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Notation

Np is used for{0,1,2,...}; R are the real numbers, whergisg = [0,). The¢-th unit
row-vector in Euclidean space is denoted for example,e; =[1 0 ... 0], & =

[0 1 0 ... 0];lyisthenxnunitmatrix, = 0-1,; ® refers to the Kronecker product.
The conventiorg?zlaj =0 is adopted, for alby,a; € R. To denote the probability of an
eventQ, we writePr{Q}. The expected value of a random variaplgivenA, is denoted
via E{u|A}, whereas for the unconditional expectation we whtgu}. A real random
variableu, which is zero-mean Gaussian with covariafcis denoted byu ~ .47(0,T).
Mathematical variance is denoted@&

The trace of a matriRis denoted byr (A). Theco-norm and the 2-norm are represented
by |||, and||-||,, respectively. Given any matrid, MT denotes its tranpos®] > 0 and
M > 0 denote that the matrid is positive definite and positive semi-definite, respedfive
The argument of the z-transform is represented @d Rs, is the subset of real rational
discrete-time strictly proper transfer functions.

> is used to denote a nominal state-space model of a plankafor a state-space

model of a plant with uncertainties.

XXi



XXii Notation

In the case of transfer funtiong(z) denotes a nominal discrete model of a plant while
G*(z) is a discrete transfer function model of a plant with undetias.

x represents the state of a plamis the control signal angddenotes the output.

N is the number of consecutive dropouts induced by the network

The probability of a successful communication is repre=e:iiy p.

Ny is the prediction horizon.

W={xeR"/||x]| < d}.

4,j is the Kronecker delta symbol.
0O o0 --- 0

_ 0 0
(/) represents a null matrix:



Chapter 1

Introduction

etworked control systems have become a very important fietde control
community due to its cost-effective and flexible applicatioNetworked con-
trol systems (NCSs) comprise sensors, actuators, andoierdt the opera-
tion of which is coordinated via a communication networkpitally, these systems are
spatially distributed, may operate in an asynchronous exaiat have their operation co-
ordinated to achieve desired overall objectives.
This chapter presents a summary of NCSs, and in partichlasgecific cases in which
this thesis is focused. The main issues related with NCSh, the problems and advan-
tages associated, are described in this section. Lastlgudine of the present thesis to-

gether with its most relevant contributions are given.

1.1 Introduction to Networked Control Systems

Networked Control Systems (NCSs) are spatially distrihsgstems wherein the commu-
nication between plants, sensors, actuators and comgratzurs through a communica-
tion network. This kind of systems and their characteristice extensively described in
[J. P. Hespanha, P. Naghshtabrizi and Y. Xu, 2007], [W. Zh&mngS. Branicky and S.

M. Phillips, 2001], [R. A. Gupta, 2010] and [J. Chen, K. H. dakson, S. Olariu, I. Ch.

Paschalidis and I. Stojmenovic, 2011]. The complexity cftegn design and realization,

1



2 Introduction

the wiring cost, installation and maintenance can be retlutastically with the inser-

tion of the communication network. However, the commundahetwork in the system

also brings some inconvenients, such as communicatioysjediata dropouts, codifica-
tion errors and so on, which could degrade the system pegimcmand even destabilize
the system.

Nowadays, there is a large number of practical situationshiere the use of com-
munication networks for control is needed for the applaator process advises control
engineers. For example, they are specially needed in plalbese space and weight are
limitated, when the distances under consideration areelargd in control applications
where the wiring is not possible.

There are also some generic advantages when using digitethaaication networks:

1. The complexity in point-to-point wiring connections ar¥y reduced, as well as the

costs of media. Therefore, installation costs can be absstidally reduced.

2. The reduction of the wiring complexity makes easier tlegdosis and maintenance
of the system, providing cost savings because of the iasitatl and higher operation

efficiency.
3. NCSs are flexible and re-configurable.
4. Reliability, redundancy and robustness to failure.
5. NCSs provide modularity, control decentralisation artddrated diagnostics.

All these advantages suggest that NCSs will play a centlalinahe near future, being a

very challenging and promising research field.

1.2 Objectives of the Thesis

The general idea of this thesis is to proposed some novdigaduto different problems

related with NCSs. All the considered problems are verydghin the frame of control
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over networks, mainly considering packet dropouts.
Within the context of systems with packet dropouts, differgroblems will be studied.
In order to obtain different solutions for this kind of systg the following objectives will

be considered:

¢ Controller designs.

H. controllers, achieving the robustification of systems witizertainties.

MPC controllers, combined with buffer strategies.

* Filter designs.

H., filters for systems with uncertainties, using frecuencytégues and also

Markov chains.

* Algorithm designs.

Dynamic placement of a distributed control in a network fediby a matrix

structure of nodes.

Dynamic placement of the output estimator in a network fatrbg a line

structure of nodes.

« Distributed cooperative estimation.

Based on local Luenberger observers.

One of the objectives of this thesis will be to analyze thdititga and performance
of controlled systems. In some cases, the design will be dgrmaeans the stability con-

straints.



4 Introduction

The robustification of the systems, in particular those am#is uncertainties, will be
also taken into account. With respect to the analysis anigies$ controlled systent.
techniques will be used.

Another important objective of this thesis will be the desigf algorithms for a dy-
namic network, which will be composed by certain structuraarles. The algorithm will
be able to decide which node will be the controller or the ougstimator in the network.
Also stability and performance of controlled system willdrealyzed.

The design of distributed estimation and schemes is alsceasleld. Networks with
induced time-delays are considered, together with randapadits. The reduction of en-
ergy consumption will be an important objective in this pafrthe thesis. In this case, an
event-based communication policy between agents will benéxed, providing a trade-off

between performance and communication savings.

1.3 Related literature

There are a lot of studies in the literature about the maiblpros associated with NCSs.
One way to approach time delay issues is to resort to Lyap#masovskii functionals
(see, for example, [P. Millan, L. Orihuela, C. Vivas and FRRibio, n.d.] and [D. Yue, Q.
H. and J. Lam, 2005]). Another important topic to be studiedNCSs is the impact of
network-induced data losses. Data dropouts occur, foamest, due to collisions or low
SNR (signal to noise ratio) in wireless channels. There Hierent ways to deal with this
kind of NCSs. One way is the use of predictive control, whickes it possible to calculate
future model-based data and to use them to compute the tantions. Some examples
of networked control based on MPC for linear and non-lingatesms can be found in [P.
Millan, 1. Jurado, C. Vivas and F. R. Rubio, n.d.], [D. MufiardaP. D. Christofides, 2008],
[D. Quevedo, J. Dstergaard and D. Ne&011] and [D. Quevedo and D. NeSic, 2011].

A different way to deal with NCSs subject to data dropoutsségia in modeling the
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dropouts by means of a switched system, i.e., a Markov jurmgali system (MJLS), see
[O. L. V. Costa, M. D. Fragoso, and R. P. Marques, 2005]. Relatith this approach,
[Q. Ling and M. Lemmon, 2004] presents a result which showvas, ttor a specific NCS
architecture subject to data dropouts, the resulting M3 _8quivalent to a linear loop
with an external noise source. This noise has the partitylairhaving a variance that is
proportional to the variance of another signal within thigioal control loop. This result is
usedin[E. . Silvaand S. A. Pulgar, 2011] to show that theiste asecond order moments
equivalencéetween the considered NCS and an auxiliary control sydtethis auxiliary
control system, the unreliable control channel has bedaceg by an additive i.i.d. noise
channel that has a Signal to Noise Ratio (SNR) constrairthdh paper, the probability
of data losses is fixed and is used in the control synthesis.olfective in [E. I. Silva
and S. A. Pulgar, 2011] is to minimize the error covariancgigféng the controller via
a Youla parametrization. However, in that work only the Idesse of having a perfect
LTI nominal model is considered. Therefore, robustnespgies in the presence of plant
model uncertainties are not guaranteed.

Some works on NCSs that take into account system uncedsiate [N. Elia, 2005],
[H. Ishii, 2008] and [P. Seiler and R. Sengupta, 2005]. InfNa, 2005] the modelling of
the plant and the controller as deterministic time invargiscrete-time systems connected
to zero-mean stochastic structured uncertainty is prahd&iee variance of the stochastic
perturbation is a function of the Bernoulli parameters, thredcontroller design is posed
as an optimization problem to maximize mean-square stabilargins of the closed loop
system.H,, control approaches were proposed in [H. Ishii, 2008] andsgler and R.
Sengupta, 2005]. In these works, the considered uncerte@mhes from the unreliability
of the network. In contrast, the present work considers dotipouts of the network and
some structural uncertainties of the plant separately.

In a Networked Control System (NCS), sensor, controller actdiator links are not
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transparent, but are affected by bit-rate limitations keadropouts and/or delays, leading
to performance degradation; see, e.g., papers in the $pesigs [Antsaklis and Bail-
lieul, 2004, 2007, Franceschetti et al., 2008, J. Chen, Kldthansson, S. Olariu, I. Ch.
Paschalidis and I. Stojmenovic, 2011]. Ideally, commutidcaartifacts can be alleviated
by transmitting at high bit-rates and with high transmisglowers [Pantazis and Vergados,
2007, Park et al., 2008, Quevedo et al., 2010, Cardoso deoCdsdl., 2012]. However, if
network nodes are wireless and connected to a finite powecescilnen energy efficiency
becomes an important issue. This makes the design of NC&safthallenging task.

An interesting aspect which has not been explored suffigiénthat of architectural
freedom in the design of NCSs. When compared to traditional-théred control loops,
wireless NCSs offer architectural flexibility and addit@belegrees of freedom. In particu-
lar, there is no need to pre-assign in a static fashion whictes carry out control calcula-
tions, and which nodes merely relay data. Intuitively, andelation to the packet dropout
issue, the roles of individual nodes should depend uponriftgmation available, thus,
upon transmission outcomes.

As background, [Goodwin et al., 2008] studies performarfcthiee static NCS ar-
chitectures by adopting an additive signal-to-noise ratiostrained channel model. The
results in that paper suggest that, in the absence of cogiaging the controller at the
actuator node will give better performance than placing tha sensor node. It is worth
noting that [E. I. Silva and S. A. Pulgar, 2011] showed thatdthannel model in [Goodwin
et al., 2008] can be used to describe erasure channels wiogreuds are independent and
identically distributed (i.i.d.). Viewed from that perggige, it was implicitly assumed in
[Goodwin et al., 2008] that communication acknowledgmangsnot available at the trans-
mitter. The work [C. L. Robinson and P. R. Kumar, 2008] exasiNCSs with stochastic
packet dropouts using optimal control techniques. The vetidws that optimal control

performance can be achieved if all nodes aggregate thérednstory of received data
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and relay it to the controller which is located at the actuatnde. Depending upon the
information available at each node, various optimal cdmiroblems can be analyzed, see
[C. L. Robinson and P. R. Kumar, 2008] and also [Gupta et 8092 for a formulation
where the controller is pre-allocated to a fixed node haverfgot access to previous plant
inputs. More recently, [Pajic et al., 2011] investigatesstributed control strategy wherein
the network itself acts as a controller for a MIMO plant. Eadde (including the actuator
nodes) perform linear combinations of internal state \desof neighboring nodes. In the
case of analog erasure channels with i.i.d. dropouts (withoknowledgments), in [Pajic
etal., 2011] the resulting NCS is then cast, analyzed andmed as a jump-linear system.
In the area of distributed estimation, the problem typicaiVolves limited processing
capabilities of the agents, locally sensed informatiord emer-component communica-
tions which are typically carried out asynchronously, Vessly, and subject to limitations
such as energy or physical constraints in the environmerdmples of active areas of
application include sensor networks, transportationesyst network congestion control
and routing, and autonomous vehicle systems among oth&ysldix et al., 2002, Brifién
Arranz et al., 2009, Cortes et al., 2004, Estrin etal., 188%t al., 2011, Xiao et al., 2005].
Regardless of the application, the common challenge rentaesame. That is, to de-
rive collective behaviors through the design of individagent estimation and control al-
gorithms. The primary distinguishing feature of this dmited approach is the distribution
of information. As opposed to ‘centralized’ solutions, rigée agent has access to the in-
formation gathered by all the agents. Since sensor netvewedssually large scale systems,
it is not advisable or even impossible to employ a centrdlimcessor to gather all sys-
tem data implementing classical centralized estimatichnigues. Furthermore, there is
typically a communication cost in distributing locally ated information. A secondary
distinguishing feature is complexity. Conventional ddcalized estimation schemes can

also be unattractive in many situations, provided thatabdl communication is involved,
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and scalability for high number of nodes is compromised [&#fati-Saber, 2005].

There exists a vast literature related to the problem ofiliged estimation in sen-
sor networks. The most common approach has been the distfisialman filter (DKF)
based on consensus strategies. The methodology impliescting the local estimations
performed at each node based on the information received their neighbors. See, for
instance, [Alriksson and Rantzer, 2006, Maestre et al.02@fati-Saber and Shamma,
2005, Olfati-Saber, 2007].

Apart from the techniques employing Distributed KalmartdfilDKF), there exists
a number of works that propose different approaches. Fanpba distributed moving
horizon schemes are employed in [Farina et al., 2009], wheresolution requires each
sensor to solve a quadratic optimization problem at evamptiag time. A finite-horizon
paradigm is proposed in [Dong et al., 2012] and [Shen et@L0OPto design distributed ob-
servers that take into account quantization errors ancessa® packet dropouts. Another
significant work from the same authors lying in this filed iattm [Shen, Wang and Xiao-
hui, 2011], in which a stochastic sampling between nodesrisidered. A very interesting
research direction considers more general models of tm, pecluding nonlinearities, in-
ner delays, or different Markov-chain-driven dynamicaldes. See, for instance, [Shen,
Wang, Hung and Chesi, 2011], [Liang et al., 2011] or [Lianglet2012].

Despite the great deal of effort developed in distributdoiegtion, there is much room
for research in the topic. Specifically, network-induceoljpems have historically received
little attention. When a communication network is used t@elestimation or control loops
in real time, the assumption of perfect communication ckédoes not hold. Hence, reli-
able designs must be aware of network-induced constraigtsficantly, delays and packet
dropouts. These effects degrade the performance of a gstanagion scheme or control
implementation, even resulting in unstable behaviors[kd® Hespanha, P. Naghshtabrizi

and Y. Xu, 2007].
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Furthermore, all the aforementioned works assume a tinverdscenario where the
agents are required to broadcast their states at every isgntiphe. Event-based methods
are somehow more efficient from the point of view of bandwialle, as communications
are invoked only when significant information requires tottzmsmitted, see [Dormido
et al., 2008, Lunze and Lehmann, 2010] and [Tabuada, 200.approach becomes spe-
cially beneficial in the context of distributed estimatioreo networks, as the limitations
imposed by the network render the frequency at which thesysbmmunicates. A reduc-
tion in the transmission frequency implies bandwidth sg\wint also an improvement in
average transmission delays and packet collisions, fdt-bfaetransmission algorithms
are reduced. Moreover, in wireless sensor networks, thergdife span is of great impor-
tance, and it is mainly related to the number of transmissigithe device. These two facts
motivate the use of aperiodic communication policies, Wattow to avoid the transmis-
sion of irrelevant data, reducing network traffic and enesggenditure. From the best of
our knowledge, this is the first approach that considers iteilstited estimation through

non-reliable networks using an event-based samplingyolic

1.4 Contributions of the Thesis

In this section, a brief summary of the contributions of eelchpter is presented.

In all chapters, an NCS wherein a communication channediictes data dropouts is
considered.

In Chapter 2, the plant model has structural uncertainfiberefore, the main goal of
that chapter is to find a robust controller for the plant witlicertainties and with data losses
in the transmission; also minimizing the variance of theesignal.Mean square stability
(MSS) and robustness properties also have to be guaranteeH.Atontrol approach is
proposed in such a way that both structural uncertaintissiplant and data losses can be

tolerated, while optimizing the performance of the syst@odeal with the plant uncertain-
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ties, a central LTI controller will be calculated. This cetcontroller will be combined
with another transfer functior(z), that will be in charge of the minimization of the er-
ror variance. In order to fin@(z), an algorithm is proposed which gives a solution while
satisfying the constraints. The union of these two trarfsfiections provides the proposed
controller.

In Chapter 3 the same structure of NCS than in Chapter 2 is G$eddifference here
is that a mixedH,/H., control technique is proposed in this chapter (while in Gaag
only theH, technique is used). Thid, part is designed in such a way that the NCS is
stabilized, taking into account the probability of datapbuots, while theH., approach is
used to make the closed-loop system robust enough againstustl uncertainties of the
nominal model.

Furthermore, the problem of the glucose control for diabgétients subject to sensor
errors constraints has been presented to illustrate tHerpance provided by this tech-
nigue. To represent the uncertanties, different chariatitar of patients have been consid-
ered for the synthesis of the controller.

In Chapter 4, structural uncertainties in the plant are icklemed also. One goal of this
chapter is to find a robust controller for the plant with utaitties, which will be carried
out by means of ahl., control approach. Another important objective is to desditter
that calculates an estimation of the output of the plants Estimation will be used when a
packet dropout occurs, so the feedback will not become Aéean square stability (MSS)
and robustness properties also have to be guaranteed. fEnaléisign will be done with
a technique based on the location of the unstable poles ahtikel of the plant. Further
information can be found in [J. E. Normey-Rico and E. F. Cama009].

Also in Chapter 4, the networked control system is modelked MJLS and an LMI
is derived in order to find a robust filter and controller by meafH., techniques (see [S.

Skogestad, and |. Postlethwaite, 2005]). The designed fiitecalculate an estimation of
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the state of the plant. This estimation will be used when &gtadropout occurs, so the
feedback will not become zero.

Chapter 5 proposes a predictive control scheme focussirtjesensor/actuator vs.
controller information interchange policy. Another contén this chapter is the design
of a strategy for networked linear systems with disturbanesth large data dropouts, re-
taining good performance. Additionally, limiting the amnmiwf information transmitted
in a Networked control system is a major concern. In this tdaphe effect of reducing
the number of data packet exchanges between the controtletha actuator, while keep-
ing an error threshold for the actuator control signalsxjg@ed. This threshold allows
to limit the amount of information through the network, tsaritting only when relevant
information for control is needed.

The network model considered allows for packet dropoutsth binks, controller-to-
actuator and sensors-to-controller. This motivates tbleigion of detection and compensa-
tion of missing packets resorting to buffering and staterestbr respectively. To show the
behaviour of the proposed compensation strategy, simulaésults are provided on the
level control problem of a three-tank system.

It has been also proposed to send from the controller a sequdrcontrol signals that,
appropriately buffered and scheduled at the actuator eeahrbe a safeguard in case of
delays or eventual packet dropouts. This concept natuitdlthe model predictive control
paradigm (MPC), and so has been reported in the literature.

In Chapter 5, it is supposed that the statistics of the timaydeand dropouts can be
measured or estimated with enough precision, exploitifg fidtt to design a stochastic
packetized MPC to improve the control performance.

Chapter 6 studies NCS in which the network is composed oftaicemumber of nodes
forming a matrix strucure. These nodes follow an algorittimat decides which node will

calculate the control input. This node will solve a coopeeatIPC communicating with its
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neighbors. Each node knows a part of the whole system modet ginares its information
with a group of neighbor nodes, so they cooperate in ordex¢bange their information
about the system. At each sampling time, a different grougndEs is chosen to calculate
the control signal. This group of nodes will be chosen dependn the particular network
outcomes for that sampling time. Chapter 6 extends the tecefierence contribution [D.
E. Quevedo, K. H. Johansson, A. Ahlén and I. Jurado, 2012htmrmpass NCSs with
parallel links and the use of cooperative MPC. The idea isvaiatd by the fact that the
link transmission outcomes may change at each samplirgnysto one particular node is
not always the best suited to perform the control calcutatio

In the network under consideration in this work, the only etitht receives the state of
the plant without any dropouts is the sensor node, whichdatéxl next to the plant. The
actuator node is directly connected to the plant inputgfoee this data is received without
problems. The actuator node is also the only node that peeuidnsmission acknowledg-
ments.

Itis supposed that the model of the plant is divided into sad@number of incomplete
subsystems. The control policy to be used will be a cooperatiPC.

With the algorithm proposed, transmission outcomes anid dlc&nowledgments will
determine, at each time instant, whether the control inplibe calculated at the actuator
node, or closer to the sensor node.

Chapter 6 also studies a single-loop NCS topology which asseries connection of
analog erasure channels. Thus, transmissions are affegt@shdom packet dropouts.

Another flexible NCS architecture where the role played lmidual nodes depends
upon transmission outcomes is presented. With this algaritransmission outcomes de-
termine, at each instant, which node will calcultate théestatimate.

In Chapter 7 a distributed cooperative estimation framé&wisrdiscussed based on

local Luenberger-like observers in combination with carsses strategies. Remarkably,
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network-induced delays and packet dropouts are considéredefficient use of the net-
work resources receives important attention in both, tifrieen periodic and event-based
communication between the agents. The former approacltesdhe amount of informa-
tion communicated over the network resorting to two diffgiideas: on the one hand, only
neighbors are allowed to communicate, reducing transarissivith respect to all-to-all

communication schemes. On the other hand, the design obdeneers contemplates the
possibility of sharing only a part of the estimated stateveen neighbors, instead of com-
municating the whole estimated vector state. This econartiye use of network resources

is, by its own nature, further improved with the event-dnie®mmunication approach.
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Chapter 2

An H, suboptimal robust control
approach for Networked Control
Systems with uncertainties and data
dropouts

his chapter studies the design of Networked Control Sysgeijgct to plant un-
certainties and data losses. The controller design has @i abjectives. The
first one is to robustify the control law against plant unaieties. The other
one is to achieve good performance by minimizing the vagasfcthe error signal. Data
losses are modelled as an independent-identically disé&ahyi.i.d.) sequence of Bernoulli
random variables. For analysis and design, this randorabaris replaced by an additive
noise plus gain channel, which is equal to the successfusmnégsion probability in the
feedback loop. Also, structural uncertainties in the madehe plant are considered. To
cope with the latter, ahl, control technique is proposed. The controller is syntleskin
order to make the closed-loop system robust against stalctncertainties of the nominal
model, while achieving optimal performance of the systeitinépresence of dropouts.
Therefore, the main goal of this chapter is to find a robustrotiar for the plant with
uncertainties and with data losses in the transmissioo;raleimizing the variance of the

error signalMean square stability (MS$nd robustness properties also have to be guaran-

17
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teed. AnH, control approach is proposed in such a way that both stralctuncertainties
in the plant and data losses can be tolerated, while optiguittie performance of the sys-
tem. To deal with the plant uncertainties, a central LTI calfer will be calculated. This
central controller will be combined with another transfendtion, Q(z), that will be in
charge of the minimization of the error variance. In ordefital Q(z), an algorithm is
proposed which gives a solution while satisfying the caists. The union of these two

transfer functions provides the proposed controller.
2.1 Hs control problem

In this section, a brief summary ¢f., control is presented. Further information can be
found in [K. Zhou, J. C. Doyle, and K. Glover, 1996], [J. C. DayK. Zhou, K. Glover
and B. Bodenheimer, 1994] and [S. Skogestad, and |. Postgty 2005]. The control
system described in Figure 2.1 is considered, where thergiezesl plantP(z) and the
controllerC(z) are both assumed to be real-rational and proper. The sigwalsed in the
diagram are the followingwv € R™ represents the disturbance vector, R™ is the control
input, z, € R is the error vector used in quantifyirtd, performance. The measurement
supplied to the controller is representedrby RP2,

The synthesis problem considered in this approach consiitgling an LTI controller

C(2) that minimizes the followingd.. criterion:
Min 'y, subject to: ||Tell, <y YERT, (2.1)

whereT.(z) denotes the closed-loop transfer function frano z.. It is given by the

lower linear fractional transformation:
To(2) = Pra(2) + Pr2(2)C(2) (| — Po2(2)C(2) *Pos(2),

with
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The transfer functiofl., () is chosen to represent a mixed-sensitity control prob-
lem, as explained in [S. Skogestad, and |. Postlethwait@5R®or closed loop transfer
functions,S(z) is used to denote the ouput sensitivity of the system,Taagito denote the
output complementary sensitivity. Thi&z) = (1+L(2))"*andT(z2) = L(2)(1+L(2)) 1,
whereL(z) is the transfer function around the loop as seen from theubufhen, two
weighting functions may be chosafni(z) to weight the sensitivity functioB(z) andwW (z)
to weight the complementary sensitivity functidiiz). These weighting functions allow
to specify the range of frequencies of relevance for theesponding closed-loop transfer
matrix. As it is known, an appropriate shapingTdfz) is desirable for tracking problems,
noise attenuation and for robust stability with respect tdtiplicative output uncertainties.
On the other hand, an appropiate shapingaj will allow to improve the performance of
the system avoiding steady state errors. Thereby, thisoappris useful to have an appro-
priate performance on tracking problems, as well as for yiséesn robustification against

noises and uncertainties.

