an average increase of 3% in performance compared
to that obtained with a traditional solar tracking system. The coor-
dinates of following movement predicted by the Neural Network
are those expected in more than 10% of cases and close to those
expected in more than 25%, and also obtain a high number of
movements (approximately 15%) that are not in target range for
performance optimization. Regarding the consumption by the

Fig. 11. Average response time of the Expert System in an agent of CARISMA.

Fig. 12. Average time required by Expert System on learning tasks.
CPU, the Neural Network has a low effect on the system, with a
consumption less than 0.5%, because the use is limited and con-
trolled by the Expert System. However, in the case of RAM, con-
sumption is somewhat higher, reaching an average consumption
of 3 megabytes.

5.3.3. Tests on Bayesian Networks integrated with the Expert System
A specific scenario is assumed where it is possible to verify

proper control of the solar battery lifespan in order to study the
behavior of the Bayesian Network implemented and integrated
within the system agents. In this scenario, the solar farm consists
of three areas, with a common Teleoperator Agent and a specific
number of its own Operator and Coordinator Agents. Furthermore,
each area has its own battery monitored by the system.

The test scenario proposed is shown in Fig. 14 and meets the
following requirements:

� Coordinator Agents implement a Bayesian Network to perform
monitoring.
� The information needed to supply the network is obtained by

the Sensor-Device Agent in the area, which communicates such
data to its Coordinator Agent for inclusion in the Neural Net-
work (the communication can be made through the Operator
Agents).

Fig. 13. Testing scenario for Neural Networks.
� Responsibility for final decisions for action based on such mon-
itoring lies with the Teleoperator Agent, Coordinator Agents
should supply recommendations for the subsequent actions.
� If more than one Coordinator Agent coexist in an area, each

agent implements an independent Bayesian Network and sends
its recommendation to the Teleoperator Agent, which should
select only one of them in the case of contradiction.

The required time to check the response of the system to obtain
an assessment of the lifespan of a battery controlled by the system
would be no less than two years in real conditions. Therefore we
have developed a stand-alone application that changes the value
of the parameters involved, as well as their rate of change. This
application simulates the behavior of the system covering two
years within a few hours of simulation. From simulations, we have
Fig. 14. Testing scenario fo
obtained the average results shown in Fig. 15. These values are
maximum probability values obtained by the Bayesian Network
for a given set of circumstances over time. If the value of the life-
span probability is 0, it is considered that battery is exhausted,
while a value closer to 1 means improved battery status.

We compared the results obtained with the expected results
and observed that the hit rate was high. It can be concluded that
in the extreme tolerance of the battery (> 2K cycles, T < �10 �C,
T > 50 �C), the system shows a high probability that battery life-
span is coming to end, whereas if we approach the optimal storage
conditions (10 �C < T < 40 �C and V < 11;8 V), the probability
indicates a longer lifespan.

Additionally, a set of tests is performed to check the impact of
using Bayesian Networks on the consumption of disks and proces-
sors in the system. The precision used in the tests is of the order of
r Bayesian Networks.

Fig. 15. Probability of battery lifespan obtained by the Bayesian Network developed.
nanoseconds. Regarding the consumption of CPU, Bayesian
Networks do not have any impact. In fact, the consumption range
lies between 0.5% and 1.5% of the CPU when Bayesian Network is
presented. Regarding the RAM, no case exceeds the megabyte con-
sumed. Therefore the impact of the network is negligible.

6. Conclusions and future works

A complete MultiAgent System has been developed for moni-
toring and managing a solar power plant. The system agents have
been equipped with multiple artificial intelligences through the
combination of Expert Systems, Neural Networks, and Bayesian
Networks. Once the system is completed, it is verified through tests
and simulations where the responses obtained by the system are
adequate, with only minor human intervention.

The use of different intelligences by combining the three types
of inference offers various practical advantages in a MultiAgent
control system. From a point of view of development, the use of
multiple intelligences enables a system that is able to assimilate
knowledge progressively, as opposed to traditional control
systems, where it is necessary to encode all the knowledge in
advance. It enables a new level of abstraction and thus minimizing
development time.

Another important practical application is to enable solving
several types of problems, under one centralized system of
knowledge. In our research, the system is able to solve logical,
statistical and probabilistic problems in the same problem domain
and system architecture. So, it is not necessary other modules or
hardware requirements and the interfaces are commons.

Therefore, a distributed intelligence within a MultiAgent
System enables a control system with enough capacity to meet
its objectives without human intervention. The CARISMA system
is a self-control system for solar power plants, which in practice
does not requires human support once the learning has been
carried out.

Regarding the conclusions from the point of view of theory
obtained from research is remarkable that our combination of
inference models ensures system reliability and time responses.
Our combination model can create reliable control systems and
with resource requirements it is able to select the inference
systems used and their goals properly. In general, it is important
to conclude that providing agents with intelligent capabilities is
possible and even feasible where time and resource requirements
are imposed by control systems.