Zeo

P(z)

C(z2)

Figure 2.1: Ho synthesis setup

Given the above, in order to design a networked controllemiaans of this control
technique, it is necessary to put the original system undasideration into the form

shown in Figure 2.1.
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2.2 Problem definition

This chapter is focused on a Robust NCS (RNCS) wherein the prablems are the
uncertainties in the plant model and the packet dropoutstefbre, the aim is to design a
controller that stabilizes a system subject to these twessAlso, it is required to achieve
a small variance of the error signal.

The plant model under consideration is represented by:

G'(2) = G2)(1 +W (2A2), (22)

where G*(z) represents the family of all the possible plar®z) is the nominal plant
model andM (2)A(z) is the multiplicative uncertainty, withA(2)]|,, < 1.

In the following, the way to deal with the information lossegresented.

The packet dropouts imply that there is an unreliable chidnniee feedback path. This
situation is illustrated in Figure 2.2, whe@€z) is the controllerr is the reference anglis

the plant output. The relation between the channel inautd the channel outpwiy, is:

wp(K) = (1—dr (K)V(k), VkeNo, Wv(K) €N, (2.3)

whered, models data lossed; (k) € {0,1}, Vk & No.

The plant under consideration is a random one, due to théeexis of an unreliable
channel with random data dropouts. In this case, the prbtyabi a successful commu-
nication is given byp € (0,1). The plant model is fixed but unknown, because of the
uncertainties considered, see (2.2).

The following notion of stability is adopted:

Definition 1 (Mean square stability) [O. L. V. Costa, M. D. Fragoso, and R. P. Mar-
ques, 2005] Consider a system described{iy+ 1) = f(x(k),w(k)), wherek € N, f :
R"x R™— R", x(k) € R" is the system state at time inst&nk(0) = X, wherexg is a sec-

ond order random variable, and the inputs a second ordenss(wide-sense stationary)
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process independent gf. The system is said to be mean square stable (MSS) if and only

if there exist finitey € R" and finiteM € R™", M > 0, such that

lim E{x(k)} = 1,

lim E{x(k)x(k)"} =M, (2.4)

regardless of the initial state.

channel
Figure 2.2: RNCS with packets dropouts

Assumption 1.

* The processl, is an independent sequence of i.i.d. Bernoulli random ksawith

P{d, (k) =1} =1 — pfor all k € Np.

* The plant transfer functio(z) belongs tdRsy, is SISO, non-zero, has no zeros or

poles on the unit circle, and has a stabilizable and detlectadalerlying realization.
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D)
3
c

channel

Figure 2.3: Equivalent RNCS with packets dropouts

¢ The initial states of both the plant and the controller aiatly second order vari-

ables.

The following result establishes an equivalence betweesystem with dropouts and

an associated LTI one.

Theorem 1. (Equivalence, [Q. Ling and M. Lemmon, 2004], [E. I. Silva a&dA. Pul-
gar, 2011]) Consider the feedback loops in Figures 2.2 addThe signal in Figure 2.3
is an independent sequence of i.i.d. random variables gaéro mean and a varianoé

that satisfies
provided the stationary variance wéxists and is finite.

Let us suppose that € (0,1) and that Assumptions 2 and 8 from [E. |. Silvaand S. A.
Pulgar, 2011] hold. Then:

1. If the feedback system depicted in Figure 2.2 is MSS anddaédback system in

Figure 2.3 is internally stable, then the stationary PSev@®? Spectral Densities)
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of the error €= r —y) and of all the corresponding signals in the loops are theesam

in both situations.

2. The networked system in Figure 2.2 is MSS if and only if #exdback loop in Figure

2.3 is asymptotically stable and

P 2
5~ M@l (2.5)

whereTy(z) is the transfer function frorg to v in Figure 2.3, namely
Tpo(2) = —pG'(2IC(2)(1+ pG'(IC(2)) - (2.6)

As a consequence of Theorem 1, ensuring MSS of the systengiumeFR.2 is equiv-
alent to achieving stability of the system in Figure 2.3, levfait the same time satisfying
condition (2.5). Also, minimizing the variance of a signslequivalent in both systems.
Thereby, the problem can be posed as the searching of a ben@(r) that stabilizes the
system in Figure 2.3, satisfies (2.5) and minimizes the nagaf the error, taking into ac-
count that the plan®(z) is the nominal plant model and that the closed-loop systest mu
be robust against the uncertainties in the plant model.

As mentioned before, a contribution of the current work &t 8tructural uncertainties
are considered in the model of the pl&3it(z). Due to this fact, the mixed sensitivity ap-
proach within theH,, scope allows to impose robust performance by means of apatep
design of weighting functions. In particular, as stated éct®n II, robust stability can be
guaranteed by weighting the complementary sensitivitgfion if structural multiplicative
uncertainty is considered ([M. G. Ortega and F. R. Rubio42dM. G. Ortega, M. Vargas,
L. F. Castafio and F. R. Rubio, 2006]), while performanceadtaristics can be imposed
by means of a reasonable weight on the sensitivity functitsmg this approach eentral

H. controller will be obtained.
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Wy(z) Z

D)

channel

Figure 2.4: RNCS and the weighting transfer functions

To incorporate condition (2.5), an additional transferdtion (Q(z)) is designed. There-
fore, combining the centrdl. controller with this transfer function, the finill, controller

is obtained. The above leads to the following control depigilem:

Problem 1 Consider the RNCS in Figure 2.2 where the pl&{z) has bounded struc-
tural multiplicative uncertainties. Then, the problem sists in finding a robust controller

C(2), using the RNCS in Figure 2.3, that achieves the followingditions simultaneously:

* Minimize || T»||,, to achieve a good performance on tracking problems and the sy

tem robustification against the plant uncertainties (sgar€i2.4).

« Minimize the variance of the error signal

The first objective will be achieved by means of tHg central controller. To tackle the
second one, the parametrization in (2.8) will be used. Thamater will be found solv-
ing an algorithm that seeks to minimize the variance of theresignal and satisfies an

appropriate constraint.
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2.3 Controller design

In this section, the controller synthesis procedure is ilesd. The central controller is
calculated by means of the descriliég control technique. Some weighting transfer func-
tions will be considered in the system to deal with the uraisties of the plant model.
The augmented system is represented in Figure 2.4. The tivegghansfer functions\s(z)
andW (z) weight the sensitivity function§(z)) and the complementary sensitivity func-
tion (T (2)), respectively. The outputs of these weighting transfacfions are the signals
Zs andz respectively. The latter represent the components of tbore, = % in
Figure 2.1. i

One of the considered weighting functions is the sengjtivitnsfer function, that is the
one from the reference to the error signal. The other usedfeafunction(T (z)) depends
on the open-loop transfer function of the systérfz). Thus, the output signalis taken as
the input of the weighting transfer functid¥ (z), as represented in Figure 2.4.

The finalH. controller is built by a linear fractional transformatiofitbe central con-
troller and a transfer functioQ(z) (see Figure 2.5)Q(2) is calculated in order to deal with

the optimization problem of minimizing the error variant@@erefore, the problem can be

written as:

Q@opt=arg inf [0Flow), (2.7)

whereo? represents the variance of the error.

It is important to note that the resulting controller hasftiikwing structure:
C(2) = Ke11(2) + Ke12(2) (1~ Q(2)Ke22(2)) T Q(DKe21(2) (2.8)
whereQ(z) has to satisfy the constraint:

1Rl <y



An H. suboptimal robust control approach for Networked Control Systems with
26 uncertainties and data dropouts

wherey is theH., perturbation attenuation parameter in (3.1), and

Ke11(2)  Kei2(2)
Kc21(z) KCZZ(Z)

In Figure 2.5, the structure of the global controller is esgamted. In the present work,

Ke(2) = l

a fixed structure has been considered®z). This is because it is necessary for the search
method described below to know how many parameters have foupe with the itera-
tions, so the best possible performance is achieved. Irctss, it is supposed th@Xz)

is a first order transfer function, therefore the paramedeesa gain, a pole and a zero.
Therefore, a first order transfer function is chosen®¢z). With this structure, there are
three parameters to take into account to minimize the efrtimeosystem, and each one
is affecting in a different way. A first order system is als@sén in order to not increase

excessively the computational cost of the algorithm. Thetee structure is:

Q(Z) KQ(Z _ CQ)

(z—po)
wherecg € (—1,1) and pg € (—1,1), this way, theQ(z) is stable and with minimun
phase. Imposing the conditidiQ(2)||,, < y, it can be seen thafg < yﬁ—pcg if cg > po
andKq < V% if g < po. If g > pg, then theH., norm is localized whea = —1, and
if cg < pg itis localized wherz = 1.
w Zy
P2)
u m
| Ke(z) |
| Qlz) |

Figure 2.5: Controller structure
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To find Q(2)sun Which is an approximation d®(z)opt, the following numerical search

over a grid is used, for any fixed and knopre (0,1):

1. Define a grid foKg, cg and pg:
€o = {Cqys-sCQ» > Cane }» CQ, > —1 andcg,, < 1,Vic € [1,nd.
o = {PQys-+s PQps -+ Panp }» Py = —1 @andpg,, < 1,Vip € [1,np).
Ko = {Kqys Ky s Kok }-
2. Find the variance of the error ([E. I. Silva and S. A. Pul@ir11]), [07] iz for

everyQi(z) € Q(z), whereQ(z) = K?Z(—Zgj)g g

3. Defineik-, ic- andiy- as the indexek, ic andi, associated to the smallest?] %@
Approximate the optimal variance of the error hyez} @

Therefore, wittKq, ., Cq... , PQ e+ itis possible to approximat@(z)opt with the desired
precision. In [E. I. Silva and S. A. Pulgar, 2011] a similaogedure is used but the global
controller is designed with a Youla parametrization. Tlkiads to a 2-norm minimization
problem of certain matrix transfer functions, which is smvin a specific way that, in
general, can not be extrapolated to another controllempetrézation. The advantage of
the method presented in the present work is that it is notssacg to know exactly the
model of the plant, since structural uncertainties areidensd.

As mentioned before, thie,, control problem will be solved to find an optimal con-
troller which achieves the system robustification againetglant uncertainties and gives
optimal performance. To carry out the synthesis, the systeRigure 2.4 has to be ex-
pressed, by means oflawer linear fractional transformatiopin the form as in Figure 2.1.

It is easy to see that, by identifying the terms, the folloygexpressions hold:
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W(z) 0 [ -W(2)G(2)
P(z) = 0 0 | W(2G(2
L= —pG2
With respect to the minimization problem in (3.1),(2) is chosen as follows:

T (2) o0 = ‘H

2.4 Stability analysis

For the stability analysis, the system in Figure 2.4 is repnéed as a state space system.
As a consequence of Theorem 1, if the stability of the systefigure 2.4 is proven, the
system in Figure 2.2 will be also stable.

Notice that constraint (2.5) is imposed in the design of thamller.

The system under consideration is:

x
A~
=
+
-
~
Il

A'X(K) + Bjw(k) (2.9)

Zo(k) = Cx(K)

where A and B’ are the state space realization of the sysi@gz) shown in 2.6. The

controllerC(z) is obtained following the equation (2.8), as explained inti®a 2.3.
Theorem 2.Giveny > 0 (obtained from the controller synthesis in Section 2.3) an

matricesA’ andB/’, the system (3.5.2) is stable al%@% < yif and only if there exists a

matrix X, such that the following matrix inequality holds:

X 0 XTA/T XTclT
0 -yi BT 0

AX B, —X 0

cX 0 0 —I

<0 (2.10)
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whereX = P~1, with P > 0.
Proof:

Consider

with P > 0, and seek:

V(k+1) =V (k) = x" (k+ 1)Px(k+ 1) —x" (k)Px(k) < O

By incorporating theH., condition:

X" (K)ATPAX(K) +xT (K ATPB, w(k) +w' (k)B}," PAX(k)+

WT (k)BT PE,W(K) — X" (K)PX(K) + 2L (k)2 (K) —

[E2]
[lwll,

yw! (k)w(k) < 0

Definingé =[x W', the equation (2.11) is equivalent to:

-P 0 AT Lo
le oy |EHE | g Pl A B, |&+
C/T .
ET[ ; [c o]E<o
W)t 260 (2)
| P(z) :
- Lol
iPC(z) |

Figure 2.6: System PC(z)

2 < y, the following expression is obtained:

(2.11)

(2.12)
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Using Schur complement and with the following multiplicatj

P11 00O -P 0 AT (T P1 00O
0O 1 00 0O -yi B, 0 0O 1 00
0O 01 O A B, -P1 0 0O 01 O <0
0 0 01 c o (o I 0 0 01

the linear matrix inequality (2.10) is obtained.
The result follows upon noting that, for linear systems,akistence of a matrife > 0
such that (2.10) holds, is a necessary and sufficient condibir the stability of the system,

[J. Daafouza and J. Bernussoub, 2001].
2.5 Numerical example

To illustrate the methodology proposed in this paper, thiedng unstable nominal plant

is considered:

z—05
G2 = z(z—11)’

with sampling time, = 0.05s.

Let us consider a transmission channel with a successfbipitity p = 0.7. Later, it
will be checked if this probability is enough to keep the sys$ equivalence and, conse-
quently, the mean square stability of the system.

The plant under consideration has parametrical unceigajrn the gain and in the dy-
namics as well. Also structural uncertainties are considieas unmodelled dynamics. In
this example, two non-nominal model structures are consiieTo obtain these models,
two high frequency poles are included and a percentage @rtaiaty in the model gain
and pole has been considered. From these two systems andniieah plant, multiplica-
tive uncertainties can be derived. The frequency respaitbese uncertainties have been
plotted in Figure 2.7.

The two non-nominal models have the following expressions:
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_ 0884z-05)
€12 = 111 z—0.11)
Go(z) . L0782-05)

~ Z(z—1.09)(z—0.215)
From this estimation of the uncertainty bound, the weightiansfer functionit (z)
for the complementary sensitivity function is designedustsa way that its modulus is

greater than the modulus of the uncertainties at all fregjesr(see Figure 2.7):

2.438&— 1.995
W) = = 5.9802 (213)
y(z) _ 007012004207 210

z—0.995

Ws is chosen taking into account that at low frequencies the gl * has to be very
small, in order to avoid steady state errors.

By solving theH,, control problem for this case, using some functions ofithé\nalysis
and Synthesis Toolbdar Matlab, and considering a success probabjity 0.7, a robust

controller is obtained yielding the following performanoeasure:

| Teollo, = 0.7893< 1

The fact that|| T ||, < 1 assures that the sensitivity functions are staying bekeir t

bounds.

To obtain the global controlleQ(z) can be calculated by means the algorithm pre-

sented in the previous section, finding the following result

0.2(z—0.4)

Q(Z)sub: 703
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W, uncertainty (dB)

WI as uncertainty superior limit (dB)
15 T T T T

Uncertainty 1
Uncertainty 2
—W

10

-10+

10 10° 10" 10° 10 10
frecuency (rad/s)

Figure 2.7: Uncertainties anii

1Q(2)supll,, = 0.2154< y = 0.7893

Once the controller is obtained, it is checked that all thesgiwity functions are below

the inverse ofA\;, as it is shown in Figure 2.8.

Figure 2.8 illustrates the sensitivity functions of the rioah and non-nominal plant

models and the inverse of the weighting transfer functé(e). This figure shows how

all the sensitivity functions, the one of the nominal systend the other non-nominal

systems, are bounded (in magnitude) by the inverse of thghtieg functionWs(z) due to

the fact that the achieved value pfs lesser than one. This fact indicates that the output

can follow the reference for all the plant models under consideration, that is, akirar

problem can be solved although the plant model is not ex&othyvn.

Figure 2.9 represents the complementary sensitivity fanstof the nominal and non-
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gain (dB)

gain (dB)

Sensibility function and its weight
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Figure 2.8: S(z) of the nominal plant model ant; ()

Complementary sensibility function and its weight
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Figure 2.9: T(2) of the nominal plant model ant*(z)
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nominal plant models and the inverse of the weighting tremBinctionW (z). Clearly,
all the complementary sensitivity functions, the one of tleeninal system and the other
non-nominal systems, lie below the inverse of the weightimgtionW (z). Therefore, the
obtained controller is robust against the uncertaintighérplant model.

To verify these results, some simulations have been castied’ hese simulations have
been also obtained for the differeQ(z). Figure 2.10 shows how the system follows the
reference with a successful transmission probabjiity 0.7, which is greater than the
minimal p needed to achieve MSS and robustness properties for thisnsysvhich is
obtained from (2.5):

Pmin = HTL)HEP
1+{Te(2)[[2
yielding pmin = 0.65, since||Tp(2) ||§ = 1.36 in the case 0Qopt(K), and (2.5) has to be sat-
isfied. This figure illustrates output trajectories of theseld-loop system with the nominal
plantG(z), with plantG; (z) and with the planG;,(z). The results are very similar because
of the robustness of the system. However, there exist soffexatices between the dif-
ferent outputs. For example, the output with(z) has an overshoot that is greater than
the overshoot when the nominal model is used. With respebietoutput withG,(z), the
overshoot is reduced with respect the other cases, butatiersiry performance is worse.
lllustrative outputs of the different systems for a sucaasbability of p = 0.9 are
presented in Figure 2.11. In this case, the probability atess in the transmission has
been increased, although the controller used in these aiioos is the one calculated for
p = 0.7. Clearly, the results are better than the ones presentéijure 2.10, but the
differences between the performance with the differentesys is the same as in the case
of p=0.7.

Finally, Figure 2.12 presents the outputs of all systemh wit= 0.4, while using the
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=2-| — Reference
—— Nominal plant
—gf| —Plant1
—Plant2 |

Figure 2.10: Simulation results with p = 0.7

same controller as in the preceding simulations. Obvigtisé/performances get worse for
all systems, and in the case of the plant with the uncer&aritj the closed-loop system
becomes unstable. Therefore, wiik= 0.4, the robust stability is lost.

Some representative results (error variances) are shoWaie 2.1, where two differ-
ent cases are considered. In one @&t is used and in the other the central controller is

used, thereb®(z) = 0. In the cases, the constraji@®(z)||,, < y holds. The error variances

[
are worse in the case of the non-opting#lz) = 0. Clearly, asp increases, performance
improves.

The case of a tradition&l., controller has been also considered. This controller does
not take into account the data losses in the system. As esgheitte closed loop system

becomes unstable for all scenarios considered in this work.
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Qopt (2)

— Reference
—— Nominal plant
—Plant1
—Plant2

30 3 40

Figure 2.11: Simulation results with p = 0.9

Table 2.1: Error variances

p=0.7 Plant
Q2 | G Gi2d Go(?)
Qopt 171 184 2.04
0 1.738 1.867 2.09
p=0.9
Qopt 0.995 1.01 1.09
0 0.9998 1.023 1.127
p=04
Qopt 596 29.47 8.98
0 6.155 34.09 9.093
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Qopt (z)
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40

Figure 2.12: Simulation results with p = 0.4

2.6 Conclusions

The chapter has focused on control loops for SISO LTI plamtere the feedback path

comprises a communication channel affected by Bernouth ttasses. This system has

been studied as an equivalent one wherein the unreliablemehhas been replaced by an

additive i.i.d. noise channel, plus a gain. The objectivinefchapter has been the synthesis

of a controller that compensates model uncertainties alatifaansmissions. To perform

this task, arH., control problem has been proposed. Numerical examplesithastated

closed-loop system performance benefits of our approach.

Future works could consider different structures for theapeeterQ(z), non-linear

systems and also to include delays in the communicationngian
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Chapter 3

Mixed H,/H. robust control approach
for NCS with uncertainties and data
dropouts

n this chapter, a Robust Networked Control System (RNCSjestln data losses

constraints is again considered. These data losses ardl@tbds an independent

sequence of i.i.d. Bernoulli random variable. This randariable is replaced by
an additive noise plus a gain, which is equal to the succksafismission probability in
the feedback loop. Also, structural uncertainties in thelehof the plant are considered.

To cope with this problem, a mixddh /H., control technique is proposed in this chapter.

In the previous chapter (Chapter 2), only thg technique is used while in this one tHe
approach is added. In this way, the technique is used to stabilize the NCS taking into
account the probability of data dropouts, while Hhe approach is in charge of making the

closed-loop system robust enough against structural taistes of the nominal model.

3.1 MixedHz/H. control problem

In this section, a brief mixe#i,/H. control approach is described. Further information
can be found in [K. Zhou, J. C. Doyle, and K. Glover, 1996] a2d(. Doyle, K. Zhou,

K. Glover and B. Bodenheimer, 1994]. The control systemidlesd in Figure 3.1 is con-

39
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sidered, where the generalized pl&fkz) and the controlleC(z) are both assumed to be
real-rational and proper. The signals involved in the diagiare the followingw € R™
represents the disturbance vectog R™ is the control inputz, € RP! andz, € RP: are
the error vectors, the first one for the measurement oftthperformance, and the second
one for theH, performance. The measurement supplied to the controltepiesented by

me RP2,

P(Z) — > 7»

C(2)

Figure 3.1: Mixed Hz/H« synthesis

The synthesis problem considered in this approach consifitaling a suboptimal LTI

controllerC(z) that minimizes the following mixedl,/H.. criterion:

Min - a |[To |5+ BIIT2l3, (3.1)
subject to:
* el < o0
* T2l < vo

whereT.(z) andT,(z) denote the closed-loop transfer functions franto z., andz, re-
spectively; andp, vo € R™.
As will be shown, the minimization of T>||, implies the minimization of the lower

bound of the success probability in the data transmission.
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In order to find out a controller by means of this control téghs, it is necessary to
put the original system into the form of the block diagramvehdn Figure 3.1. To do this,
the original system is changed withawer linear fractional transformation

In this caseT. is chosen to represent a mixed-sensititity control problem, which is
widely explained in [S. Skogestad, and |. Postlethwait®52050 two weighting functions
are again choseMk(z) to weight the sensitivity functiol®(z) andW (z) to weight the
complementary sensitivity functiofi(z). These weighting functions allow to specify the

range of frequencies of relevance for the correspondirgeddoop transfer matrix.

3.2 Problem definition

As Chapter 2, this one is focused on a RNCS wherein the mabigms are the uncertain-
ties in the model of the plant and the packets dropouts. 8@ith is to design a controller
that stabilize a system subject to these two problems tegeth

The uncertainties under consideration were presentedapt€h2, as well as the way
to deal with the information losses, thdean square stabilitglefinition and theEquiva-
lencetheorem.

In this chapter, condition (2.5) is imposed by solving-gncontrol problem, to find the
minimal probability of success in the transmissig). (Therefore, by mixing thél, tech-
nique from Chapter 2 and this one, a mixdg/H. control problem is formulated, with
the following cost function to minimizea || T |2 + B ||T2H§, where||T||, includes some
weighting functions to achieve the system robustificatiod [T ||, will be || Ty(2)||,, to

impose condition (2.5).

Problem 2 Consider the RNCS in Figure 2.2 where the pl&tr) has bounded struc-
tural multiplicative uncertainties. Then, the problem sists in finding a robust controller

C(2), using the RNCS in Figure 2.3, that achieves the followingditions simultaneously:
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* Minimize || T»||,, to achieve a good performance on tracking problems and the sy

tem robustification against the plant uncertainties.

* Minimize || T,||, to calculate the minimal successful probability of datsésspossi-
ble for the NCS, imposing condition (2.5), so the system$i@Rigures 2.2 and 2.3

are equivalents.
3.3 Controller design

In this section the controller synthesis will be performgdieans of the described mixed
H»/H. control technique. Some weighting transfer functions dlintroduced in the sys-
tem to deal with the uncertainties of the plant model. Theaged system is represented
in Figure 3.2. The weighting transfer functiong(z) andw (z) weight the sensitivity func-
tion (S(z)) and the complementary sensitivity function(g)), respectively. The outputs of
these weighting transfer functions are the sigaabndz respectively, and they represent

the components of the vectag in Figure 3.1.

Wit(z) —> zt

Figure 3.2: RNCS and the weighting transfer functions

It is important to note that the system under considerai®a, non-unitary feedback
system. Thereby, in order to eliminate the steady statesreotwo-degrees-of-freedom

controller is proposed. Therefore, the controller will lbenied by two transfer functions,
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Ci(z) andCy(2). Also, the sensitivity function¥(z)) and the complementary sensitivity

function (T (z)) expressions will change. These expressions will be:

S(z2) = 1+C1(29)G(2) (C2(29)p—1)
- 1+C1(2G(2)Ca(2)p

_ G(2C(29)G(2)p
T@=17c.90@0@p

The sensitivity function §z)) represents the transfer function from the reference to
the error signal. The complementary sensitivity functidiz]) depends on the open-loop
transfer function of the system, which Is(z) = C1(z)C2(2)G(z) p, so the control signal,
should be the input of the weighting transfer functitf{z), as it is represented in Figure
3.2.

The objectives of the controller are the following:

1. Minimize theH. norm of the closed loop from the exogenous disturbance®wect

to the vectoz,.

2. Minimize theH, norm of the closed loop signal from that vector to the sigpal

So, as mentioned before, the mixdg/H., control problem will be solved to find a subop-
timal controller which achieves a trade-off between theimimm of the two norms under

consideration. To carry out the synthesis, the system inrEi§.2 has to be expressed, by
means of dower linear fractional transformatipas in Figure 3.1. It is easy to see that, by

identifying the terms, the followings equations hold:
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Ws(z) 0 | —Ws(2)G(2) 0
0 0| 0 Ws(2)
P(z) = 0 0 | pG(2) 0
I 0 | 0 —
0 I pG(2) 0

With respect to the minimization problem in (3.1),(z) and T»(z) are chosen as fol-

lows:

IT2(2)]l2 = [ITo(2)]

%@l = || o

The parameters will be chosen in such a way that the cond@i&) holds. This means

H W(2)S(2) ]

that:

.
1-p

Vo

At this point, it is worth mentioning some comments in radatio the choice of the
others parameters. It is interesting to note that, if therfyi is to achieve the minimal
possiblep, it is important to obtain a controller that provides ldp norm of T»(z) very
close to its minimum. Then, for this case, the paramgtehould be greater tham. On
the contrary, if the interest lies on achieving the bestqrernce and robustness against
noises and uncertainties, it is better to choose the paeamajreater thar8. This means
that the resulting controller will provide a very smhll, norm of T, (2).

The probability of success in the transmisspis assumed to be fixed in the controller
synthesis. This is possible if the network requirementsagiknown. In any case, if the

value ofp changes, the stability of the closed-loop system is guaeeahif p is greater than

the minimal probability of success in the transmission ioetz.
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3.4 Numerical results

To illustrate the methodology proposed in this paper, thitsisn shows the obtained results
when the control strategy is applied to a particular exarrplénis example the following
unstable nominal plant will be considered:

z—05
(2) = z(z—11)

The sampling time will by, = 0.05s.

WL as uncertainty superior limit (dB)
15 ——r ———— e

— — -Uncertainty 1
Uncertainty 2

W

W, ., uncertainty (dB)

frecuency (rads)

Figure 3.3: Uncertainties anti

To take into account the uncertainties in the plant, two nominal models have been
also considered. To obtain these two other models, the faat {3 supposed to have un-
modelled dynamics, so, high frequency poles are includgo Alpercentage of uncertainty
in the model gain has been considered. From these two systadrtte nominal plant, the
multiplicative uncertainties can be computed. The fregyersponse of these uncertain-

ties have been plotted in Figure 3.3.
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From this estimation of the uncertainty, the weighting &fen functionW (z) for the
complementary sensitivity function is designed in such weat its modulus must be
greater than the modulus of the uncertainties for all fregueThe frequency response

of W (z) has been also represented in Figure 3.3.

Sensibility function and its weight
T —

gain (dB)
\
8
T

—40F

- S
nominal

frequency (rad/s)

Figure 3.4: §(z) of the nominal plant model antis(z)

By solving the mixedH;/H., control problem for this case using some functions of
the y—Analysis and Synthesis Toolbfor Matlab and considering a success probability

p = 0.7, a robust controller is obtained yielding the followinguds:

[ Teoleo = 0.8441, || T2||, = 1.3615

By imposing equation (2.5), this means that the system dardad success probability
p equal to or greater than 0.65, to guarantee MSS and to pesserdemanded robustness

properties.
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Complementary sensibility function and its weight
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Figure 3.5: T (2) of the nominal plant model ang (z)

In Figure 3.4 the sensitivity functions of the nominal andhmmminal plants models
and the inverse of the weighting transfer functitiiz) are represented. This graphic shows
how all the sensitivity functions, of the nominal system agstems with uncertainties, are
below the inverse of the weighting functidi(z). This fact indicates that the output
can follow the reference for all the plant models under consideration, that is, akirag
problem can be solved although the plant model is not ex&othyvn.

Figure 3.5 represents the complementary sensitivity fanstof the nominal and non-
nominal plants models and the inverse of the weighting fearfanctionW (z). From this
graphic it is possible to see that all the complementaryiteibsfunctions, of the nominal
system and systems with uncertainties, are below the ievafrshe weighting function
W (z), so the obtained controller is robust against the unceigaim the plant model.

To corroborate these results, some simulations have begectaut with the proposed

example. Figure 3.6 shows how the system follows the refererith a successful trans-
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mission probabilityp = 0.7, which is greater than the minimathat can provide MSS and
robustness properties for this system. This graphic reptsshe outputs of the closed-loop
system with the nominal plant, with the plant with the unamties 1 and with the plant
with the uncertainties 2. The results are very similar beeahe robustness of the system.
However, there exist some differences between the diffsrentputs. For example, the
output with the uncertainties 1 has an overshoot that iggréaan the overshoot when the
nominal model is used. With respect to the output with theediainties 2, the overshoot is

reduced with respect the other cases, but the stationaigyrpemce is worse.
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Figure 3.6: Simulation results with p = 0.7

The outputs of the different systems for a valuepof 0.9 are shown in Figure 3.7.
In this case, the probability of success in the transmisk&s been increased, although
the controller used in these simulations is the one caledl&ir p = 0.7. Obviously, the
results are better than in the ones presented in Figure & 8hé differences between the
performance with the different systems is the same as inake ofp = 0.7. Also, there
are steady state errors because the controller is the atdduiorp = 0.7 so the feedback
is non-unitary. These steady state errors might be avoiclylating the controller using

p = 0.9, but the objective is to compare the results with the same&alter, supposing that
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p have changed in the network.
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Figure 3.7: Simulation results with p = 0.90
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Figure 3.8: Simulation results with p = 0.40

Finally, Figure 3.8 presents the outputs of all the systemgosingp = 0.4, while
using the same controller as in the precedings simulati@bsiously, the performances
get worse for all the systems, and in the case of the plantthétincertainties 1 and 2, the

closed-loop system becomes unstable. Therefore, puitt0.4, the robust stability is lost.
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3.5 Application to glucose robust control in diabetes with ensor
failures

In this section, the glucose control for diabetic patiesteansidered. The problem of
possible sensor failures, that leads into an absence agguneasurement, is treated. This
sensor errors are taking into account by means of modetiéfgilures as an independent
sequence of random variable. This random variable is reflag an additive noise plus a
gain, which is equal to the successful transmission prdibabi the feedback loop. Also,
to take into account different patients, structural uraiaties in the model of the plant are
considered.

To solve this problem, the mixeH;/H. robust control technique presented above
is used. In this way, thél, approach is used to stabilize system taking into account the
probability of sensor errors, while thé, approach is in charge of making the closed-loop

system robust enough against structural uncertaintigseaidminal model.

3.5.1 Introduction to glucose problem in diabetes

Insulin is the most important factor for the digestion pss;an where the food is decom-
posed to create glucose, the principal source of energyhébody. This glucose passes
to the blood, where the cells absorb it thanks to the ins@lfnthe glucose concentration
raises, the insulin secretion is stimulated from the paxr&his makes the insulin level
in blood increases, inducing the glucose absortion inta#lis. In a diabetic person, the
insulin deficiency causes the glucose concentration indyleo the body is deprived of

its main energy source. Furthermore, high glucose levetddad may damage the blood
vessels, the kidneys and the nerves. Since there is no autkefaiabetes yet, the peo-
ple affected by this metabolic disease have to control theagle levels in blood, keeping
them close enough to the normal ones by the external inquliplg. An appropiate control

can help preventing diseases related with heart and cioccylaystem, eyes, kidneys and
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nerves.

Some biological mathematical models provide charactesisf the glucose regulation
behavior in the human body, such tBerensen Modetescribed in [Kovacs and Kulcsér,
2007], and the one used in this work, tBergman Modeldescribed in [R. N. Bergman
and Cobelli, 1981],[R. N. Bergman and Ader, 1985],[Lyncld &equette, 2001].

Diabetes is a metabolism disease that is characteriseeliydtease of the glucose lev-
els in blood (hyperglycemia), caused by the insulin seanedieficiency. Normal limits for
the glucose levels in blood are around 130 mg/dl, even wheregpreasy and sugar food
have been ingested. This gyclemia stability is achieved bsima of a regulator mecanism
extraordinary exact and sensitive.

When a non-diabetic person ingests food, the sugars in itearbed and they pass to
the blood, tending the glucose levels to raise. This tendendetected by the insulin pro-
ducer cells, which respond with a quick insulin secretidrnisThakes the cells to absorb the
glucose, that way its levels in blood decrease. For a diapetison, the insulin production
is so low that alters all the regulator mecanism: the glucissein blood is not followed by
the sufficient increase of the insulin, thereby the glucas®ot be absorbed by the cells
and its level keeps increasing. As a consequence, the egliwt produce enough energy
and their functions are altered.

In this work, type | diabetes is considered. In this kind ailites, the pancreas does
not produce insulin, and the patient is totally dependerihsulin from an external source
to be infused at a rate to maintain blood sugar levels at novmes (72-145 mg/dl).

Since the normal body has a natural feedback regulatiorrmsy&tr the insulin produc-
tion, the goal of this paper is to regulate blood sugar lavaltype | diabetic by controlling
the insulin infusion rate.

This kind of problem has been treated by means of Model Predi€ontrol (MPC)
([Lynch and Bequette, 2001, 2002, P. Dua and Pistikopo@@85, 2006]), and also with
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Robust Control approaches ([S. Kamath, 2006, R. S. ParkePappas, 2000]).

In this work, it will be considered the possible sensor exrtrat leads into an absence
of glucose measurement. Some of the most common sensors plantable sensors (Min-
iMed), sensors based on blood samples (Accu-Chek) or n@siire glucometer (Glucow-
atch). Usually, the sensors samples are taking every 5-i0Therefore, it is important to
have proper sensors that measure the glucose preciselgvdnvwsometimes the sensors
are not totally reliable.

Several causes of failures have been reported for glucos®se[Zilic and Radecka,
2011]. One cause can be because the body rejects them doerently phase or after
longer use. On the other hand, their sensitivity might deégralso, the fluid that flows to
the sensors could be stopped. It was also observed thatrfeg data points, the readings
might be occasionally off, i.e., they drop-out [B. Kovatehend Clarke, 2008]. Finally,
sensors can completely fail.

To deal with that trouble, the robust controller introdudedhis chapter is used for
controlling the glucose levels. The controller synthesi take into account the model
uncertainties, because the resulting controller must tadweirate for different patients.

Also it will be considered the previously described sensmrs.

3.5.2 System description

The model used to define the gluco-regulatory system iBéingman ModelR. N. Bergman
and Cobelli, 1981]. In the first place the model formed by tifieiEntial non-linear equa-
tions is presented. Then, that model is symplified by mean$niéarization around an

equilibrium point.
Non-lineal model definition

The Bergman Model, used in this work, is described by meaadditowing differential

non-linear equation described in [R. N. Bergman and CqoliB1]:
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(:T? = —PIG—X(G+Gp) +D(t) (3.2)
% =—n(l +1p) + %lt) (3.3)
%Ti( = _—PX+PRl (3.4)
—t/tma
D(t) = DGC‘;:gax;' (3.5)

where:

* G(t) is the plasma glucose concentration (mmol/L) above basaéva
« |I(t) is the plasma insulin concentration (mU/L) above basale/alu

» X(t) is proportional td (t) in remote compartment (mU/L).

* D(t) is the meal glucose disturbance (mmol/Lmin).

* U(t) is the manipulated insulin infusion rate (mU/min).

* Gy andl, are the basal values of glucose and insulin concentrationolth and

muU/L).
¢ Dg is the carbohidrate ingestion (g CHO).
The model parameters for a tipical patient are:
e P, =0.028min!
e P, =0.025min!
* P;=0.000013mU/L
* V; =12 L andn=5/54min

« Ag=08
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hd tmaxG = 40 m|n
o tma)d == 55 m|n

e \Vg=1379L

l, = 15 mU/L
¢ Gy, =4.5 mmol/L
Linear model

In order to carry out the controller synthesis, a linear nhéglgoing to be obtained from
the differential non-linear equations. Therefore, from lihearization of the model around

the equilibrium poinXy = Gg = 0, the linear model obtained is the following:

G P 0 -Gy G 0 1 !
il=] o -n o I |+| 1m0 l 1] (3.6)
X o B -p ||x o oL
G 0 u
o 1
y=[1 0 0] >|< + OHUJ (3.7)

where

up . U—Ub
n ][5

WhereUy = 16.66667 mU/min is the insulin necessary to keep the equilibrduound

X, Go.
3.5.3 Problem definition

Once the gluco-regulatory model is identified, it is posstiolapply different control struc-

tures to control the glucose level in blood.
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Sensor failure?

Sensors [&——

Controller

Infusion
pumps

Figure 3.9: Control scheme with sensor failures

Therefore, the plant under consiteration will be a patiant the model will be given
by the Bergman Model equations. A sensor will be measuriaggthcose level in blood.
There will be also an insulin pump as actuator, injectingulimsintravenously in order
to control the glucose level in blood (see Figure 3.9). Theigieed controller will be in
charged of providing the quantity of insulin needed by thiep.

There are two main problems considered in this work:

¢ The uncertainties in the plant model, because the parasmg#tange from one patient

to another.

¢ The sensor failures. Each sampling time, the sensor hashkalpitity of failing its

measurement.

The aim of this work is to control the glucose levels by medrth@insulin injections,
taking into account the explained problems.

The uncertainties are modelled as structural ones, andatleeepresented b§*(z).

The information errors occur due to some sensor faliuret eans that the glucose
measurement is not available at some instants. This gituaiillustrated in Figure 3.10,
where the different patientes are represente@hi), C(z) is the controllery is the refer-
ence that provides the proper glucose levgls,the glucose level in bloodyis the insulin

injection that will control the glucose in blood, add models the sensor failures, that is
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dr € {0,1}.

r

T"‘ b o

Figure 3.10: Robust controlled system with feedback failures

3.5.4 Simulation results

In this section, the simulation results obtained from tHaush control techniques applica-
tion are presented and analyzed.

The presented simulations take into account the followmgserations:

1. Basal equilibrium point: the system is going to be stabdiaround the equilibrium

point given by the glucose basal level, that is, 81 mg/dI (dtBol/L).

2. Glucose levels in blood: the used limits for a diabetiaggrdtare given by 60 and
180 mg/dl.

3. Controller saturation: the applied control action habdadnside certain boundaries,
defined by (3.9). This is the real situation when the insuljedtions are dosed by
means an external actuator (insulin pump).

0 (mU/min) <U +Upasa <100 (mU/min) (3.9)

It is possible to see how, with these boundaries, the coattibn (injected insulin),

is never negative or bigger than 100 mU/min.

4. Sampling time: because of the real limitation of the éxisglucose sensorg, =5

min.
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5. Meals: the external disturbances added are the ingestimeals at different times
during the day. They are defined by equation (3.5) with tharmpaters presented in
Section 3.5.2.

Four daily meals are considered ingested in the followingetable and quantities:

08:00—551 g CHO

13:00—-879 g CHO

18:00—+690 g CHO

22:00— 453 g CHO

Taking into account a conversion factor 1000/180 g CHO, feritbances graphic

(daily meals) is represented in Figure 3.11.

0.4 T T T T T T T T T

0.35+ B

0.3F B

o
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T T
! L

Meal (mmol/L min-1)
=4
o
1

0.1 B

0.05 B

I [ [ [ [ L L L
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Time (min)
Figure 3.11: Daily meals ingestion
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The designedH,/H., robust controller provides the following attenuation edu

Jo = 0.589
Vo= 0.136

This controller has been obtained assuming a sensor measuotreuccesful probability

of 70% (p = 0.7), that way equation (2.5) holds.
Simulations for different patients

Now, different patient models are considered for the sitwia, which are defined by the
parameter variationd,, P, andPs, which identify them.
The selected patients’ parameters for this work are theviatig, which vary depending
on their diabetic condition:
* Nominal patient GN):
P, =0.028min1
P, = 0.025min1
Py=1.3e°muU/L
e Patient 1 G1):
P, = 0.026min1
P, = 0.024min"!
P;=1.1e°muU/L
» Patient 2 G2):
P, = 0.030min1
P, = 0.027min™1

Py=1.4e°>muU/L
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Figure 3.12:Glucose trajectory for different patients ape= 0.9
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Figure 3.13:Injected insulin for different patients anp= 0.9
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Figure 3.14:Glucose trajectory for different patients ape= 0.7
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Figure 3.15:Injected insulin for different patients am= 0.7

The robustness of the system can be appreciated for theetiffpatient models, since

the obtained glucose evolution is quite similar for all aérttn, for the same probability.
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Figure 3.16:Glucose trajectory for different patients ape= 0.5
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It can be seen in Figure 3.12 how the glucose is always less288 mg/d| for the
probability p = 0.9, and only patient 1 enters in hyperglycemia.

Figure 3.14 shows how the performance gets worsp f00.7. Now, the glucose levels
exceed 200 mg/dl, being all the patients at hyperglycemigldeduring some minutes.

With p= 0.5, Figure 3.16, the maximum glucose level increases, bélitigespatients
more time in hyperglycemia.

The glucose level never enters in the hypoglycemia zonegwtan cause the death of
the patient.

Figures 3.13, 3.15 and 3.17 show the injected insulin, whats more violent whep

decreases. Also, the times when it reaches the saturatiels lecrease with smallgg.

3.6 Conclusions

This chapter has focused on a NCS subject to data dropoussraimts. In particular, con-
trol loops for SISO LTI plants, where the feedback path casgsra communication chan-
nel that produces data losses, are considered. This syatebekn studied as an equivalent
one wherein the unreliable channel has been replaced byditivad.i.d. noise channel,
plus a gain.

The objective of this chapter has been the synthesis of aattemtthat avoid the model
uncertainties and support the failed transmissions. Ats®Jower bound of the success
probability in the transmission has been found. To perfdris task, a mixedH,/He. con-
trol problem has been proposed. To obtain a robust contrsibene functions have been
chosen to weight some sensitivity functions. Moreovemfibis control problem, the min-
imal successful transmission probability is obtained ghelh MSS and robustness proper-
ties for the closed-loop system are guaranteed.

Finally, an application has been exposed to obtain some ricaheesults that illus-

trates the closed-loop system performance. These simuletsults corroborated that ro-
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bust performance is achieved if the successful probalitiysmission is higher than the
minimum computed, while the differents systems performearget worse, until the robust
stability is lost, as the successful probability transimisslecreases.

Also, an application of this technique to the problem of theegse control for diabetic
patients subject to sensor errors constraints has beegnpeels

Different patients have been considered, thereby the sgigthof the controller has
been such that avoid the model uncertainties and suppoleheor failures. Also, the
lower bound of the success probability in the sensors has foead.