In addition, this type of implementations closes the practical
definition of an agent to its theoretical definition. Agents are
intelligent and autonomous in practice, and not just distributed
software modules.

Future lines of work include apply the combination of different
inference mechanisms for modeling and simulation of human
behavior from the perspective of the field of Psychology. The first
motivation is to exploit the power of the MultiAgent systems as
a research tool for developing emotional intelligence and social
intelligence. And secondly and more specifically, with the idea of
supporting in health-care and studying emergent behavior in
society related to the use of new technologies.

Acknowledgments

The work described in this paper has been funded by the
Consejería de Innovación, Ciencia y Empresas (Junta de Andalucía)
with reference number P08-TIC-03862 (CARISMA Project).

References

Advanced Micro Devices, Inc. (2013). AMD Geode Proccesor Family website. <http://
www.amd.com/us/products/embedded/processors/geode-lx/pages/geode-lx-
processor-family.aspx>.

Bellifemine, F., Poggi, A., & Rimassa, G. (2001). Developing multi-agent systems with
JADE. In C. Castelfranchi & Y. Lespérance (Eds.), Intelligent agents VII agent
theories architectures and languages. Lecture notes in computer science (Vol. 1986,
pp. 42–47). Berlin, Heidelberg: Springer.

Carrasco, A., Hernandez, M., Romero-Ternero, M., Sivianes, F., Oviedo, D., &
Escudero, J. (2014). PeMMAS: A tool for studying the performance of
multiagent systems developed in JADE. IEEE Transactions on Human-Machine
Systems, 44(2), 180–189.

Cochocki, A., & Unbehauen, R. (1993). Neural networks for optimization and signal
processing. John Wiley & Sons, Inc.

Costaguta, R., Garcia, P., & Amandi, A. (2011). Using agents for training students
collaborative skills. IEEE Latin America Transactions, 9(7), 1118–1124.

Dopico, J. R. R., De La Calle, J. D., & Sierra, A. P. (2008). Encyclopedia of artificial
intelligence. Information Science Reference.

http://www.amd.com/us/products/embedded/processors/geode-lx/pages/geode-lx-processor-family.aspx
http://www.amd.com/us/products/embedded/processors/geode-lx/pages/geode-lx-processor-family.aspx
http://www.amd.com/us/products/embedded/processors/geode-lx/pages/geode-lx-processor-family.aspx
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0105
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0105
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0105
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0105
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0110
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0110
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0110
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0110
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0115
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0115
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0120
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0120
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0125
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0125

Drools. (2013). Drools – the business logic integration platform. <http://
www.jboss.org/drools/>.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19(1), 17–37.

Gadallah, A., & Hefny, H. (2010). A novel multiagent system based on dynamic fuzzy
cognitive map approach. In 10th International conference on intelligent systems
design and applications (ISDA) (pp. 254–259).

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural
computation. Santa Fe Institute studies in the sciences of complexity: Lecture notes.
Addison-Wesley Pub. Co.

Jade. (2004). JADE: JAVA agent developement framework. Tech. rep., Telecom Italia
Laboratory, <http://jade.tilab.com/>.

Junpu, W., Hao, C., Yang, X., & Shuhui, L. (2000). An architecture of agent-based
intelligent control systems. In Proceedings of the third world congress on
intelligent control and automation (Vol. 1, pp. 404–407).

Leondes, C. (1999). Fuzzy theory systems: Techniques and applications. Fuzzy theory
systems (Vol. 1). Academic Press.

Libelium Comunicaciones Distribuidas. (2014). Libelium official website. <http://
www.libelium.com>.

Liebowitz, J. (1997). The handbook of applied expert systems. Taylor & Francis.
Li, H., Karray, F., & Basir, O. (2010). A framework for coordinated control of multi-

agent systems. In Innovations in multi-agent systems and applications – 1. Studies
in computational intelligence (Vol. 310, pp. 43–67). Berlin, Heidelberg: Springer.

Loboda, T.D., & Voortman, M. (2013). SMILE and GeNIe website. <http://
genie.sis.pitt.edu/>.

Lorenzi, F., Bazzan, A. L., Abel, M., & Ricci, F. (2011). Improving recommendations
through an assumption-based multiagent approach: An application in the
tourism domain. Expert Systems with Applications, 38(12), 14703–14714.

Miyashita, K., & Rajesh, G. (2010). Multiagent coordination for controlling complex
and unstable manufacturing processes. Expert Systems with Applications, 37(3),
1836–1845.

Morningstar. (2012). Datasheet – Morningstar Tristar MPPT. <http://
www.morningstarcorp.com/en/tristar%20mppt>.

Ouidad, K. (2006). Interacting with reasoning in a MAS integrating a RBS. In ICTTA
’06 information and communication technologies (Vol. 2, pp. 3001–3006).