Some simulations have been carried out for different pttigmillustrate the closed-
loop system performance. These simulation results coraded that robust performance
is achieved if the successful sensor measurement prayebiliigher than the minimum

computed.
3.7 Related publications

* Isabel Jurado, Manuel G. Ortega and Francisco R. Rin#tworked Mixed bl/H.,
robust control approach for NCS with uncertainties and déapouts Proceedings
of the 18th World Congress of the International FederatibAwtomatic Control

(IFAC), 2011.






Chapter 4

An H,, Filter and Controller Design for
Networked Control of Markovian
Systems with Uncertainties and Data
Dropouts

his chapter considers a Robust Networked Control SystenC@Nubject to

data losses constraints and modelled as a Markovian JungaiLBystem. A

filter and a controller will be designed together by meansigftechniques.
This design will provide robustness to the closed-loopesysagainst plant uncertainties,
as well as disturbances attenuation.

The network will introduce data losses which will be modelks a sequence of in-
dependent and identically distributed (i.i.d.) Bernotdindom variable. It is considered a
maximum number of consecutive packet dropouts. Moreoveetainties in the model of
the plant are included, as well as unknown disturbances.

To cope with this problem, a robulst, filter and controller are designed by developing
a Linear Matrix Inequality (LMI).

There are also structural uncertainties in the plant andiowk disturbances. The sys-
tem is modelled as a Markovian Jump Linear System (MJLS) antdMl is derived in

order to find a robust filter and controller by meandHaf techniques (see [S. Skogestad,

65
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and . Postlethwaite, 2005]). The designed filter will céddel an estimation of the state of
the plant. This estimation will be used when a packet dropoatirs, so the feedback will
not become zero.

In the first section of this chapter, a filter and a controllérlve synthesized in order to
make the closed-loop system robust against structurakrtamcges of the nominal model.
The filter will be also able to deal with network data lossessWwill be done by means of

frecuency techniques.

4.1 Filter design using frecuency techniques

This result considers an NCS with data dropouts source dsag/structural uncertainties
in the plant. Therefore, one goal of this section is to findlzusb controller for the plant
with uncertainties, which will be carried out by means otancontrol approach. Another
important objective is to design a filter that calculates stingtion of the output of the
plant. This estimation will be used when a packet dropouticg;cso the feedback will
not become zero. Mean square stability (MSS) and robuspmegerties also have to be
guaranteed. The filter design will be carried out with a téghe based on the location of
the unstable poles of the plant model. Further informatiem lze found in [J. E. Normey-
Rico and E. F. Camacho, 2009].

To illustrate the situation, a control structure is presdrhat depends on whether there
is a packet dropout or not. This structure is represente@jiur€ 4.1. It can be seen that the
feedback gets lost when a packet dropout occurs. Theredoeeof the main goal of this
section is to design a filter to estimate the plant output wlpacket dropout is detected,
so the feedback is not zero when a data is lost. Figure 4.1ssttensystem including the
output estimation.

As mentioned before, structural uncertainties will be adered in the model of the

plantG*(z). So, the controlle€(z) will be designed as a mixed sensitivitl, controller,
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e Fer(2) [O—{C@

1-d
Figure 4.1: RNCS structure with the filteff (2).

using a similar procedure as in Chapter 2. This approach snadssible to impose robust
performance by means of appropriate design of weightingtfons. In particular, it is
well known that robust stability can be imposed by weightihg complementary sensi-
tivity function if structural multiplicative uncertaintis considered ([M. G. Ortega and F.
R. Rubio, 2004], [M. G. Ortega, M. Vargas, L. F. Castafio an&.FRubio, 2006]), while
performance can be imposed by means of a reasonable weigihe @ensitivity function.
Using this approach, thid., controller will be obtained.

On the other hand, the filter has to be able to deal with thertainées of the plant
in order to give an appropriate estimation of the plant outpherefore, it is necessary to
obtain the conditions for the robustness of the closed-bBygiem. These conditions are
given by the stability of the the characteristic equation@(z), yielding [J. E. Normey-
Rico and E. F. Camacho, 2009]:

1+C(2)G(2) + F (22 1C(2)G(2Wn(2)A(2) =0

Under the assumption of the nominal closed-loop systenaldestthe robust stability con-



An H,, Filter and Controller Design for Networked Control of Markovian Systems
68 with Uncertainties and Data Dropouts

dition for the filter is given by the following expression:

|1+C(elP)G(elP)|

M€ < [ aye oc(@m)aem)]

m
VO< p<§

wherep represents the non dimensional frequency, pe=,wty, beingt, the sampling

time.

4.1.1 Filter design

The proposed structure for the design is shown in Figurelticin be seen that the struc-
ture is very similar to the Smith predictor with two additafilters.Fe¢(z) is a traditional
reference filter to improve the set-point response R(w is a predictor filter used to es-
timate the system output when a packet dropout oc€(®. is the nominal model of the
uncertain plant with uncertainti€s* ().

In the proposed structure, the estimation of the output dnly used when a packet
is lost in the feedback channel, i.d;,= 1. Otherwise, the measured output is provided to
the controller.

This structure has been particularized for the case in wihielmumber of consecutive
packet dropouts cannot more than one. Thus, the estimgtatgiat the sampling time

is given by the followings equations:

§(n) =y(n) +Fly(n—1) —y(n—1)]

whereF[§(n— 1) —y(n—1)] is the correction factor of the estimation.

The filter,F (z), design is done by means of frecuency techniques, takiogaittount
the unstable dynamics of the plant. Figure 4.2 shows an algui part of the original
system which is used in the filter design procedure. Makimgesblocks operations it is
straightforward to see th&: (z) = G(z)(1—z 'F(2)) and it is needed to be stable. Filter

F(z) is calculated in such a way thét — z F(z)) cancels the unstable poles®fz) in
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the expression of S(z). Further explanations can be foufidl 5. Normey-Rico and E. F.

Camacho, 2009].

) y
& (2) z1
é F(2)

Figure 4.2: Structure for the filter design.

4.1.2 Numerical results

In this section some simulation results are presented fonatable uncertain system. The
nominal model of the plant is represented by the followiragsfer function, which is the

same of that in the previous chapter, in section 2.5:

(2) = z—-0.5
z(z—11)

The sampling time i, = 0.05s and the probability of success in the transmission is equal
top=0.7.

The frequency response of these uncertainties have beéanatem Figure 4.3.

From this estimation of the uncertainty bound, the weightransfer functio® (z) for
the complementary sensitivity function is designed in swely that its module is greater
than the modulus of the uncertainties for all frequencié® ffequency response 6 (z)
has been also represented in Figure 4.3.

By solving theH,, control problem for this case using some functions ofithéAnalysis

and Synthesis Toolbdar Matlab, a robust controller is obtained yielding thddaling re-
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Figure 4.5: §(z) of the nominal plant model ants(z)

It is important to note that the control problem here is net $ame than the one in
Chapter 2. In contrast to Chapter 2, here Huglivalencgheorem is not used, so the gain
p associated with communication success is not neccessdg ischeme. Another dif-
ference is that this chapter is not trying to minimize theewxariance, while Chapter 2
was.

In Figure 4.5 modulus of the frequency response of the seihgifunctions of the
nominal and non-nominal plants models and the inverse ofvfighting transfer function
Ws(z) are represented. This graphic shows how all the sensifivitgtions, of the nominal
system and systems with uncertainties, are below the ievafrshe weighting function
Ws(z). This fact indicates that the outpytcan follow the reference for all the plant
models under consideration, that is, a tracking problembearolved although the plant

model is not exactly known.
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Figure 4.4 represents the complementary sensitivity fanstof the nominal and non-
nominal plants models and the inverse of the weighting fearfanctionW (z). From this
graphic it is possible to see that all the complementaryigeibsfunctions, of the nominal
system and systems with uncertainties, are below the ievefrshe weighting function
W (z), so the obtained controller is robust against the unceigaim the plant model.

The expressions & (z) andWs(z) are definied by the following equations:

2.43%—1.995
W2 = — 59802

_ 0.0555&—0.04442

Ws(2) ~1

As it was explained before, the filté¥(z) is chosen in such a way that the transfer
functionSe(2) = G(2)(1—z 'F(2)) is stable. So the filtef (z) is chosen in the following

manner:

(g 08971208195
T 21355104326

In Figure 4.6 some simulation results are presented. As easebn, all the systems
achieve stability. Logically, the best results are obtdinéth the nominal system. In order
to reduce the overshoot, the reference fifg# (z) could be used. Simulations in Figure
4.6 show the results withet(z) = 1.

In Figure 4.7 the control signals for the different uncerigis and for the nominal
systems are shown. It can be seen that the signal oscilldtes thie considered system is
affected by uncertainties. When the system is the nominaleafdthe plant, the signal
does not oscillate and goes to the reference without stdatlyerrors. This is because the
feedback changes when there is a data loss. This occurs Whgiant has uncertainties,

so the output estimated and the real output are different.
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Figure 4.8: Simulations results witlp = 0.9.
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Table 4.1: Error variances

Plant
Nominal plant Plantl Plant 2
p=0.7 0.1523 0.3689 0.1931
p=0.9 0.1523 0.3566 0.1923
p=0.5 0.1523 0.3706 0.1984

Another simulations results have been obtained when vautyie probability of suc-
cessful in the transmission. In Figure 4.8, simulationsilteswvhen this value is set to
p = 0.9 are shown; and it can be seen how the amplitude of the dmiltadecreases. This
is because the feedback doesn’t change so often betweesaltemutput and the estimated
output than in the case @f=0.7.

The opposite case is shown in Figure 4.9. The oscillatiotisa$ignal increase because
the feedback commute more often than before.

Logically, in the cases when it is considered that the plaeischot have uncertainties
the signals are the same because there are no differeneesebethe real output and the
filter estimation of the output.

To compare the results, the variances of the error signalstaown in the table 7.1. As
it was said before, the results are equal in the case of thénabplant. The variances get
worse as the probability of success in the transmissionedses. This happens because
as the probability decreases the estimation of the outpuseésl more and more, and the

estimation is not accurate when the plant is affected by nizicgies.
4.2 Problem statement for the Markovian Jump Control System

The aim of this part of the chapter is the design of a filter aedratroller that ensure the
stability of the uncertain system subject to packets drigpdio deal with this problem, the

system will be represented as a state-state model, and bevdlolved by means of Linear
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Matrix Inequalities (LMI). That way, in contrast to the preus section, it is possible to
have a control structure that takes into account the pdisgibf a random number of
dropouts.

In this part of the chapter, state-space techniques are udezieas in the previous
part frequency techniques were used, which are more usehudlyze the stability and
synthesized the filter and controller.

In particular, the system structure is posed as a linear desistem witiN + 1 modes,
whereN is the maximum number of consecutive dropouts. Each modesepts a struc-
ture of the system depending on the number of consecutiveepdmpouts. The controller
and the filter will be time-varying depending on the systemieo

The Markov process under consideratio{ 8,k > 0}, with state space’ = {1,..., N+

1} and state transition matriR = {pjj }i jc.», i.€., the transition probabilities are:
P{bci1=jlb=i}=pj, Vijes
with pij > 0,Vi, j € . andy | pj = 1,Vi €.
This kind of systems satisfies the property given by the ¥alhg definition:
Definition: Markovian property. (See [O. L. V. Costa, M. D. Fragoso, and R. P. Mar-
gues, 2005]) A stochastic process has the Markov propetheitonditional probability

distribution of future states of the process depends onbnupe present state, not on the

sequence of events that preceded it, that is:
Pr{x(k)|x(k—1),x(k—2),...,x(0)} = Pr{x(k)|x(k— 1)} (4.2)

The system dynamics is described by means of the followingibons:

X(k+1) = A6k, K)x(K) + B(6, K)u(k) + Bu(8)w(k)
Z(K) = C(6k; k)x(K) + D (6k, K)u(k) + Dw () w(k),

wherex(k) € R" is the state of the system(k) € R™ is the control signafz(k) € R

£*(6) = { (4.2)

is the error vector used for quantifying thie, performance andi(k) € R™ are the external

perturbances, for eadh € .7
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Uncertainties under consideration are represented bytloeving equations:

A(6k, k) = A(6) +Da (6 K)
B(6k, k) = B(6k) + Ao(6k, k)
C(6k,k) = C(6k) +Ac(6k k)
D(6k,k) = D(6k) + Ag(6k, k)
whereA(6), B(6«), C(6«) andD(6) are matrices with appropriate dimensions and
represent the nominal model of the system. The uncertaiofi¢ghe system are denoted

by Aa(6k, k), Ap(6k,K), Ac(6, K) andAg (6, k), which are unknown matrices satisfying the

following:

Ba(8K) Bo(BK) \ _ ( Gu(B)
Be(BK)  Aa(8K) Gal6)

with AT (6, K)A(B¢, k) <1, V6 € .7.

)A(emk)( Hi(6) Ha(8.) )

It is assumed thaX*(6,kK) is the real system and, as represented in Fig. £16y)
is the nominal model of the system (without uncertaintisewn in equation (4.3). This
nominal model will be useful when there is a dropout in thedfeek channel. That way,
it will be possible to estimate the state of the plant ~

Furthermore, a buffeb(6) will be used. This buffer will store the system states of
>*(6k, k) and also the states of the nominal syste(f). When one or more dropouts
occur, the buffer will provide the last available state frai{6¢) and the state estimation
from Z(6k) corresponding to the same instant.

The filter to be designed will be splitted in two matricés{6x) and F(6x). Both

together will provide an accurate correction for the estiomaof the statex.”

5(6) = { Ak ) = ABOK) + B39 “3)



An H,, Filter and Controller Design for Networked Control of Markovian Systems

78 with Uncertainties and Data Dropouts
ref C K(8) u(k) *(6,) x(Kk)
k
Lb(ew LN PP
Ta
R(K) %o (K -
L xa0 [ofb@o o R ()
Tao
<\ %(K)
J |\
dr (k)

%1— dr (K)

Figure 4.10: Scheme of the networked control system

The controllerK (6) is also represented in Fig. 4.10, and it will be designedhas t

filters, depending on the mod.
4.3 Buffer policy

In order to store the states of the systeméfk) andZ(6) and count the number of con-
secutive dropouts so the filters inputs are from the appatgtime instant, the buffé(6y)
is added to the system structure.

The buffer is represented ty6;) with N + 1 positions. Besides the system state, as
can be seen in Fig. 4.10, it has athdk) as input. That will be useful to perfome the buffer

policy. Using the input; (k), the following variable can be computed:
de(K) = dr (K)(1+de(k—1)),

which is a buffer inner variable that counts the number ofsesative dropouts at time

instantk. Taking that into account, it will be possible to know whighthe first non-empty
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position in the buffer, that is, the most recent instant wiieme was not a dropout.

Thus, the output of the buffer will be

x(k)
x(k—1)
()= (| &K ok - K |@l)x| ., (4.4)
X(kn)
where
Bok) = 1—ch (K),
81(k) = () (1 — (k= 1))...(1— ch (k—N)),
8o(K) = () (K— 1) (1 — ch (k—2))...(1— ch (k—N)),
(k) = dr (K)dr (k—1)...(1—dr (k—N)).
X(K) b(6x)
B=i+1
x(k—1)
x(k) =0
— x(k—2)
de(K) =i Xp(K) = x(k—1)
% ﬁ
dr(k)=1 ] X(k—1)
—
X(k—N)

Figure 4.11: Buffer example
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Fig. 4.11 represents an example wherein there is a dropanstaintk, that implies
x(k) = 0, and there have beéonsecutive dropouts, so the output of the buffeg &) =

x(k—1).
4.4 Model description

First of all, the different modes, depending on the dropiiteadon, are presented in the

following:

(4.5)

de(k) =N

Mode 6¢ = 1 represents the situation where there is not dropolat s the number
of consecutive dropouts is zero. In mofle= 2 there is a dropout & and there was no
dropout ak— 1, therefore in this case the number of consecutive drofg®ote. Following

the same reasoning, the number of consecutive dropoutsasemwith the mode until the

maximum is reached.

In order to make the system a Markov system, the Markoviapgatg (4.1) has to hold.
To ensure that, the state has to be augmented with the sttte pfevious time instants
and their estimations, as it is shown in equation (4.6).

XK= X)) XT(k=1) - KT(k=N) L) K(k-1) - K (k-N) ]T (4.6)

with x(k) € R2(N+1),

Therefore, the closed-loauigmented modelf the system can be represented as:
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X(K+1) = (A(6k k) +B(6k K)K(6))x(K) +Bw(6)w(k) (4.7)
A(6.K)
z(k) = (C(6k, k) +D(6k, k)K(6k))x(k) + Dw(6)w(k), (4.8)
C(6k:k)
With the uncertainties
A(6¢, k) = A(6k) + G1(6)A(6k, k) H1(6k) (4.9)
C(6k, k) = C(6k) + Ga(6)A(6k, k) Ha(6k), (4.10)
with H (6k) = H1(6k) + Hz(6)K(6k)
where
AB,k) 0 - - 0 AB) O - -
| 0O - .- 0 | 0o - ...
A(6, k) = diag{ 0 . 0 1,
0 0O I 0| 0 0o |
B(6, k) = [ Blél(ek’k) B12(6k, k) ]
21(6k)  B2a(6k)
do(K)B(6k,K) 1 (K)B(Bk,K) -+ Sn(K)B(6k,K)
B11(6k,k) = o :
d(k)B(6k,k) —d1(K)B(6k,k) -+ —nN(K)B(6kK)
B12(6k. k) = o
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do(K)B(6k) 01(k)B(6) On (K)B(6k)
B21(6k) = %)
d(k)B(6k) —d1(k)B(6k) —on(K)B(6k)
B22(6k) = %)

The controller is composed by the following matrices:

K(6) = diag{K1(6k), K2(6k)},

K2(6k) = diag{dr (k)K(6k), a1 (K)K (B)F2(6k), - - -, On(K)K (6 ) F2(6k) },

As it can be seen in Fig. 4.10, the filter is composed by twoigesrF; (6¢) andF»(6).

Buw (6k)

IBw(ek) = @

C(Bk) = diagf | C(Bk) 0 - 0].[c(B) 0 - 0},
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D(6k, k) =

D11(6, k)  D12(6k,K)
D21(6)  D2a(6) |’

Dia(8K) = | &(KD(BK) a(KD(BK) - &(KID(BK) .

D12(8K) = [ dOD(BK) ~a(KD(BK) - ~a(KID(BK) |,

D22(8K) = | d(KD(B) —&(KD(B) - —&(KID(8) |
and
Du(8)
Dw =
©0=|

The uncertainties are now:

A6, k) = A(6k) + D4 (6 K)
B(6k, k) = B(6k) + Ap 6k, K)
C(6k,k) = C(6k) +Ac(6k, k)
D(6k, k) = D(6k) + Ap (6k, k)

The unknown matrices satisfy the following:
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; )A(ek,lo (80 Ha(8) )

Be(Bk) Do (Bck) Gal6
with
Gi(8) Go(6)
G1(6k) = o , Ga(B) = o |
Hy(6) = | Hi(6) 0 - 0|
and

Ho(6) = | Ha(80) Ha(6) - Ha(8) |-
4.5 H filter and controller synthesis
First, let us introduce an useful lemma for the main result:

Lemma4.5.1.(see [L. Xie, 1996]) Let Z, B\, F be matrices with appropriate dimensions.

Suppose Z is symmetric andA < |, then
Z+EAF+FTATET <0
if and only if there exists scalar > 0 satisfying
T, 17
Z+€EE +EF F <O.

Next, we introduce the definition of robust MSS.

Definition: Robust mean square stability.System (4.3) is said to be robustly MSS if

kiEﬂz(k)F} < yzkinw(knz

for any noise disturbance(-) € /2.

The following theorem is the main design result of this secti
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Theorem 4.5.2. If there exist matrices
Y= (Y]_,...7Y|\|) >0,

diagonal matrices

X = (le"'axN) > 07

scalarsgg, > 0 and u > 0 such that the following LMl is feasible for all admissiblecen-

tainties:
W <0, (4.112)
where
X, 0 J13(6k) J14(6k) J15(6k)
0 —ul Dy,(6¢) By, (6)W(6) 0
W= | J5(6) Duw(6k) —1 +£6.G2(6)G1 (6k)  €6,G2(6k)G] (6)W(6k) 0
IA(B) W(B) Bw(B) €gW(6)TG1(6)G (6k) J4(6k) 0
ITe(6k) 0 0 0 —é&g,!
and
J13(6k) = X, C" (6) +Yg DT (6k),
J14(6) = (A (80X, +B(6)Ya,)TW(6k),
J15(6k) = X H1 (6) + Yg H (6k),
3a(6) = — 2 + e6 W (6)" G1(6) G 1 (B W,
with

2 =diag{X1, ..., X1},

then system (4.7) is robustly stochastically stable (MS®) avnoise attenuation level of

the closed-loop system equaljqi.
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Proof: Define

G(6) =W(6) 2WT (6)
where

w8 = ( yPazl - yPawil )
2 — diag{P(1),...,P(N+ 1)}

Define also the Lyapunov functiondlx(k), 6) with the augmented stakgk)

AV (X(k)a ek) = E{V (X(k+ 1)7 6k+1)|x(k)v ek} _V(X(k)v ek)
AV (x(K), B) < X" (K)[A" (6, K)G(B)A (6, k) — P(B]X(K) +
2T (KA (6, K) G BB W(K) + W (KB, (81 G( 61 BB W(K)
In order to ensure the noise attenuation lgvel | /i the following terms are added:

AV (x(k), B0) +2" (K)z(K) — y2w" (kKw(k) = &7 (K =(6c k) (K),

with
ET) = X0 WK |
and
wo-| Faw aw ]
with
=11(6.K) = A" (8. K)G(B)A(B,K) — P(8) + T (8, KT8 K),
Z12(6cK) = &' (6. KIGT (B)Bu(8) + T (B K)Du(80)
and

=22(6k,K) = — V21 + DY (6) Du(Bk) + By (6) G(6) Bu(6k)-
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And now a performance functioy is introduced:

b= E{Z) )w(K)][Xo, 6o}

T T
Jr =E{ ZO[ZT(k)Z(k) — YW (Kw(K) +AV (x(K), 8]} — E{ ZOAV(X(k), 6} =
k= k=

T
= ZOET(k)E(Gm k)€ (k) +V (x(0), 60) =V (X(T +1),6r1) <V(x(0), 6)
k=

therefore, whe — o0 = J,, <V(x(0), ).

(Gkk)=[ Péek) 32| +
=(6)
AT (0, KW () PWT (B0 (B, k)+ B (6, k>va<ek> W (6B (6)+
+T" (8 KT (6, k) C' (B K)Dw( k) _
BT (BOW(68) W (B)A (80 K)-+ DT( 6 D (B)+
+D(8)T (6, k) +BY(B)WT (B) Z2W( 6 Bui(6)

—T
=)+ C (6K ] [ CT(6,k) Dw(6) ]Jr

Dy, (6)

A (B KW (B) PWT (BIA(Bc k) A (B W (B) 2W(BIBw(B) | _
BL(BIW(B) PWT (BIA(BK)  BLOIWT (B) W (B)Bw(B) |~

Applying Schur complement

0 —V’l D6
C(6k)  Dw(6k) —

AT (6, KW(6)
BY(6)W(6)
0

- 7| WT(80E(BK) W (B)Bw(8) 0 | <0
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Taking into account the uncertainties,

~P(8) 0 T'(B) A (BIW(B)
0 -Vl D) BLBIW(E) |
(6) Duw(6k) —I 0
WT(6)A(B) WT(6)Bw(6k) 0 -1
0
0
o gey | A6 H@) 0 0 0|+
WT (6)G1(6k)

~P(80) 0 C'(8) A (8JW(8Y)
0 -l Di(8) BLEW(B) |
(6k) D (6k) —I 0
WT(B)A(B) WT(B)Bu(B) O _pt
0
+s@k{ GZ?Qk) [0 0 I8y GlBow(a) |+
WT (8)G1(6)
H, (80
o | o |[M@) 0o o]<o
0

T =T

(6¢) A (BOW(6)
0 A Dy, (6k) By (8)W(6k) N
C(6) D (6k) —1+£9G2(6)GL(6)  £9,G2(6)G] (BIW(6)
WT(B0A(B) WT(B)Bw(6) g WT (8)G1(6)G] (&) Ja(80)
Hj (6k)

(

1 0 _

awl o Hi8) 0 0 0]<o,
0
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Ja(6) = =271+ e WT (6)G1(6)GT (8)W (6k)
Applying Schur complement, doings, = P~1(6«) and pre- and post-multiplying by
X6

| )

o, 0 Xa " (8) XA (BOW(B)  XgH (80
0 —V Dy,(6) B (8)W(6k) 0
C(6c)Xg, Dw(6) —I +26G2(8)G () €9, G2(B)G] (BIW(6K) 0 <0
WT(B0A(80Xg,  WT(B)Bu(8)  ea W (8)C1(BIG](B) (80 0
H1(6)Xg, 0 0 0 —gg,!

Letting Yg, = K(6k)Xg, andy? = 1, the LMI (4.11) is obtained. This completes the proof
of Theorem 4.5.2.

45.1 Simulations results

This section presents some simulations results. The ptahthee setup are described, pro-

viding all the considerations related to the scheme.
Plant description

The considered plant is a variant of the quadruple-tankge®originally proposed in [Jo-
hansson, 2000], see [FeedBack, 2012]. Water is deliverdidetdour tanks by two inde-
pendently controlled, submerged pumps. Notation relatetthé plant is given in Table
4.2.

For the simulationes, the following configuration is chogsze Figure 4.12):

* Input water is delivered to the upper tanks. Pump 1 feeds taand pump 2 feeds
tank 3.

« Tanks 1 and 3 are coupled by opening the corresponding.valve

Figure 4.13 shows a block diagram of the whole system. In 1afrkspectively 3) the

water level is measured and the control signal is applieditopl (2). In the tanks 2 and 4
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Description

hy  Water level of tank

v;  \oltage of pump

h?  Reference level of tank

vi0 Reference voltage of pump
Ahi  Increment of; with respect td?
Avi  Increment ofy; with respect to/?

s Output to be tracked

r Output reference fos
Ah,  Reference level with respect b8

Av,  Reference voltage with respectud
Table 4.2: Notation related to the plant

§ €]

Figure 4.12: Schematic configuration of the coupled tanks

the water level is measured. The tanks are linked by meahgdbpology 2= 1< 3 < 4.

The objective is to control the water level of the two lowerks.
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| | 9|
Figure 4.13: Control scheme with 4 tanks. Tanks 1 and 3 have sensors and acttatéss2 and 4
have sensors. Blue dotted lines represent the communication links.

Plant modelling

The coupled tanks can be easily modelled by means of theviolgpnonlinear equations:

dr;ltm = B ag )+ ) - 22 /29 (0) — ha(t),
el B g - 2 V2,
%@) = % /2ghe(t) + 1o (t) + 22 \/2g(Pu () — he(1)),

dhy(t) a3 &
T T V200 - 2 v/2gh(0),

whereh;(t) (i = 1,...4) denotes the water level in the corresponding tank,= 1,2) are

voltage applied to the pumpa. (i = 1,...4) are the outlet area of the tanksg is the outlet

area between tanks 1 andrBjs a constant relating the control voltage with the water flow

from the pumpAis the cross-sectional area of the tanks, g@igithe gravitational constant.
This system is linearized around the equilibrium point gibg hi0 anduio, yielding

Ah(t) = AAh(t) + BAV(t), (4.12)
whereAh(t) = [hy(t) —h9 ... hy(t) —hQ]" andAv(t) = [va(t) =0 va(t) —\8] . Matri-

cesA andB are obtained by using a Taylor expansion of the nonlineaatians of the
model (4.13).

4.5.2 Results

In this section the simulation results are presented fosylstem with uncertainties. Taking
into account the described plant and with a sampling time 2s., the numerical values
are:
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&g 3139 a13g 0 T
AV2gh) A /29(h9-hQ) Ay/29(h9—h9)
a9 _ &9 0 0
Ay/2g910 Ay/2915
A= a139 0 __ag ai3g 0 ’
Ay/29(h2-h3) AJ2gn  A\/2g(h9—h)
0 0 _ 89 __ a9
A /Zghg A\/Zgh? ]
n O
B 0 0 (4.13)
0 n
0 O
Value Unit Description

hi 0-25 cm  Water level of tank

\ 0-5 V  \oltage level of pump

A 0.01389 n? Cross-sectional area

a 50.265e-6 n?  Outlet area of tank

a;3 50.265e-6 m?  Outlet area between tanks 1 and 3

n 0.22 R Contant relating voltage and flow

hQ 9.55 cm  Reference level of tank 1

h9 16.9 cm  Reference level of tank 2

hg 7.6 cm  Reference level of tank 3

hg 141 cm  Reference level of tank 4

v 3.3 cm  \oltage level of pump 1

v 2.6 cm  \oltage level of pump 2

Table 4.3: Parameters of the plant.
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0.9106 0 005119 0
0.0295 09736 00004058 0

A =
(6) 0.03298 0 09284 0 ’
0.000184 0 02085 09706
0.6585 0008969
0.005122 0
B(Qk): )
0.005796 06595
0 0.003594
1 000 00
0100 00
C = and = V6.
=10 0 1 o DB)=| o o |76
0 001 00
For this example, the chosen uncertainties are the foligwin
001 O 0 0
0 001 O 0
G :G = ) v )
1(6k) = G2(6k) o o0 aolL O 6k
0 0 0 Qo1
1 000 11
0100 11
H = and = V6.
180=1 0 0 1 o RO)=| ] | e
0 001 11
The external noise isw(k)| < 1, with

sz[l 11 1}T

and
T
Dw=[1 1 1 1],
Three different modes are considered, therefge= {1,2,3}. That means that the
maximum number of consecutive dropouts is twogdf= 1 no dropout has occurred lat
if 8¢ = 2 a dropout has ocurred lbut the packet arrived &— 1, finally, if 6 = 3 there

was a dropout dt — 1 and also ak.
Given these modes, the trasition probabilities are:

04 02 03
pij =105 02 03].
0.2 05 03
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The water levels for the controlles systems are depictedgn4=14. In these simula-
tions, the initial water levels are 20 cm for all the tanks.

The results for the Markovian structure presented in theptér is compared in Fig.
4.14 with a classical structure, in where the controlleuirip null when a dropout occurs.
The controller used in this structure is the calculatedGoe 1, which is the mode that
represents the no dropout situation.

It can be seen how the performance is improved with the Maakostructure, that
provides a quicker response.

40 T T T T
h1 with the markovian structure
[ h2 with the markovian structure
35 . B q
h3 with the markovian structure
h 4 with the markovian structure
30 VY s h, without the markovian structuref|
““““ h2 without the markovian structure|
PY1 B G ERRERER h3 without the markovian structure |
h A without the markovian structure
20
150
10
5 L
0 i i i i i i i i i

0 50 100 150 200 250 300 350 400 450 500
t

Figure 4.14: Water levels for the Markovian Jump Linear System.

The empirical performance measures are adopted

500
VE h?, i={1,234} (4.14)
k=1

Table 4.4 shows how the performance improves by using theoger method instead
a classical structure.
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Table 4.4:Performance indiced when controlling with the Markovian Jump structure with the filter
and with the classical structure.

Markovian Classical

structure structure
| 4.92¢<10° 5.54x 10°
b | 9.31x10° 10.01x 103
k| 3.86x10° 4.43x10°
s 7.89x10° 8.30x10°

4.6 Conclusions

The paper has focused on a NCS subject to data dropoutsaiotstin particular, the feed-
back path comprises a communication channel that prodatasatses, are considered. It
is considered that the maximum number of consecutive ditsps&nown.

The NCS is modelled as a Markov Jump Linear System, with mddpending on the
network situation.

The objective of this paper has been the synthesis of a damntemd a filter that avoid
the model uncertainties and support the failed transnmmissid/hen a data dropout occurs,
the sytem uses an estimated output given by the filter to déetraback. To perform this
task, aH., control problem has been proposed in order to calculated¢dhgoller. The
filter is calculated with aml., technique together with the controller.

Finally, a plant has been chosen to obtain some numericaltsethat illustrate the
closed-loop system performance. These simulations corabéd that robust performance
is achieved.
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Proceedings the 9th IEEE International Conference on Gbrtutomation (IEEE
ICCA), 2011.

« |sabel Jurado, Manuel G. Ortega, Francisco R. Rubio y Rilidormey-RicoDis-
efio de un filtro y un controlador robusto para NCS con incentitbres y pérdidas
de datosActas de las XXXII Jornadas de Automatica, Sevilla, Esp&®@ptiembre
2011.






Chapter 5

Packetized Model Predictive Control for
Networked Control Systems subjects
to time-delays and dropouts

n this chapter, two predictive packetized predictive aolitrchniques are introduced
in order to deal with time-delays and packet dropouts.

Therefore, this chapter presents a model predictive cbiatnmulation for Networked
Control Systems subject to independent and identicaltyibiged (i.i.d.) delays and packet
dropouts. The system takes into account the presence of mgnitation network in the
control loop, resorting to a buffer in the actuator to stand aonsistently apply delayed
control sequences when fresh control inputs are not availab

The first approach presents a practical algorithm to deségwarked control systems
able to cope with high data dropout rates. The algorithm tenided for application in
packet based networks protocols (Ethernet-like) whera patkets typically content large
data fields. The key concept consists in the use of packetarterit not only the current
control signal, but predictions on a finite horizon withoignsficantly increasing traffic
load. Thus, predictive control is used together with bfteactuators and a state estimator
to compensate for eventual packet dropouts. Additionatiyne ideas are proposed to de-

crease traffic load, limiting packet size and media accespincy. Simulation results on

97
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the control of a three-tank system are given to illustragedtfiectiveness of the method.

The second approach presents a stochastic model prediotiller. It has been pro-
posed to send from the controller a sequence of control lsiginvat, appropriately buffered
and scheduled at the actuator end, becomes a safeguare iof ckdays or eventual packet
dropouts. Although a significant body of research has deeeldifferent strategies, com-
bining MPC and buffering strategies there is still room fortlier research and improve-
ments. On the one hand works such as [D. Quevedo, J. JstergadrD. Ne&i, 2011]
or [D. Mufioz and P. D. Christofides, 2008] neglect the effédhe network induced de-
lays focusing the attention on the problem of packet drapawutile in [G.P. Liu, J.X. Mu,
D.Rees, S.C. Chai, 2006] only delays are considered. Ruitheany works on MPC for
NCS a deterministic approach is considered, yielding a tacase approach.

This second technique considers both packet dropouts addmadelays. A stochastic
approach is adopted which allows to improve the controlgrerbince provided that the

statistical distribution of the delays are known.

5.1 Networked Predictive Control of Systems with Data Dropats

5.1.1 Problem statement

This technique is focused on the design of a predictive ocbstructure for a networked
control system with packet dropouts.
Systems to be considered are unconstrained discretettigag Imultiple-inputs plants,

under the effect of bounded disturbances as:
X(k+ 1) = Ax(k) + Bu(k) + Byw(K) (5.1)
with k € Ng 2 NU {0} and

uk) e UCR™, x(k)eXCR" VvkeNp
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disturbancesy(k) are considered to be bounded as
w(k) e W, W= {xeR"/||x]|<d}

In this setup, the plant and controller are assumed to beditkrough a communication
network (see Figure 5.1). Our interest lies in clock-driehernet-like networks linking
both, controller outputs to plant inputs, and plant outgsensors) to controller inputs.
Data are sent in large packets, so that the relevant phermfoerontrol purposes are
transmission delays and packet dropouts.

More precisely, only the problem of packet dropouts is askird. Random delays are
not a concern in this section, since small round-trip comication delays (the sum of
delays from the sensor to the controller and from this to ttteator) are assumed, that
is, delays are considered negligible with respect to sapglieds. Thus, in the event that
data packets do not arrive, or arrive later than a certaestiold, they are considered as
missing packets.

This approach does not assume secured links in neither etite a@fommunications
chain. That is, packets can be dropped either in sensor tootlen path, or in the controller
to actuator one. This feature is particularly remarkabieeiusually dropouts are only
considered in the controller to actuator path.

To this end, acknowledgment is assumed as part of the netprotcol (TCP-like
protocols), so that at any time instatthe controller knows whether a control packet
arrived at destination or not. Packets are also assumedtimbestamped so they can be
correctly sequenced at any point of the control loop.

To summarize, for the proposed control algorithm to workekdments in the control
loop are assumed to behave in a time-driven manner. Thuaetimork model operates at

the same sampling rate as the plant-controller model, WwiHallowing rules:

1. Time-driven sensors periodically sample plant outpotbstates.
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2. A time-driven predictive controller computes a contregjsence at each sampling

time.
3. Atime-driven buffered actuator applies control sigraleach sampling time.
4. Network is affected by dropouts at any point.
5. Delayed packets are taken as dropouts.

In order to achieve an appropriate performance level, itigppses the use of a finite
horizon predictive optimal control framework.

The predictive controller has access to the plant stqtesand computes at every time
instantk a finite horizon optimal control sequendg € (U)N of lengthNy, such that the
following functional is minimized

k+Ny—1
V(U (k),k) = Z{ (X (i), U (1) + F (X (k+Ny)) (5.2)
i=
wherex (-) andu/(-) denote predicted plant states and outputs respectivedp il (5.2),
£(-) denotes the stage cost a() is the terminal cost.
Assuming this setup, it is shown next how this predictivetaarstructure can be com-

bined with an appropriate buffering and queuing strategyiping remarkable robustness

to packet dropouts.

5.1.2 Packetized control and buffering strategy

In order to compensate for eventual packet dropouts angslelae key feature of this first
proposed predictive control scheme is buffering contrghals in the actuator side.

In this scheme, also exploited for instance in [Yang et @06}, [Wenshan et al., 2007],
[D. Mufioz, C. Panagiotis D., 2007], the buffered signalssasca safeguard against packet

dropouts. Thus, as depicts the proposed control struatufegure 5.1, the buffer stores a
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Figure 5.1: NCS proposed scheme

number of model-based predictions on future control astiso the actuator can provide
appropriate control in the event of dropouts.

The buffering policy is designed such that whenever new @acrrive, buffer is over-
written. The actuator is then sequentially feeded with tifermation in the buffer until
new packets arrive. This corresponds to the intuitivelyesgtipg idea of "Use the most
recent control sequence if available. If not, use predigtiivom the buffer."

The amount of consecutive dropouts this strategy can cosaperfor, is obviously
equal to the buffer length. In this sense, the buffer can bsaeably dimensioned to store
as many control actions as the prediction horikigh, and so is the maximum consecutive
dropouts allowed by the proposed control structure.

This simple idea can be formalized as: Let us represent #ite st the buffer at a given
time instantk asb(k) € (U)M. Then, the dynamics of the buffer can be expressed as the

recursive rule

b(k) = ac(kK)Uk + (1 — ac(k))Shk—1) (5.3)

INote that a larger buffer size is useless as the buffer reseiv mosN, control predictions. There is also
little point in using a smaller buffer since the last few pritins of every received sequence would be lost.
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where matrixS e R™MNuxmMNu j5 g shift matrix defined as the block matrix

S,j :d+1,j'|m1; |7J :17"'7NU~

In (5.3), ac(k) € {0,1} is a signal accounting for reception acknowledgment in the
controller to actuator link, such that

1 if packetU (k) arrives to buffer at timé
ac(k) =

0 if packetU (k) does not arrive to buffer at tinme
With this description the control actiank) released from the buffer at instaktan be
expressed as

u(k) = [ I Omy - Om, } b(k).
This basic mechanism implicitly assumes that the contralbenputes and sends a whole
control sequence of lengty, at every sampling time. This, as it has been discussed, does
not significantly increase network load, as informationuadied in rather lengthy packets.

Nonetheless, specific situations in networked controlesystsuggest to reduce net-
work access to its minimum. That is the case for instance oéless sensor networks
where typically energy saving is a major concern. In thidkif systems, it is advisable
to design network protocols that avoid unnecessary netwsek for example transmitting
data packets of minimum length and only when relevant infdgrom for control is avail-
able.

In this sense, a further refinement can be introduced in thisrae in order to alleviate
network load to a greater extent. The key idea here is comgpat every time instark
the control sequence in the buff@itk), and the current controller sequence in the actuator,
U (k). This comparison is performed in the controller, so if batljgences match up to a
certain degree, only the relevant changes are sent, or @eaquence might need to be
sent at all.

Note that, as an acknowledgment sigoal(k) is assumed part of the protocol, the
controller has full access to the buffer stdigk), at every time instark. That is, the buffer

dynamics can be accurately reproduced at the controller sid
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Itis a natural assumption that the buffer’s most distandjot®ns in the future, should
be those differing to a greater extent with the more recertdinputed sequences in the
controller. This intuitive idea suggests reducing packat s form a trimmed packet by
sending just the last few components that differ more thaertin threshold from the
buffer state.

This packet management policy can be formalized as:

Considemb(k) the buffer state, and (k) the computed control sequence at time instant
k. Denotebj (k) andU; (k) as thej-th component of the corresponding sequences at time
instantk.

The length of a trimmed packélr can be determined according to buffer at instant
as

Nr =Ny — i Ui(k) —bj(k .
T u argje{m'_f]Nu}H j(K)=bj(K)[| > €

That is, only the lashy components of sequentigk) need to be sent to the buffer, that is
with the actuator as represented in Figure 5.1, as theNjrstNy match those in the buffer
up to a certain tolerance

With this definition, a timmed packet of lengiy < Ny, U*(k) € (R)NT, can be built

as
U™(K) = | Oy scmy(vg=np)  Tmyne | U(K).

Thus, the buffer dynamics in (5.3) can be trivially modifieddeal with trimmed packets

U*(k) as

b(K) = atc(K) [b] (k— 1), .., b _y (K= 1), (UF (K)o, (U5, (KD)T] T

+(1—ac(k))Skk—1) (5.4)

The proposed networked control structure in this work atstsders the possibility of

missing data packets in the sensor to actuator path. Thig,iest treated in most previous
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works, is specially relevant to take into account realisgétworked control problems, as
plant and controller are usually physically distributed.

To deal with eventual missing state measures, this workrtesm a model-based es-
timator that approximates plant states when no updatednizfion from the sensors is

received. The estimator takes the form
X(k+1) = as(kx(k)+ (1—as(k))f(X(k),u(k)) (5.5)

wherex(k) € R" is the estimated plant state at insteapand f (X(k),u(k)) is an open-loop
approximation of the plant dynamics. Considering the ptaadel (5.1),f (X(k),u(k)) =

AX(K) + Bu(k) can be taken.

As in equation (5.3), the estimator (5.5) makes use of a kigg&) accounting in
this case for the acknowledgment of reception of packetsisahe link from sensors to
controller. In a similar fashion

1 if packetU (k) arrives to controller at timk&
as(k) =

0 if packetU (k) does not arrive to controller at time
whereas(k) = dr (k) — 1.

As can be easily interpreted from the estimator equatids)(fhe estimated stat€k)
is updated with the measured statk) when data packet from the sensor arrives, otherwise
the plant state is estimated from the plant model.

It is worth to mention that signats(k) is not directly provided by the network proto-
col, as packet reception is acknowledged at the contratiier lonethelessys(k) can be
synthesized from the packet time stamps arriving from tims@e Since clock-driven net-
working protocol is assumed, a simple procedure consisthétking the arrival time of
every packet, so that only those arriving within the curiarple period, are considered
as valid states measures, otherwise dropout is assumed.

The addition of the estimator in the control scheme allovesdbntroller to be feeded
with the plant states at each sampling time, regardlessabigparopouts. This input to the
controller can be measured or estimated depending on tlalarfthe most recent sensor

packet.
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This estimation procedure at the controller together withgacket management policy
above discussed, constitute the basic predictive netwockatrol scheme proposed in
this work. It is worth to remember that the network predietaontroller is not required
to satisfy network constraints of any kind, as it is desigreghrdless of the underlying
network structure. From this point of view, the proposedhmdblogy can be regarded as

network compensation technique rather than a control ndetbgy by itself.

Remark (Stability)

Stability of the proposed compensation methodology cambared as far as a number of
mild requirements are satisfied.

Let u(k) be the stabilizing predictive control action for systenijs omputed at time
instantk without network. As it has been discussed, packet drop@siscéated to the inclu-
sion of a network in the control structure, implies that éhisrno guaranty that signa(k)
is accurately applied at every time inst&ntnstead, the presented methodology computes
a compensated contralg(k), based on buffered predictions and state estimations.

From this point of view, the inclusion of the network, togathvith the proposed com-
pensation scheme, amounts to introducing an additionalrB&nce term on system (5.1),

as the following decomposition suggest

x(K+ 1) = AX(K) + Bu(k) + B(uc(K) — u(K)) + Buw(K)

= AX(K) + Bu(K) + Bwy(K) + Byw(k) (5.6)

wherew, (k) = uc(k) — u(k) represents the network effect on the predictive contreicstr
ture.

Moreover, it can be checked that this additional temtk) is bounded. Notice that,
as new packets arrive, the buffer and estimator are reseatchnthe computed sequence,

hencew, (k) = 0. As by assumption the number of consecutive network drigaslimited,
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the difference between the compensated conig¢k), and the computed contrai(k), can
only grow between valid packets, thus it is bounded.

Also by assumption the term(k) is bounded, thus the overall disturbance t€Xtk) =
Bwy (k) + Bww(K) is also bounded.

As discussed in [D.Q. Mayne, J.B. Rawlings, C.V. Rao, 2008fadilizing predictive
controller can always be found under appropriate conditimn the unperturbed system
(5.6).

Recalling results in [D. Limon, T. Alamo, E.F. Camacho, 2P02

(A1) Letx(k+1) =F(x(k)) be the closed loop dynamics of the unperturbed system (5.6),

with the origin being a fixed point.