Oviedo, D., Romero-Ternero, M. C., Hernández, M., Carrasco, A., Sivianes, F., &
Escudero, J. (2010). Model of knowledge spreading for multi-agent systems. In
ICCS conference proceedings, international conference on enterprise information
systems, Funchal, Madeira, Portugal (pp. 326–331).
Oviedo, D., Romero-Ternero, M., Carrasco, A., Sivianes, F., Hernandez, M., &
Escudero, J. (2013). Multiagent system powered by neural network for
positioning control of solar panels. In 39th Annual conference of the IEEE
industrial electronics society, IECON 2013 (pp. 3615–3620).

Oviedo, D., Romero-Ternero, M., Carrasco, A., Sivianes, F., Hernandez, M., &
Escudero, J. (2013). Simulation and implementation of a neural network in a
multiagent system. In The eighth international conference on intelligent systems
and knowledge engineering, ISKE 2013.

Oviedo, D., Romero-Ternero, M. C., Carrasco, A., Hernandez, M. D., Sivianes, F., &
Anaya, P. (2014). Inferring battery lifespan in solar farm multi-agent telecontrol
system. IEEE Intelligent Systems, submitted for publication.

Oviedo, D., Romero-Ternero, M. C., Hernández, M., Carrasco, A., Sivianes, F., &
Escudero, J. (2010). Architecture for multiagent-based control systems (Vol. 79).
Berlin, Heidelberg, Alemania: Springer (pp. 97–104, chap. 1).

Rao, A. S. (1995). Georgeff, BDI agents: From theory to practice. In Proceedings of the
first international conference on multi-agent systems (ICMAS-95) San Francisco
(pp. 312–319).

Saleem, A., Nordstrom, L., & Lind, M. (2011). Knowledge based support for real time
application of multiagent control and automation in electric power systems. In
16th International conference on intelligent system application to power systems
(ISAP) (pp. 1–8).

Sebastian Beer, M. T. (2009). Information technologies in environmental
engineering. In MACE – multiagent control for energy infrastructures. Berlin:
Springer.

Sevarac, Z., Goloskokovic, I., Tait, J., Carter-Greaves, L., & Morgan, A. (2013).
Neuroph, <http://neuroph.sourceforge.net/>.

Libelium Comunicaciones Distribuidas. (2013). SquidBee datasheet. <http://
libelium.com/squidbee/upload/c/c1/SquidBeeDataSheet.pdf>.

TechnoSun. (2012). Datasheet – 2OPZS100-150A. <http://www.technosun.com/es/
descargas/SUNLIGHT-OZPS-ficha-EN.pdf>.

Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., & Ferber, J. (2005). Environments
for multiagent systems state-of-the-art and research challenges. In
Environments for multi-agent systems (pp. 1–47). Springer.

Yang, J., Yang, L., Zhao, T., & Jia, Z. (2009). Automatic control system of
water conservancy project model based on multi agent. In Second
international workshop on knowledge discovery and data mining, WKDD
(pp. 349–352).

ZigBee alliance. (2014). ZigBee official website. <http://www.zigbee.org>.

http://www.jboss.org/drools/
http://www.jboss.org/drools/
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0130
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0130
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0135
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0135
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0135
http://jade.tilab.com/
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0140
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0140
http://www.libelium.com
http://www.libelium.com
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0145
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0150
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0150
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0150
http://genie.sis.pitt.edu/
http://genie.sis.pitt.edu/
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0155
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0155
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0155
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0160
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0160
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0160
http://www.morningstarcorp.com/en/tristar%20mppt
http://www.morningstarcorp.com/en/tristar%20mppt
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0165
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0165
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0165
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0170
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0170
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0170
http://neuroph.sourceforge.net/
http://libelium.com/squidbee/upload/c/c1/SquidBeeDataSheet.pdf
http://libelium.com/squidbee/upload/c/c1/SquidBeeDataSheet.pdf
http://www.technosun.com/es/descargas/SUNLIGHT-OZPS-ficha-EN.pdf
http://www.technosun.com/es/descargas/SUNLIGHT-OZPS-ficha-EN.pdf
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0175
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0175
http://refhub.elsevier.com/S0957-4174(14)00271-1/h0175
http://www.zigbee.org

	Multiple intelligences in a MultiAgent System applied to telecontrol
	1 Introduction
	2 System overview
	2.1 Platform, environment and language development

	3 MultiAgent System architecture
	3.1 Types of agents defined in the system
	3.2 MultiAgent System overview

	4 Intelligent control based on inference models
	4.1 Intelligent control with Expert Systems
	4.2 Intelligent control with Neural Networks
	4.2.1 Integrating a Neural Network and an Expert System for final decision-making

	4.3 Intelligent control with Bayesian Networks
	4.3.1 Integrating a Bayesian Network and an Expert System for final decision-making

	5 Measurements and results
	5.1 Technique for MultiAgent System analysis
	5.2 General scenario of system operation
	5.2.1 Hardware used in the tests

	5.3 Tests and results
	5.3.1 Tests on Expert Systems
	5.3.2 Tests on Neural Networks integrated with the Expert System
	5.3.3 Tests on Bayesian Networks integrated with the Expert System

	6 Conclusions and future works
	Acknowledgments
	References