(A2) LetV(x) aLyapunov function of the system Lipschitz in a neighboxhofthe origin
Ar = {xeR"/V(x) <r} such that

a-[XIP <V () <b-[|x]P

V(F(x)) =V (x) < —c-[|x]|?

wherea, b, c are positive constants ant> 1.

Then there exits a constaat> 0 such that for all disturbancé¥(k) € B, = {Q(k) €
R"/|1Q(K)|| < u} the perturbed systex(k+ 1) = F(x(k)) + Q(K) is asymptotically ulti-
mately boundedx(0) € A;.

To conclude stability of the proposed control methodologyjce that conditions (A1)
and (A2) are satisfied for system (5.6) takipg- 2, and considering a Lyapunov function
of the formV (x) = x" Px, which is trivially Lipschitz in a neighborhood of the onigi\,

for arbitrarily large values of.
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5.1.3 Simulation results

Process modelling

The proposed algorithm has been tested on a level controthasdlepicted in Figure 5.2.
The system is composed of three tanks, with the control proldonsisting in tracking a
reference level in the last one, acting on the flow pouredaerfitist one. The model of the

process can be easily obtained from a mass balance as:

C, C,
Figure 5.2: Three tank system

G,

Figure 5.3: Influence of allowed error

dhy 1 1

7dt = é q-— §C1 V hl_ h2 (57)
dhp 1 — 1

W = éC]_ hl_h2_§C2\/h2_h3

d 1 1

W= e e
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whereh; represent the level of tank
The system is linearized to apply the proposed control s&tracaround a trimming

pointHy, Hy, H3 andQ. Thus:
h1 = Hy +AH1,hy = Hy + AH»

h3 = Hz +AH3,q = Q+AQ
yielding the linear equation:
AH = LAH +MAQ (5.8)

where:

AH=[AH,  AH,  AHg]"

< G

0

25,/H;-H 2S/H1—H;
L= G < S Co
25\/H17H2 23\/H17H2 23\/H27H3 23\/H27H3
0 G % C3
23\/H27H3 25\/H27H3 ZW

u=g o o

A discrete model is then easily obtained from (5.8) as

X(k+ 1) = Ax(k) + Bu(k)

Application to a three-tank system

A number of simulations for different network operationahditions have been performed,
taking as system paramete3s= 0.16n?, C; = C, = 0.0256#‘3/2 andCz = 0.0251#‘3/2,
with an operation pointl; = 1m, H, =0.7m, H3 = 0.4m, Q = 0.014rr13/h.

As an standard tool to compare performance results, thgraitsquare error (ISE)

measure has been employed.
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First, the proposed strategy for reducing network trafficampared with the conven-
tional case where the entire control sequence is sent oxeetiwork at each sampling time.
The influence of a successful transmission probabgitgnd allowed erroe is shown in
Figure 5.3. This graphic represents the average ISE peafacenindex for a number of ex-
periments taking a step-like sequence with pefliod 2000s as reference. and a simulation
time of 5000 s.

In Figure 5.4 the percentage reduction of controller-tasaior transmissions is shown.

This reduction is computed as the amount of informationgmgitted with the proposed
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Figure 5.6: Tracking of references

queueing/buffering scheme with respect to the full infatioratransmission case. It can
be observed that savings above 85% can be obtained for enffichigh allowed error
€. Nonetheless, from Figure 5.3, it is clear that there igelipint in taking excessively
high values of, as ISE performance starts degrading faster than transmisaving. For
instance, in view of Figure 5.3 and Figure 5.4, by selecting0.2- 104 a reduction of
70% is reached without worsening significantly the systespoase.

Figures 5.5 and 5.6 show the system response with a remarRabb packet dropout
probability. It can be observed that the algorithm retaimsdyperformance even when with
high dropout probability. Nonetheless, in some cases,r#pg on the random dropouts,
the response may exhibit small overshoot.

Not surprisingly, performance degrades as either the allioevrore, or the data dropout
rate, increase. Remarkably, the controller can cope with dipout rates above 40%.

In Figure 5.7, the transmission profile for a step trackingesiment with different
values ofe are shown. It can be observed that, as expected, an intamsenission pattern
is observed for the first instants of simulation, corresgiogdo the transient regime. As

the system approaches steady state, traffic load is dristieduced.
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5.2 Stochastic Packetized Model Predictive Control for Netarked
Control Systems subjects to time-delays and dropouts

In this section both packet dropouts and random delays argidered . A stochastic ap-
proach is adopted, which allows to improve the control pennce provided that the

statistical distribution of the delays are known.
5.2.1 Problem formulation

Consider the following discrete linear system:

x(k+1) = Ax(K)+Bu(k) +Buw(k), (5.9)

x(0) = xo. (5.10)

wherex(k) € R", u(k) € R™ and are the state vector and control input vector respégtive
andw(k) € R™ is an exogenous disturbance affecting to the plant.

In this setup, the plant and controller are assumed to bedirikrough a communi-
cation network (see Fig. 5.8). The relevant phenomena tsidenin this section are
transmission delays and packet dropouts, which can deghnadeontrol performance or
even destabilize the plant. The random nature of both efieateal-time communication
networks motivates the stochastic approach taken in thik.vizelays and dropouts are

assumed to be stochastic i.i.d. processes with knowntstatidistributions.

x(k)

Plant

ref
—>| Controller

Figure 5.8: Networked Control System
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To summarize, for the proposed control scheme to work, athehts in the control

loop are assumed to behave in a time-driven manner, wittollening elements:
1. Sensors periodically sample the plant siéte and send it to the controller.

2. A stochastic predictive controller computes a contrgussiceJ (k) = [u(k|k) u(k+

1K) ... u(k+ Ny|k)] at each sampling time and sends it through the network.

3. Atthe actuator side, control inputs are applied to that@acording to the last signal
stored in the buffer. The buffer is updated discarding olatiasl sequences whenever

a newer one arrives.

4. Network is affected by i.d.d. dropouts and i.d.d delaflg. Where

i if U(k)isreceived at tim&+i
T(k) = at the actuator node, (5.11)
oo if U(K) is lost

Assumption 1.The proces§1(K) }keny is i.i.d., with delay distribution,
Prob{t(k) =i} =pi, i€ Ny, (5.12)
and dropout probabilitProb {7 (k) = ©} = pe.

In order to achieve an appropriate performance level, tlhidkwproposes the use of a
stochastic predictive controller framework. That way, tdoatroller will try to minimize
the expected value of the following cost function:

K+Ny—1

V (x(k), z4(k), 7 (k),U (k) = Z( C(X(i),u (i) + F(X (k+N)), (5.13)

whereNj is the prediction horizork(k) is the measured state of the plankjv (k) is the
set of optimal control sequences sent betwieerl andk — 1™

T 21(0), Vielkk—1,.. k1"

is the set of possible delays of those control sequettd) is the new control sequence
to be computed by the controller at tinke ¢(-) denotes the stage cost aRd:) is the
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terminal cost. Moreover/ (i) andu'(i) are state and control input open-loop predictions
according to the buffer policy and the delay and dropoutsssitzal distribution:

X (k) = x(k),
o X (k+ 1) = Ax(k) +BuU (k),
Open loop prediction X (k+2) = AX(k+1) +BU(k+1), (5.14)

whereu'(k), U (k+ 1), ... is the predicted control sequence.

When random time-varying delays and dropouts are taken auouat, one of the main
difficulties is the impossibility of predicting the systerajectory in a deterministic way, as
the inputs actually applied to the plant are unknown by theredler. Different approaches,
including min-max or worst-case approaches can be takeeabvdth this difficulty.

In this work it is exploited the fact that the statistics ahé delays and dropouts can
be measured or estimated to improve the control performaritat way, the open-loop
predictions described above depend on future delay anddtapalizations, so that the
control inputs applied to the plant can be predicted by eikpiinumeration of the real-
izations. For instance, when considering the cade = t, thenu'(k+t) = u(k+t|k),
U'(k+t+1) =u(k+t+1]k) and so on.

The actual control inputs applied to the plant depends orattieal of the control se-
quences sent by the controller and the buffer policy.

Let us represent the state of the buffer at a given time ibgtasb(k) € R™N and
denote

k=maxk—I:1(k—1)=1}

It easy to see that(k— ) = | indicates that the optimal control sequence computed in
k—1, that isU (k—1), arrives at timek to the buffer. Then, the dynamics of the buffer can
be expressed as the recursive rule:

O
~
=
S—
Il
Q
—
S
=
SN~—
S~—
C
—
=

)+ (1—a(7(k)Shk—1) (5.15)

whereS € R™MNxMN s g shift matrix defined as the block matrix:

i 0m1><m1 Iml 0m1><m1 0m1><m1 0m1><m1 0m1><m1 i
0m1><m1 Om1><m1 Iml 0m1><m1 Omlxml 0m1><m1
Omlxml Om1><m1 |m1 Omlxml 0m1><m1

é: Omlxml Om1><m1 Omlxml Iml Om1><m1
Omlxml Om1><m1 Omlxml Iml Om1><m1
L 0m1><m1 Om1><m1 0m1><m1 0m1><m1 Omlxml i
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In (5.15),a(7 (k)) € {0,1} is a signal accounting for reception of control sequences
at the buffer computed by the controller subsequent to thexssived before, such that:

1 if kel{kk—1,. k—m
ag—q b 1 Ke koL kT
0 if k=0

With this description the control actiom(k) provided by the buffer at instahtcan be
expressed as

u(k)z[lml Om oml}b(k) (5.16)

From equations (5.9)-(5.10) and (5.16) one can easily sadhh state of the buffer is
involved in the state of the NCS. However, the controllerddioet have access to the state
of the buffer at any timé entailing a non standard MPC problem. Every sampling time,
the controller has access to the plant stat&s and finds a finite horizon optimal control
sequence (k) € R™N by solving the following optimization problem:

i, AV (60, %60, 709, U (0x(K), %(K), 7 (K)) (5.17)

where expectation is taken with respect to the discreteildigion of 7 (k). This can be
done by explicit enumeration of the realization.@f weighting all these realization with
the corresponding probability.

As a consequence @fssumption 1the minimization problem becomes:

00

U(rgie?@m PV (x(k), Za(k—1),1,U (k) (5.18)

1ieNg
Assuming this setup, it will be next illustrated how thisdtastic predictive controller
combined with a buffer provides robustness to packet delagsdropouts.

5.2.2 Simulation results

In this section the control strategy described above isiegb the following unstable
system:

11

01 x(k) +

X(k+1) = l u(k) + w(k)

1 0.5

Delays are discrete uniformly distributed between 0 andHhileathe disturbance are
random bounded disturbances wjitf(k)| < 0.5.

The results obtained applying the proposed method in tlusosewill be compared
with the results from the method described in [D. Queved@siergaard and D. N&Si
2011], assuming no quantization issues.
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Figures 5.9 and 5.10 represent the evolution of the statsibg the approach described
in this paper and also the one in [D. Quevedo, J. Ostergaar®aNest, 2011]. It can be
seen that the proposed controller improves the resultsuBedatakes into account in the
objective function the different delay realizations.

In Figures 5.11 and 5.12 are shown the values of fundfjpmvhich is defined in the

ts
following: V4 = Z)I(x(i),u(i)), wherets = 100s is the simulation time. This funtion is
i

represented Witk:1 differents values of the control horizod the initial value o. In both
figures it is possible to see how the valueplecreases with larger control horizons, as
well whenx(0) is decreased,
10
M@zm[ ],

0 1
beingxp a scalar that gives the initial state and will be varying igufe 5.11.
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Figure 5.11:V4 evolution with the proposed control method.

5.2.3 Experimental results

This section presents an application of the proposed schetest its performance in a real
system. The plant is the same one described in section 4. &hapter 4. In this section,
the experimental setup is described, providing all the ictamations related to the scheme.
After this, experimental results are presented.

Plant description

The plant, as in Chapter 4 is a variant of the quadruple-tao&gss, originally proposed in
[Johansson, 2000], see [FeedBack, 2012]. A picture of thkéqum is given in Figure 5.13.
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Figure 5.12:V; evolution with the controller in [D. Quevedo, J. @stergaard and D.d\&8i11]

This educational plant is a model of a fragment of a chemilzadtplt has 4 tanks, each one
with a pressure sensor to measure the water level. The ogggdetween the tanks can be
modified using seven manual valves to change the dynamite aistem.

For the experiments, the chosen configuration is the sameritsction 4.5.1 of Chap-
ter 4 (see Figure 4.12).

The objective of the experiments is twofold. First, theesttthe plant must be moni-
tored from every tank. Secondly, the water level of the twedpbtanks is to be controlled.

Plant modelling

The non-linear and linearized model were described in Ghapt

The objective here is not only to stabilize the plant arolrallinearization point, but
also to track references. In order to do that, the output efstfstem is set as,2 C;Ah,
whereC; is a matrix that selects the water level of tanks 2 and 4. Tfezerces are given
by the vector. To perform the tracking task, the equilibrium poiffh,, Av;) associated
with references are found as follows.

Ah, = 0= AAh, + BAv,,

s=r = C,Ah;.

Rewriting in blocks the equation above yields
0O | A B Ahy
r{ | Cc o Avp

)
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Figure 5.13: Plant of four coupled tanks.

so that the equilibrium point associated withan be easily obtained

-1
Ahy 0
Av; r|’

It is assumed that the references are reachable by the sythigts, the inverse does
exist. Finally, to track references, the following systemstrbe stabilized.

A B
C O

X(t) = Ax(t) + Bu(t), (5.19)

wherex(t) £ Ah(t) — Ahy andu(t) £ Av(t) — Av;.

Results

In this section the experiments results are presentedy tisndescribed plant.
Delays are discrete uniformly distributed between 0 andHilenthe disturbance are
random bounded disturbances wit(k)| < 0.5.
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Value Unit Description
h 0-25 cm  Water level of tank
v 0-5 V  \oltage level of pump
A 0.01389 m?  Cross-sectional area
a 50.265e-6 m? Outlet area of tank
a;3 50.265e-6 n?  Outlet area between tanks 1 and 3
n 0.22 g% Contant relating voltage and flow
hg’ 9.55(12.6) cm Reference level of tank 1
hg 16.9(12.6) cm Reference level of tank 2
hg 7.6 (11) cm  Reference level of tank 3
hg 14.1(11) cm Reference level of tank 4
vg 3.3(3.5) cm  \oltage level of pump 1

W 26(15) cm \oltage level of pump 2
Table 5.1:Parameters of the plant. The terms in parentheses are related to the simexpgoments.

Fig. 5.14 and 5.15 show the outputs of tanks 2 and 4, with tlespective references.
Fig. 5.14 compares the performance of a classical MPC wheendtwork under consider-
ation is perfect and when it introduces dropouts. It can ke $@w the dropouts make the
performance much worse.

Fig. 5.15 considers the network with dropouts. It companesctassical MPC with the
stochastic MPC presented in this chapter. It can be seenf®proposed stochastic MPC
improves the perfomance.

5.3 Conclusions

This chapter has presented two model predictive contratesires in order to deal with
time-delays and packet dropouts introduced by a commuaicaetwork.

The first approach has presented a methodology to compdosatata dropouts and
delays in networked control systems. The methodology takieantage of the intrinsic
computation of future control signals in predictive cohtto cope with eventual data
dropouts. A key aspect is the inclusion of a buffering strategether with a model based
plant estimator that, under certain conditions, ensuiglgieof the controlled system.

Simulation results show that remarkable data dropout rgige 40% can be achieved
without significant performance degradation, as well afi¢crbpad alleviation up to 85%
with respect to conventional buffered predictive contgatems.

In the second approach, a stochastical model predictiveraitar has been designed,
showing how statistical information on packet delays angpduts can be used in the
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Figure 5.14: Tanks 2 and 4 outputs with a classical MPC

design of a networked control system. Also some simulatiave been presented.
Future works may include studying closed loop stability prdformance issues.
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* Isabel Jurado, Daniel E. Quevedo, Pablo Millan, FrancRcdrubio. Stochastic
packetized model predictive control for networked congsatems subjects to time-
delays and dropout®0th International Symposium on Mathematical Theory afNe
works and Systems, Melbourne (Australia), 2012.

« Pablo Millan, Isabel Jurado, Carlos Vivas and Francisd@uhio.Networked predic-
tive control of systems with large data dropautgth IEEE Conference on Decision
and Control (CDC’08), Cancun (Mexico), 2008.
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Figure 5.15: Tanks 2 and 4 outputs with a classical MPC and the presented stochastic MPC



Chapter 6

Dynamic Controller Placement for
Networked Control Systems

his chapter presents two algorithms for Networked Contysit&ns with mul-

tiple wireless nodes. Communication between them is aftedty random

packet dropouts. Two algorithms are presented to decidehwiodes will cal-
culate the control input and which will only relay data. Teedgorithms make the archi-
tecture flexible by adapting the control to the possible gearin the network conditions.

Wireless sensor-actuator networks offer flexibility in thesign of networked control
systems. One novel element when using networks with maltiplides is that the role of
individual nodes does not need to be fixed. Stochastic mddetsansmission outcomes
and characterize the distribution of controller locatiowl ¢he covariance of system states
are adopted. Simulation results illustrate that the pred@schitecture has the potential to
give significantly better performance than limiting cohtralculations to be carried out at
a fixed node.

In the first section of this chapter, the network is compogedoertain number of nodes
in matrix formation. These nodes follow an algorithm, thatides which node will calcu-
late the control input. This node will solve a cooperative@®Emmunicating with one of
its closet neighbors. A survey in NCSs, dealing as well witkiiactions between network

components is presented in [J. A. Giraldo and N. Quijano120h the topic of coopera-

123
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tive NCS, [ R. Olfati-Saber, J. A. Fax and R. M. Murray, 200tfoduced some consensus
protocols, where the main objective is to reach an agreeregatding an interaction rule
that specifies the information exchange between an agerdlbofts neighbors. Further-
more, [F. Xiao and L. Wang, 2008] developed a consensusitiigofor discrete systems
with delays. In [U. Miinz, A. Papachristodoulou and Frankgailer, 2008], the authors
study the stability of multi-agent system formations witday/ed exchange of information
between the agents.

In the network under consideration in this work, the only edidiat receives the state
of the plant without any failure probability is the sensodapwhich is located next to
the plant. The actuator node is directly connected to thetptegput, therefore this data
is received without problems. The actuator node is also iy mode that provides trans-
mission acknowledgments. It is assumed as well that theme &rray of nodes between
the sensor and the actuator nodes, as shown in Fig. 6.1. Tes o a column send the
information to the following column of nodes. Also, it is idered that the nodes, ex-
cept the sensor and the actuator nodes, can communicatésagthsest neighbors in the
same column, and many thereby cooperate and exchange atformThe sensor and ac-
tuator nodes cannot calculate control values, they onlahle transmit information. The
communication between nodes is limited and subject to drtspo

Itis supposed that the model of the plant is divided in tw@mplete subsystems. This
can be easily generalized for the case of any number of inmirapbsystems. Each node
will know only a part of the model of the system, that is why é@shto collaborate with
its neighbors, which know the other part of the system. Tioeee each node will estimate
just a part of the state.

The control policy to be used will be a cooperative MPC. Wittfiis context, a flexible
NCS architecture where the role played by cooperative nddpends upon transmission

outcomes and their acknowledgments is presented. With Iugithm proposed, trans-
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mission outcomes and their acknowledgments will deterpgheach instant, whether the
control input will be calculated at the actuator node, oseldo the sensor node.

An example of an application for this algorithm can be a situawhere the network
of nodes have moving obstacles in between, difficulting themunication. This way,
depending on the position of the obstacles, the best paiodésito calculate the control
value is varying.

In the second section of this chapter, a flexible architedra single-loop NCS topol-
ogy using multiple nodes connected in series over analaguezachannels is presented.
The control architecture proposed adapts to changes inonetwonditions, by allowing
the role played by individual nodes to depend upon transanissutcomes. The proposed
algorithm will decide which nodes assume estimator fumstiand which ones merely re-
lay data.

In this last section it is assumed that the control policysists of a pre-designed state
feedback-gain combined with a state observer, which, inatbeence of network effect,
would lead to the desired performance. Within this contaxfiexible NCS architecture
where the role played by individual nodes depends upon rresson outcomes is pre-
sented. With the algorithm proposed, transmission outsodetermine, at each instant,
whether the state estimation will be calculated at the aotuzode, at the sensor node
or at one of the intermediate nodes. It turns out that, ifvitial dropout processes are
i.i.d., then the estimator location has a stationary distion, which can be easily charac-
terized. To analyze the performance of the dynamic NCS taathire in the presence of
correlated dropouts, a jump-linear system model is deid@vetthe network model recently
introduced in [Quevedo et al., 2011] is adopted.

The first section of the chapter is a extension of the cont&ramwntribution [D. E.
Quevedo, K. H. Johansson, A. Ahlén and I. Jurado, 2012] tgsiden NCSs with parallel

links and the use of cooperative MPC. Also, in the secondagcthe contribution [D.
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E. Quevedo, K. H. Johansson, A. Ahlén and I. Jurado, 2012{teneled by allowing the

nodes to transmit their state estimates.

Figure 6.1: Control over a graph with dropoutg?a\nd unreliable acknowledgmenttudiar values.

6.1 Cooperative MPC for Networked Control Systems

6.1.1 NCS Setup

A MIMO LTI plant model of the following form is considered

X(k+1) = AX(k) + Bu(k) +w(k) (6.1)

wherex(0) ~ 47(0,R), P > 0. In (6.1),u(k) € R™ is the plant inputx(k) € R" is the
state, anav(k) ~ .#7(0,D), D > 0 is driving noise.

The model described in (6.1) represents the whole plant.&utoreshadowed in the
introduction, individual nodes do not have knowlegde o thhole model. Thus, nodes
have to interact with their neighbors to get all the inforimatabout the plant. It will be
considered that, between two neighbor nodes, they haueesiihtormation about the plant

model.
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The composite model

For each node, theomposite model (CMJA. N. Venkat, J. B. Rawlings and S. J. Wright,
2007], is the combination of the decentralized model andhalinteraction models (in
the present work, it will be considered that the cooperataione pair wise between two
nodes in the same column, i. e., one interaction model). Heermtralized state vector in
node(ij), Xj), is augmented with the state from the influence of the neighbde(i*j).
Therefore, the augmented statg, = [xgj)(ij),xaj)(i*j)]T represents the CM states for
the nodg(ij ), (i*j) being the neighbor node interacting, pairwise, wift), which is in the
same column antt € {(i — 1), (i+1)}. In this augmented stateij)(i* ) is the influence
of the nodg(i*j) on the nodeij), andxij)(ij) is the part of the state that take into account
just the part of the model that the nodg) knows, so itis a decentralized state. In this case,

the CM for the nodé€ij) is written as

Xiij) (K+1) = Aij Xij) (K) + Byijy Ui (K) Wi i+ ) Ugis ) (K) (6.2)
where
Ao i B 0
Ao | A } B.. _[ (i)(i}) } Wi _[ }
" Adi) i) " 0 WD By

The interactive matrices are written dependingobecause

Adiy-vi = Adi+ni)  and - Biji-1i) = Bijya+i)
since between two neighbor cooperative nodes there is tlodevitiformation about the
system. Therefore, the nodig ) has one part of the model, and the neighbor nddies
1)j) and((i+1)j) have the other part of the model. This could be extended toake in
where the global state vector is divided in more than twospar the cooperation between
all the nodes that have access to different information etiwisystem will have to be

considered.
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The augmented control signal is denoted as

UE:H)(k) = [uij (K" u (07T, ke No, (6.3)

and will be calculated with MPC techniques employing paisevtooperation among the

neighboring nodes. Thus,

E:jg)(k):Cooperative MPGX;ij) (k), X+j) (k) , ke No, (6.4)

u
wherexj (k) and X (K) represent the CM states for the nodés and (i*j), respec-

tively.
Network issues

Sensor and actuator nodes are connected via a wirelessrkethiaracterised via a graph
havingM x M +2 nodes, see Fig. 6.1. Control values cannot be calculatdeetsensor nor
the actuator nodes, they are just used to measure the @smasd apply the control signal,
respectively. Therefore, according to Fig. 6.1, the nekv@sM x M nodes that could act
as the controller. Transmissions are done in sequentiaheras shown in Fig. 6.2. More
precisely, the packet')) (k) is transmitted from nodéj) to its closest neighbors, these are
(i+1)(j+1),i(j+1) and(i—1)(j+1), at timeskT +it, whereT is the sampling period
andt < T/(M + 1) refers to the times between transmissions of packets. & jiput
u(k) is applied at timekT + (M 4+ 1)7. It is assumed that in-network processing is much
faster than the plant dynamics (6.1) and, as in, e.g., [C.dbifson and P. R. Kumar,
2008], neglect delays introduced by the network.

A distinguishing characteristic of the situation at hanthist (due to channel fading)
the network introduces stochastic packet dropouts. Toyghedsituation, an analog erasure

channel model is adopted and the binary success randomsgexcis introduced

y(ﬂij()i*l))(k) €{0,1}, keNg, ic{0,12...M+1},je{0,1,2,....M+1}
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s (1M (k)

u(k) y(k+1)
(' AN f f

(k+1)T

SI(MM) (k)

~

Figure 6.2: Transmission ScheduleE R>q is actual time.

Wherey((iif)j*l»(k) — lindicates that transmission of the pack#t—2) (k) from node(i(j —
1)) to node(ij) at timekT + (j + 1)1, is successful, i.e., error-freggf)j’l))(k) = 0 refers
to a packet-dropout. Throughout this work it is assumed thatsensor nodé00) has
direct access to plant output measurements. For notatiomaeniencey % (k) = 1, for
all k € Ng.

To save energy, in this formulation the wireless no¢ig3 vi € {0,1,2,...,M} and
vj € {0,1,2,...,M} do not provide acknowledgments of receipt of the packetav-Ho
ever, the actuator nodéM + 1)(M + 1)), will in general have less stringent energy con-
straints, so at tim&T + (M + 1)1 the control signal is received, &T + (M + 2)1 this
control value is applied and at timlel + (M + 3)1, the actuator broadcasts the control
value applied, namely(k) = [ufy;, ()T, ufi. (k) T]T, back to the wireless nodés) Vi €
{0,1,2,...,M} andvj € {0,1,2,...,M}, and withi* € {(i— 1), (i+1)}, see Fig. 6.1. This
acknowledgment-like signal is unreliable and affected topduts with associated success

processes
31 (k)e{0,1}, keNp,ie{0,1,2...,M},j€{0,1,2,....M}.

More precisely, ifu(k) is successfully received at nodg ), then (1) (k) = 1; see also

[E. Garone, B. Sinopoli and A. Casavola, 2010] and [O. C. lared S. Yiksel and T.
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Basar, 2006] for studies on the importance of acknowleddsia closed loop control. It
is assumed that the actuator node has perfect knowledgamf ipputs, and thus, writes
S(MHDM+1)) (k) = 1, vk € No.

Due to packet dropouts, plant state measurements are rptsabwailable at the actua-
tor node. On the other hand, the sensor node will, in geneoahave perfect information
of previous plant inputs. This makes the implementatioréof)via estimated state feed-
back a challenging task. The main purpose of the presentiwtolinvestigate which nodes
of the network (with the exception of the sensor and actuaddes) should use their local
state estimates to implement the control law (6.4). Thig@ggh will lead to a dynamic
assignment of the role played by the individual network rsod&hich tasks are carried
out by each node at each time instant, will depend upon trssgn outcomes, i. e., on

Vil ™ (k) ands) (k).

A flexible NCS architecture

The packets transmitted by each nddg have three fields, namely, state measurements,
tentative plant inputs (if available) and the value of thgotive function under considera-
tion:

st (k) = (x(), U TP (k),3(K),a € {1,...,i},a* € {(a—1),(@+ 1)}, B {L,...,j}. (65)

The plant states(k) includes the two components corresponding to the cooperatdes,
that isx(k) = [Xj) ()T, X+ j) (K)T], with i* € {(i— 1), (i+1)}.

The control signalu(k)gg;f) in (6.5) with the structure shown in (6.3), is the plant input
which is applied at the plant provided the pacét (k) is delivered at the actuator node.
If s (k) is lost, then by following Algorithm 2, which will be descel in Section 6.1.4,
the plant input will be provided by one of the nodes in subseggolumns, see Fig. 6.1,
which thereby takes on the controller role at tikad-or further reference, the node which

calculates the plant input at tinkewill be denoted as

c(k) € {(12),(12),...,(IM), (21),...,(2M), (M1),..., (MM)}.
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Example

Consider the network in Fig. 6.3. Some nodes in the netwotkhaive one part of the
plant model and the other nodes will have the other part.&fhes the information will be
distributed like thisi(11), (31), (12), (32), (13) and(33) will have the same information
about the plant, that is
Aay) = A@Ey = Az =Aas3 =Aus =A@ps), By =By =Bz =Bss) = B3 =By
and
W (22) =W 20 = Wa2) (22 =W32)(22) = W13)(23 =W(33)(23):

On the other hand, the rest of the nodes will have the othépptre information about
the plant:

Ay =A22 =Aw23:  Br =Bpy =B(3
and
W1y =Wean @y =Weo)12) =We2) 32 = W33 =W23)33)-

Moreover, the cooperating couples are:
(11) +—(21), (12)+— (22),

(13) «— (23), (31) «— (20),
(32) «— (22), and (33) «— (23).

So, itis easy to see that:
Aay =Aa2)12 = A3z = Aeyey =As2) (32 = A33)33):

B(1(11) = B2)(12) = B(13)13 = B(an31) = B32)(32) = B(33)(33):
Ay =A22 22 =A23) 23, By ey = B2z =B23)23):

11) ==~
\ S /

=/ >/ =/
Figure 6.3: Graph with 3x 3+ 2 nodes.



132 Dynamic Controller Placement for Networked Control Systems

A2y =Acy ey = A12)22 = AE)22) =A13)(23) = A33)(23):
B(11)(21) = B3y (21) = B(12)(22) = B(32)(22) = B(13)(23) = B(33)(23):

A1) = A2y = A2 12 = A22)32) = A23)13 = A23)(33)
and
B(21(11) = B2y (31) = B22)(12) = B(22)(32) = B(23)(13) = B(23)(33)-

In this example the numerical values are:

1 1 0 O 1 1 0 0
Ao |01 00 Ao |01 00
(= 00 01 0 A 00 ) ’
0 O 0 02 0 O 0 01
0| 0
1 1
Buy=1| r ol I’ By = 0 ;
0 0
0 | 0
0 0
Wipey =1 1 o1 | Wopay = 0
|: 0.4 ] 1
So the decentralized models are:
1 1 1 1
Aayany = { R Ay ey = [ 0 1 ] ,

0 0
B = B - i
(11)(11) { 1 } s B2y [ 1 ] ;

whereas the interacting models are given by:

01 O
A -
(11)(21) { 0 02

0 O
A —
v Aena { 0 01 } ;

0 0
B = B = .
(11)(21) [ 04 ]’ (21)(11) { 1 }
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6.1.2 Control Implementation

To implement the control law (6.4) over the network usingkeds of the form (6.5), a
cooperative MPC will be used.

In this work it is assumed that pairs of neighbor nodes in #meescolumn can exchange
information. In Algorithm 1 the cooperation between a pdinades is shown. Then, with
the CM in (6.2) and the Algorithm 1, it is possible to calcelaFeasible Cooperation-
Based MPC (FC-MPGQ)that is well explained in [A. N. Venkat, J. B. Rawlings andJS.

Wright, 2007].
The calculation of the suboptimal control mpugj) for each iteratiorp, is performed

by solving the FC-MPC problem. So, the objective functioti Wwé chosen as a linear
combination of the individual nodes’ objectives, i.e.,

i) = I i) = @) Vi) + @V Bij)» Fie ) > 0By + @iejy = L7 € {(i = 1), (i+1)}

The local objective for each cooperative node is dependingevalue oi/ - 1))(k),

y((i(j'))<J Y (k) andy((('“)(J Y) (k). If any of them is equal to 1, the cost functlon will be:
J(ij):V(ij)(xlz)ij)(k)»u/zj)(k);x(ij)(k)):tzkx(pij)(”k)TQng)(”k)+uﬁj)(t‘k)TR ij)(t‘k)7 (6.6)
where
X i) (&) = [ (k1K) T (k20K T LT,
Uiy (k) = [uff; (Kl T, Uy (k21K T,

andQ > 0 andR > 0 are weighting matrices. To calculate these predictioa<i for the
node(ij) (6.2) has been used.
The notatiorp indicates the iteration number. During each MPC optimaratthe state

and input trajectoriesd;;-j (k), U+ (k)) of the interacting node MPC are not updated, so
they remain at( -}/ (K), u (Ff 1>(k))
On the other hand, |;f' (= l))(k) = y((i(ji;(j_l))(k) = y((i(ji;rl)(j_l))(k) =0, no informa-

tion about the state has arrlved at ndde, so an estimation is used. Therefore, the cost
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function will be an expected value ([K. J. Astrém, 2006)):

8

‘](ij) :t: )A(Ej)(t|k)TQ)A(8j)(t\k)+tr (Qp(ij)(k)) +u8].)(t|k)TR ij)(t|k), (6.7)

whereR;; (k) approximates the covariancexf;) (k) and is calculated as follows:
Pij) (k+1) = Agp) (1 =F D (k) 1) P (AT +D, (6.8)

where

rik=ae{0,1,...,i—-1}B{0,1,...,i—1}

yfff’gig*)(k) is equal to 1 if and only ik (k) is available at nodéj ) at timekT + (j — 1)1,

and(ig* jg*) will be one of the preceding nodes of (ij) and will be the oreg fhrovides the

best (the smallest or unique) valueaf) (k).
Remark.The objective functiod;;, is an approximation of:

3j) ~ BV (]G (KUl (0: %) (KD}

sincePl) (k) is not the covariance of;;, (k), but just an approximate value. Therefore the
termtr (QRyj(k)) ([K. J. Astrom, 2006]) is not exact.

The following notation is used for simplicity;j) = Xj) (k) andugj) = ugj) (k).

In the Algorithm 1, the state sequence generated by the sgmuence;;) and ini-
Xij))

tial statex;, has been represented ngﬁ(;” . Also, the notationx is representing

T ¢T 1T
iy X )]
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Algorithm 1 Cooperative MPC algorithm
Given(lf()j),x(,n(k)), Q>0,R>0,1e{i,i*},i"e{(i—1),(i+21)}, pmaxk) >0, >0,

1

p<«1,€,j < ®and®d >> 1. {beinge a bound fore )}

while g ) > & for somer € {i,i*} andp < pmaxk) do Vi € {i,i"}

uP

() €arg min FC—MPC

(1))

* —1

Utj) = @)Yy + (2= @j)ugy)
SR | o BN o B §
e<’J>_Hu<!J> “<1J>H
for eachr € {i,i*} do

The node(1 j) transmitsuP

i) to its neighbor

if y((i(;)fl)(lfl))(k) =1V y(<i|j()171)>(k) —1v n(i(jl;rl)(kl))(k) _ 1then

)1 X ) ..
(i*) (1]) ,vl c {l,l*}
- (UG Wi 1y %)) .
%05 %, WD e ik}

p+~p+1

end while

Due to the communications constraints, the maximum numbé&eiations pmay IS
limited. It is also possible to loose information during t@operation. For these reasons

*

only a suboptimal control inpui(irj’) will be available.

Notice thati* € {(i — 1), (i+ 1)}, that means that the nodg) can communicate with
the nodeg(i—1)j) and((i+1)]j), see Fig 6.4. Thereforéij) will solve two cooperative
MPC and will have two control values. The control value theet hode(ij) will transmit

will be the one that provides the lowest cost.
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N

———————

Figure 6.4: CooE)erative nodes for nodg ). Figure 6.5: Packets received by nodg ).

6.1.3 State Estimation

While only the node(k), will provide the plant input at instaft in the present formulation
all nodes compute local state estimates, (k), by using the data received from one of the
preceding nodegjg*jg*). This serves as safeguard for instances when the loop igbrok
due to dropouts.

Since the nodes do not have full information about the pldrgty are only able to
calculate a part of the state. That means #af(K) is not an estimate of the global state

of the plant.
In the following, it will be assumed that the acknowledgnseawitplant inputs arguite
reliable. Thus, the state estimates are simply calculated as:

Xij) (K) = Adijy X(ijy (k= 1) +Byijy Ugijy (K= 1) +Wijy - ) Ugiej) (K= 1) + (6.9)
KU () (%) (0) = (A i) (k= 1)+ By Uiy (K= 1) +Wij ey Uie y (k= 1)), (6.10)

whereK (D (k) = F) (k)1
In (6.9), uij)(k—1) andug+j)(k— 1) are local plant input estimates. In particular, if

3 (k—1) =1, thenufy) (k—1)T,uft.;, (k—1)T]" = u(k— 1), andugj)(k—1) = ufy;, (k—

1) andugi«jy (k—1) = uj,;,(k—1). On the other hand, at instances whaf#) (k—1) = 0,

node(ij) uses the tentative plant input value transmitted in thersg&ield of the previous

packets(i) (k — 1) (if non-empty), or otherwise setg;j)(k— 1) andu«j (k- 1) as per

(6.4), see Algorithm 2.
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Intuitively, good control performance will be achievediétstate estimation is accurate.
Clearly, nodes which are closer to the sensor will have adoasore output measurements,
see Fig. 6.1. On the other hand, one can expect that nodeb atdcphysically located
closer to the actuator node will on average receive moret itgout acknowledgments,

thus, have better knowledge of plant inputs.

6.1.4 Algorithm for Dynamic Controller Placement

Algorithm 2 is run at every nod@j). Since it is assumed that acknowledgment from the
actuator node is, in general, available, but transmissibpacketssi) (k) are less reliable,
nodes closer to the sensor nodes can be expected to haweshatteestimates than nodes
located further down the network. Therefore, preferenegvisn to forward incoming ten-
tative plant input values.

The sensor nodgj ) = (00) uses as inpus® (k) = (x(k),0,0), Yq) (k) = 1, where
0 means that the field is empty.

This node just passes the information to all the nodes in tkedolumn. The node
(00), as the nodéM + 1,M + 1), cannot calculate control values.

The rest of the nodes in the network can only send informatatheir three closest
neighbors in the following column, except for the lower ampermost nodes who can
only send to two neighbors, see Fig. 6.2. Therefore, thergenede(ij) can receive zero,
one, two or three (if not border node) packets. In the caseitthaceives more than one
packets (as shown in Fig. 6.5), it will have to choose betwthem. Then, the chosen one

will be the one with the minimun value of the cost functian

The first column of nodes, the nodgs) with j = 1, calculate control values cooperat-
ing between them per pairs, as explained in Section 6.1.8.¢ath node of that column
transmits:

s k) = (i) (0T X (T Ty (0T ey (0 TTT, 37 (K))

to its three closest neighbors in the next column of nodess&guent nodes then relay the
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Algorithm 2 Dynamic Controller Placement

k< 0, Xj)(0) « 0, P(()”) — P, m«0,i*=(i—1) ori* = (i+1), the cooperative nodes
for (if).
whilet > 0do{t € R> is actual time}
while t < KT + mrt do {wait-loop}
m<«—m+1
end while
me+neA®Mm®&m+D
it v DI =0 Ay () =0 Ay P (k) = 0 ther
if 501)(k—1) = 1then
Uiy (K), Ui« (K), Jij) (K) <= Algorithm 1
SIK) < (%) (K) T % (O TIT [ug) (K) T by (K)TTT, 35y (K)) {a tentative in-
put}
else
si (k) + (0,0,0)
end if
end if
ity 0 00 = 1wy ) = 1wy I (k) = 1then
S« i-D(i-1)(k) and/orsi(i-1) (k) and/ors!(+1(i-1) (k) { Sis a set containing all

the packets arraived. If all the packets arriSevill contains{(-1(-1) k), si(i-1) (k) and
S((i+1)(i—1))(k)}

(x5,uS,J%) «—argmin J €S
|

if x5 0 then {x;j, (k) is available}
PiD(k+1)« D

end if

if uS+£ 0then
i (K) = Ui

S

ui-j) (k) = Uz )
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else
Wiy (K), U=y (K), Jijy (K) < Algorithm 1
end if
if S=0A80)(k—1)=1then
S (k) (6, [ugj) (KT, ug ) (0 TIT, Jgij) (K)) {a tentative input}
else
S (k) « (x8,uS,J5)
end if
end if
while t < kT+ (j + 1)1 do {wait-loop}
m<+—m+1
end while
transmit s(1) (k)
while t <KkT + (M + 3)7 do {wait-loop}
m«+—m+1
end while
if 611) (k) = 1then
Riijy (K+1) = Agj) i) (k) + By Uiy () Wi e Ui ) (K)
else
Riif) (K1) = Aqij) Xij) (&) + By Uy (k) Wi i+ Ugie ) (K)
end if
k—k+1
end while

arrived packets to the actuator node, choosing the oneswiftimumJ;;;, (k).

A new tentative control value has to be calculated only infttlewing cases:

* No packet has arrived from the previous column,

i—1)(j-1 i(j—1 i+1)(j-1
y((i(jl) )(j ))(k):y((i'j()l ))(k)* ((i<j|)+ )(i >>(k):0,

but the acknowledgment from the actuator has arridéd,(k — 1) = 1.

« At least one packet has arrived but all of them have thewiolig structure:

S: (X7070)7
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that means that the state is available but there is no infammabout the control.

Thenu; (k) is calculated and the following packet is transmitted to tleet column:
S (K) = ([Riij) (0T, R 1y 0TI, Uy (T, uge jy (K) TTT, 33y () ) -

The estimated state;;)(k) is sent to take into account the cases in where the nodes
that receive the packet (they do not calculate control ve&eause they have a packet with
Ui (k) # 0) have some neighbor that is required to calculated a dorzthee, but it cannot

estimate the whole state by itself.

6.1.5 Simulation example

A system with decentralized models is considered

11 11
A = A =
(1,2)(2,1) [ 0 1 ] 3 211y [ 0 1 ] '

0 0
B = B =
(1,1)(1,1) [ 1 ] ; (21(21) [ 1 ] ’

and interacting models given by:

where no noise is considered ax(@) = 1.
The network is as depicted in Fig. 6.3, with i.i.d. transnoisgrocesses and success
probabilitiesProb{)/fii”jj)gl)(k) =1} =04 andProb{50:)(1) =1} = 1.
Fig. 6.6 shows the empirical distribution of the controtiedec(k) obtained by running
the algorithm for 100 steps. It is possible to see how 43%etithes, the controller node

is located in the last column of nodes, the one closest todtumtor.
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Figure 6.6: Controller location percentage.

Fig. 6.7 and 6.8 compare the plant state trajectory whenl¢fogitnm proposed is used
with the case in which the controller is located at the actuadde. The results suggest that

the proposed algorithm yields a stable system, while whermdimtroller is at the actuator,

the system becomes unstable.

7T T T T
—— dynamic controller placement|
= — - controller at actuator

T T T T 1
] —— dynamic controller placement|
! = — - controller at actuator
8l

Figure 6.8: x(2) trajectory.

Figure 6.7: x(1) trajectory.
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6.2 Estimator Placement for a Single-Loop Networked Control
System

In this section, the network is composed by multiple nodemeacted in series. A new
algorithm will be proposed, in which the nodes will send tistate estimation, and the last

node (the actuator node) will calculate the control value.

6.2.1 Wireless Sensor-Actuator Network Setup

It will be considered MIMO LTI plant models of the form

x(k+1)

AX(K) + Bu(k) + w(k) (6.11)

y(k) = Cx(K)+v(k), keNg (6.12)

wherex(0) ~ A4 (x(0),Ry), Py > 0. In (6.11),u(k) € R™ is the plant inputx(k) € R"
is the statey(k) € RP is the output, andv(k) ~ .47(0,Q), Q > 0 andv(k) ~ .#(0,R),
R > 0, are noise and measurement noise, respectiveyexplained in the introduction, it
is considered that a suitable feedback and estimator ganR™*" andK € R"*P have

been pre-designed. Consequently, it is assumed that ibtieat inputs
u(k) = L%nom(k), k€ No, (6.13)
with
faom(K) = (A+BL)Znom(k— 1)K (¥(K) — C((A+ BL)) fnom(k — 1)) (6.14)

wherexhom(K) denotes an estimate of the statk), that provides satisfactory performance
when it is implemented at the plant. The main theme of thegmtesection is to investigate
how to implement the above nominal controller, when usingir@less sensor-actuator

network.

1y(k) can also represent quantization errors, modelled as Gaussi, e.g., [Quevedo et al., 2010].
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Sensor and actuator nodes are connected through a wirelegsrk, characterised via
a (directed) line-graph having nodes, as itis represented in Fig. 6.9. Transmissions are in
sequential Round-Robin fashidd,2,...,M,1,2,...} as depicted in Fig. 6.10. More pre-
cisely, the packed(k) ") is transmitted from nodieto nodei + 1 at timeskT +it, whereT is
the sampling period of (6.11) armd« T /(M + 1) refers to the times between transmissions
of packetss(k)k(). The plant inputu(k) is applied at timeT + (M + 1)1. Thus, it is as-
sumed that the transmissions in the network are much fastarthe plant dynamics (6.11)
and, as in, e.g., [C. L. Robinson and P. R. Kumar, 2008], thezedelays introduced by
the network are not considered.

u(k)

Plant x(k)

A 4

Figure 6.9: Control over a single-loop network.

—
u(k— 210 sV k) $2(K) sM(K) x(k-+1)¢
———— - +—+— >
KT kKT +Mt (k+1)T

Figure 6.10: Transmission schedule.

Although the network is not introducing delays in the comination, it does introduce
stochastic packet dropouts. To study the situation, amnerahannel model is adopted, that

introduces the binary success processes

vy (k) €{0,1}, keNp,ie{l,2....M—1},
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wherey!) (k) = 1 indicates that transmission of the pacig) ") from nodei to nodei + 1
attimekT +iT, is successful, i.e., no error has occurngtl(k) = 0 means there is a packet
dropout atk. Throughout this work, it is assumed that transmissionautes are known
at the corresponding receiver sides ([Ma et al., 2011])tHeumore, it is also assumed
that the sensor node= 1 has direct access to plant output measurements. Theawtati
Y9 (k) = 1 is used, for alk € No. To save energy, the wireless nodes{1,2,...,M — 1}
do not provide acknowledgments of receipt of the packets.

Whilst packet acknowledgments are not provided, in the ptesgheme the actuator
nodeM provides a feedback mechanism: At tirfle+ 1)T — 1, it broadcasts the control
valueu(k) to nodes € {1,...,M — 1}, see Fig. 6.9. Due to channel fading, fleedback
links between actuator and sensors are also affected by droptwat$ollowing notation is

used to denote the associated success processes:
30 (k) €{0,1}, keNp,ie{1,2,...,M—1}.

More precisely, ifx(k) is successfully received at nodethen 5(k)() = 1; see also [E.
Garone, B. Sinopoli and A. Casavola, 2010, O. C. Imer and &s#liand T. Basar, 2006]
for studies on the importance of acknowledgments in closepl tontrol. It is assumed that
the actuator node has perfect knowledge of plant inputsefime 5(k)™) = 1, vk € No.
Since the actuator node will, in general, have less stringaergy constraints than the
other nodes, it is more important to focus on situations wllee feedback links are more
reliable than the forward links moving data from the senedhe actuator.

Due to packet dropouts, plant output measurements arevaaysibvailable at the actu-
ator node. On the other hand, the sensor node will, in gemeyghave perfect information
of previous plantinputs. This makes the implementatiomefdstimate of the state (6.13) a
challenging task. The main purpose of the present sectimmpigesent an adaptive state es-
timator placement algorithm, where the computations ofthte estimation are distributed

across the network. This approach will lead to a dynamigassént of the role played by
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the individual network nodes. The tasks carried out by itltigl nodes at each time instant

will depend on transmission outcomes.

6.2.2 Flexible Estimator Placement

To keep communications and thereby energy use low, the fsitkesmitted by each node
i have only three fields, namely, output measurements aratitgnplant state estimate and

the acknoledgement success process:
V(K = (v(k), %V (), 5" (k1)) (6.15)

Plant outputs are transmitted in order to pass on informatrothe plant state to the nodes
{i+1,i+2,...,M}, see Fig. 6.9. On the other handi) (k) in (6.15) is the plant state esti-
mate which is used at the actuator to calculate the contpoitiprovided the packet” (k)
is delivered at the actuator node sl (k) is lost, then following the algorithm described
in Section 6.2.2, the state estimate will be provided by drtéelater nodeg > i, which

takes the role of the estimator at tirke

State Estimation and Control Calculations

In the sequel, the notatias{k) € {1,2,...,M} will be used to denote the node that calcu-
lates the state estimation that will be used to compute thet ihput at timek. Thus, the

plant input is given by
u(k) = LM (k), ke N, (6.16)

wherext®®) (k) is the local plant state estimate computed at na@, and the control
inputu(k) is always calculated at the actuator node. Intuitively,dyoontrol performance
will be achieved if the estimate used in (6.16) is accuratealy, due to the multi-hop
nature of the network, nodes which are closer to the sendldnavie access to more output

measurements, see Fig. 6.9. On the other hand, nodes wkigygsically located closer
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to the actuator node will on average receive more plant inpkimowledgments, thus, have
better knowledge of plant inputs.

In the present formulation not all nodes compute local statinatesx® (k), by using
the data received from the preceding node. Situations wiheréeedback links from the
actuator to the intermediate sensors quée reliableare considered in this section. State
estimators are of the form (6.14) when the plant output isl@va at nodd; at instants
when the state estimation used to compute the plant inpuitigvailable, an open loop

estimate is used, that is:

20 (k) = (A+BL)XY (k— 1) + K (k) (y(k) —C(A+BL)RV (k—1))), (6.17)
where
KO (k) 2K, (6.18)
and
r(k) 2 je{O,D.,i—l} V) (k) (6.19)

is equal to 1 if and only ify(k) is available at nodé at timekT + (i — 1)7. In (6.17),
%) (k—1) is a local plant state estimate. In particulagif (k— 1) = 1, thenLg") (k—1) =
u(k—1). On the other hand, at instants wh&h (k— 1) = 0, nodei usesxt) (k—1). More

details on the estimator are given in Section 6.2.4.

Remark 6.2.1. Of course, the above transmission and control strategyimvieneral not
be optimal. In particular, nodes do not transmit local sestémates and the control law
does not depend upon network parameters, e.g., dropoudlgivies ([Chiuso and Schen-
ato, 2011]). The aim of the present section is to develop @lsirand practical method,
which uses an existing control and estimation policy forlenpentation over an unreliable
network and only requires little communication. O

Remark 6.2.2. In the recent work [D. E. Quevedo, K. H. Johansson, A. Ahléd An
Jurado, 2012], instead of using (6.18), the gaii¥(k) were taken as the Kalman filter
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gains for a system with intermittent observations:
KOk = rDurkcTcPkcT +Rr)? (6.20)
PO(k+1) = A(ln—KD(KC)PVKAT+Q, (6.21)

see, e.g., [Sinopoli et al., 2004, Huang and Dey, 2007, Qlgeet al., 2012]. The subse-
quent analysis (up to Equation (6.35)) can be applied tcsthigture as well. However, the
jump-linear model derived in Section 6.2.4 requires a jumear estimation model, such
as (6.18). O

Algorithm for Dynamic Estimator Placement

Algorithm 3 is run at every nodee {1,2,...,M} and describes the adaptive estimator
allocation method explained in the preceding section. Ashma appreciated, which cal-
culations are carried out at each node, depends on tranemizstcomes involving the
current node and also transmission outcomes at previoussnord particular, nodeonly
calculates a tentative plant state estimate when no teataltant state estimate is received
from nodei — 1 and nodé has successfully receivedk™ 1) while ¢ (k) has not. There-
fore, preference is given to simply relay incoming staténgetion values rather than to
replace valid tentative ones.

The reason for adopting this decision procedure lies in Hsaraption that data sent
from the actuator node to intermediate nodes is often dleilavhereas transmissions of
packetss) (k) are less reliable. This suggests that nodes closer to tiseseade can be
expected to have better state estimates than nodes lodased © the actuator node.

In particular, the sensor nodle- 1 uses as input
sO(k) = (y(k),0,6M (k—1)), YOk =1 (6.22)
Then the sensor node calculates a tentative control valtigramsmits

s (k) = (y(k), % (k), 8 (k- 1)
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Algorithm 3 Adaptive Estimator Placement

k< 0,X)(0)«0,j+0
while t > 0do {t € R>g is actual time}
while t <KT + (i — 1)1 do {wait-loop}
j«—j+1
end while
if Y=Y (k) = 0then{si~1 (k) is dropped}
if 5 (k-1)(k—1) = 1 then
20 (k) = (A+BL)R " k- D) (k—1)
else
R0 (k) = (A+BL)%V (k—1)
end if
sV (k) « (0,80 (k),5M (k—1))
c(k) =i
end if
if Y=Y (k) = 1then{si-1V (k) is received}
if 50 (k—1) = 1v(8D (k—1) = A& ®) (k— 1) = 0) then
£ (k) 0= (k)
else
R0 (k) « (A+BL)%W (k—1) + KO (k) (y(k) — C(A+BL)XV (k- 1))
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while t < KT 4 it do {wait-loop}
j«<j+1

end while

transmit s (k)

whilet < (k+1)T — 1 do {wait-loop}
j<—j+1

end while

if i =M then{ i is the actuator node}
u(k) = LR 09) (k)

end if

k+—k+1

end while

to nodei = 2. Subsequent nodes then relay this packet to the actuater Hahe packet is
dropped along the way, @) (k— 1) = 1 while 5" ) (k— 1) = 0, then the next node

calculates a tentative state estimatidn(R) and transmits
sV(k) = (0,87 (k), 8" (k—1))

to nodei + 1, etc. Control calculations are then carried out at thezotinodeM with the
last state estimate calculated ¥ (k) andx{®” %) (k) is relayed towards all the previous
nodes. The actuator node implements) = LX¢" (9 (k), using the value contained in the

second field o8™) (k).

Remark 6.2.3. An advantage of allowing the state estimate calculationsetdocated
arbitrarily and in a time-varying fashion, is that it makesren difficult for someone to
attack the NCS. The latter problem has been studied, for pbearim [Gupta et al., 2010,
Smith, 2011]. O

6.2.3 Dynamic Estimator Location

With Algorithm 3, which of the nodes calculates the planteststimatex(k), depends

upon the transmission outcomes. For further referenceseghef nodes which calculate a
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tentative state estimates will be denoted as
% (k) C{1,2,...,M}.
Preliminary Analysis

To analyze the situation, it is convenient to introduce treepss{c(’ (k) }, wherek € No,

i €{0,1,...,M} and with
c(k) 2max?(k)n{1,2,...,i}). (6.23)

If ¢ (k) > 0, thenc) (k) denotes the node where the second fielsldfk) was calculated.
It is easy to see that, with the algorithm proposed and siheepackets') (k) are

communicated sequentially, see Fig. 6.d®)(k) = 5 (k— 1), for all k € Ny, whereas

. i60(k—1) if c-Y(k)y=0vyi-Yk =0
My =4 "° . . ’ 6.24
e K {c<'1>(k) if ci-Y(k) >0AYD(k)=1 (6.24)
forie {2,...,M}, ke Np. The estimator node at tinleis given by
c(k) 2 cM) (k) = max ¢ (k)), Vke N, (6.25)

see (6.16). To derive the results, the aggregated transmissitcome proces$g(k)},
k € Ny, is introduced, where
M-1
B(k) & Zl (M 1y (k+1)+ 8V (k)27L, ke No. (6.26)
Note thatB(k—1) € 1= {0,1,...,22M=2 _ 1} collects the outcomes of all transmissions
which occur during the time-intervékT — 7,kT 4+ Mt], see Fig. 6.10. Thug(k—1) de-

terminesé (k) andc(k).
Results

As seen in the preceding analysis, with Algorithm 3, theneator locationc(k) will dy-

namically adapt to the network conditions, as quantifiechi aggregated transmission
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outcomeg3 (k). To further elucidate the situation, in the sequel it willdsopted a stochas-
tic framework and thereby regaf@3(k)}, k € Ng as a stochastic process. It will be as-
sumed that the transmission and acknowledgment process&seeoulli distributed. In
Section 6.2.5 it will be adopted a more realistic model, wiretransmission processes are

correlated in time and among each other.

Assumption 6.2.4. The link transmission processes are independent and welytidis-
tributed (i.i.d.) with a common success probabilitg 0, 1]:

Priy(ky =1} =p, Vie{1,2...M-1}. (6.27)
The feedback link success processes are i.i.d., with
Pr{dV(k=1}=q, Vie{l2...M-1}, (6.28)

for given success probabilities @y, ..., qum-1 € [0,1]. O

Note that while the above assumption imposes that tranemipsocesses are i.i.d., it
does take into account the fact that radio connectivity fthenactuator node to the other
nodes will be distance dependent; see, e.g., [Goldsmith5]20t also does not impose
that the processe{su(i)(k)}, k € Ng for different nodes are independent. However, the
assumption made does imply stationarity, as apparent frapaBition 6.2.5 given below.

Proposition 6.2.5. Suppose that Assumption 6.2.4 holds. Then

. 1 ifi =1
Pr{lecﬂk)}:{1—p[1—qi(1—qc(i1>(k))] fici2. M) (6.29)
Pr{ck) =i} =Pr{i e ¢(k)}p"'x (6.30)

[1-(1-ag)[1—(1—git1)(1—042)...(L—am-1)]],
forallk e Npandie {1,2,...,M}, and where g = 1.

Proof Clearly, if Assumption 6.2.4 holds, then

Pr{iu® (k) =1} =Pr{dW(k—-1) =1} = qu.
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It is easy to see from Algorithm 3 that
i € 6 (k) <=y I( (6.31)
VD) = 1A (80 (k—1) = 1A 6(°(i71)<k‘1>)(k— 1)=0))
=YK =ov (6D (k—-1) =14 5" V& D (k-1) = 0)
foralli € {1,2,...,M}. Expression (6.31) gives
Pr{iec ¢ (k)}
= 1-Pr{yD(k) = 1A (81 (k—1) = 0v & kD) k- 1) = 1)}
=1-pxPr{a0(k—1) =0v & kD) k1) =1}
=1-p(1-Pr{s0(k—1) =148 ED)k—1) =0})
=1-p[1-ai(1-dg 1))
thus establishing (6.29). By (6.25) the distributiorcgf) can be determined from
Pr{c(k) =i} =Pr{max % (k)) =i}
=Priic¢A[(Y(K) =y K ==M1=1)
AV (k-1)v (8D (k-1) =502 (k-1) = =M Y (k-1) =0))]}
=" Pr{ic €K} x [1- (1-q)
xPr{d(k-1) =1v3*2(k-1) =1...veMY(k-1) =1}]
=" Pr{ie €K} x [1- (1-q)
xPr{50*Y(k—1) =0A 501+ (k—1) =0--- AdMV(k—1) = 0}]
fori e {1,...,M — 1}, whereas for the actuator noder{c(k) = M} = Pr{M € ¢ (k)}.
This proves (6.30). O
The above result characterizes the distributiongi6f(k), of € (k), and of the con-

troller node locatiorc(k). These distributions depend upon the communication sacces

probabilities; i.e., the distribution ¢ (k), here modeled as i.i.d.



6.2. Estimator Placement for a Single-Loop Networked Control System 153

Examples

Before showing the closed loop performance with the algoriproposed, two simple
examples which illustrate how the control location digitibn depends upon the dropout
probabilities are included.

Example 6.2.1. Suppose that Assumption 6.2.4 holds and that the feedbalck dire al-
ways available, that i = 1, for alli € {1,...,M}. Proposition 6.2.5 gives that

Priicé(k)} = {

and the controller location sequence has the following geamlike distribution

1 ifi=1
1-p ifie{2... .M}

et ifi=1
Pr{c(k)—l}—{(l_p>p|\/|i ific{23,...,M}.

O

Example 6.2.2. Consider an NCS as in Fig. 6.9 wit = 3 nodes and suppose that As-
sumption 6.2.4 holds. In this case, Proposition 6.2.5 éstes that

. ifi=1

. B 1_p[1_q2(1—Q1)} =2

Prive) = {1—p[1—q3<1—q1)] fetlo=1 i g
1

1-p[l-gs(1—q)] ifci-V(k=2
and the controller location distribution

PP [1—op(1— )] ifi=1,

o )p(-pl-g(1-a)])[1-(1-02)?] ifi =2
PI’{C(k)—|}— {Q2(1 p[l q31 Q1D IfC<|7l)(k)=1 fi_a
R(1-p[l-gs(l-ap)]) ifci-Y(k)=2

6.2.4 Closed Loop Model

The algorithm proposed in the present work embodies a n&tdioren distributed state
estimation and control architecture. Closed loop dynaméEend upon transmission out-
comes, the plant model (6.11) and nominal controller/esimdynamics, see (6.13)—

(6.14).
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To derive a compact model for the wireless sensor-actuattra system of interest,

it is convenient to introduce the aggregated state estimagctor
R(k) & _ e RM",

Thebackup valudor u(k) used at nodeis denoted as

NOTOS Ly "4 0

(K, =V it pO(k)

—N—

see (6.23) and note thatV) (k) = LY (k), for all k € Ny. In view of (6.24),
v (k) = b (k)x(k), (6.32)
whereb (k) £ ¢ € RM" for all k € No, whereas foi > 2,

b (k) £ e ® L € R™Mn (6.33)

i —if c=D(k)=0vyi-Dk =0

VI (k) = 1A (80 (k—1) = 1A 8" ®) (k—1) = 0)),
=D (k) — if =D (k) > 0A Y- (k) =1

A& M) (k—1) =1v (6D (k—1) = 0 5€"®) (k—1) = 0),

depends on the realization ffk— 1), see (6.26).
Since the algorithm gives(k) = Lv(M)(k), the plant input estimates used in the state
estimators satisfy:

LvM(k) if 60 (k) =1, (6.34)
=0 .

(i) .
a0 = {Lv(i)(k) it 50 (k)

where
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forms part of the internal variables used by Mestate estimators.

Now, the plant model can be written as
x(k+1) = Ax(k) +BLVv™ (k) +-w(k). (6.35)
Expressions (6.35), (6.17) and (6.34) then give that thte sistimator at node
ie{1,2,...,M},
obeys the recursion:
0 (k+1) = (In— KD (k+1)C) (AD (k) + B (k) (6.36)
+KO(k+1) (CAXK) +CBLV™ (k) +-Cw(k) +v(k+1))
=K (k+1)CAXK) + (In— KV (k+1)C) (6 ® A)R(K)

+dD(k)Lv (k) + KD (k+ 1) (Cw(k) +v(k+1)),

where

dV(k) £ (169 (k)) (In— KV (k+1)C) (e ©B)
+((1-3V(K)KD (k+1)C+ 3V (K)In) (em @ B).

Now, introducing the following

x(K)
. REQ

oM 2 % |. na2| MY 1 (6.37)
WK v(k+1)

and use (6.18), then (6.36) becomes
2V (k+1) = 20 (B(K)O(K) + &V (B(K)n(K).
with

2V (BK) 2 [FO(k+1)KCA (In—T0(k+1)KC)(g @A) dU)(k)}
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sV(Bk) 2T (k+ K [C o).

State estimators, thus, follow the dynamic relation

X(k+1) = 2(B(k))O(k) + &(B(k))n(k) (6.38)
where
7V (B(K)) EW(B(k))
2(B(k) = : , EBK)= : :
7M(B(K) EM(B(K))

On the other hand, (6.32) provides the following dynamiatiehship:

v(k+1) =7 (B(k)O(k) + ¢ (B(k))n(k), (6.39)
where
b® (k+1)2(B(K)) b® (k+1)&(B(K))
Z(B(k) = : , 9(BK)= :
b™) (k+1)2(B(K)) b™ (k+1)&(B(K))

Expressions (6.35), (6.38) and (6.39) lead to the jumpalimeodel

O(k+1) =/ (B(k)O(K) + Z(B(Kk))n(k), (6.40)
where
{A Omn v ®BL [|n o}
o (B(k)) = 2(B(K)) , BBK) = | £(B(K))
F(B(K) 9 (B(Kk))

and where the jump variablg8(k)}, k € Ny is given by the aggregated transmission out-

come process defined in (6.26).

Example 6.2.3.Consider a simple NCS with only two nodd4é = 2, in which caseg (k) =
2y (k+1) 4+ 6 (k) andI = {0,1,2,3}, see (6.26). SincelV) (k) = 5 (k—1), 6@ (k—
1) =1 ando® (k+1) =e; @ L for all k € Np, (6.33) yields:

eol if B(K) = 3.
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Direct calculations give that, in this case, the matrice%iB8) are given by

_ (1)
2(Bk) = [y(l)(kalp;KCA (|n—&nl>(kK2)(§1§£)2®A) 12@52
£(lk) = ;Al)(kal)Kc y<1>(kK+1)K ’
where
d(l)(k):{{(ln—Kc)B KCB} if B(k) € {0,2},
e®B if B(k) € {1,3}
thus, characterizing the model (6.40). O

6.2.5 Performance Analysis

The jump-linear system model derived in the previous seatian be used to carry out
performance analysis of the flexible NCS architecture @riggt, provided the aggregated
transmission outcome proced$(k) } is suitably described. In the remainder of this section,
the stochastic modeling framework recently introducedQudvedo et al., 2011, D. E.
Quevedo, A. Ahlén and K. H. Johansson, n.d.] will be adopted.

The underlying idea of the network model in [Quevedo et @112 D. E. Quevedo, A.
Ahlén and K. H. Johansson, n.d.] is that transmission ouécdistributions depend upon
the fading radio environment. To allow for temporal and gpatorrelations of the radio
environment (and possibly also for power and bit-rate @ptn [Quevedo et al., 2011]
a Markoviannetwork state{=(k)}, k € Np, which takes values in a finite set, sByis
used. Each element @ corresponds to a possible configuration of the physicalrenvi
ment, e.g., position of mobile objects. Dropout probalegitof individual channels, when
conditioned on the network state, are considered indeperahel fixed. In the particular
instance wher® has only one element, the model describes a situation wdpiendent
i.i.d. Bernoulli channels, as considered in previous waksh as [Chiuso and Schenato,

2011]. Further details of the model can be found in [Queve@h £2011, D. E. Quevedo, A.
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Ahlén and K. H. Johansson, n.d.]. For the present purpdsesnbdel can be summarized

as follows:

Assumption 6.2.6.The network state proce$s (k) }, k€ Ng is an aperiodic homogeneous
Markov Chain with transition probabilities

pij =Pr{=(k+1) = j[=(k) =i}, i,jeB.
and stationary distribution
5= lim Pr{=(k) =i}.
k—00

The aggregated transmission outcome procg3&k)}, k € Np in (6.26) is conditionally
independent given the network staf(k) }, k € No,

@ = Pr{B(k)=i|=(k) = j},

forall (i,j) e IxB. O

It is worth noting that, with the above model, the procggk) is correlated, but not
necessarily Markovian. However, the augmented jump psi@%), =(k)), k € Ng forms
a finite Markov Chain. Thus, under Assumption 6.2.6, (6.400bgs to the class of Markov
jump-linear systems, as studied for example in [O. L. V. @#. D. Fragoso, and R.
P. Marques, 2005, Lee and Dullerud, 2007]. In particulagdrems 3.9 and 3.33 of [O.
L. V. Costa, M. D. Fragoso, and R. P. Marques, 2005] estalléstessary and sufficient
conditions for mean-square stability (MSS) which can beestin terms of feasibility of a
linear-matrix inequality. The following result charadiess closed loop performance of the
flexible networked control systems architecture of inteirethe present work. It is tailored
directly to the model in Assumption 6.2.6 without needingdsort to the augmented jump
procesg 3(K),=(k)).

Theorem 6.2.7. Suppose that Assumption 6.2.6 holds, that the system (6.M8S and
define

X
Ie

((BK)|Z0 =]} =Y @), |eB,

el

#i=E{BBK)[ZK) =]} = ;(m%’(i), jeB.
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Then
. Ty _ .
jm E{eMOMT} = 3 H, (6.41)
where
Hi= S pii/iHj(«i)T + 1AW (%:)" (6.42)
j€B
with W £ diag(Q,R). O

Proof. By the law of total expectation:

E{Ok+1)Ok+1)T} = > Hiai, (6.43)
ieB

where
Hii1i 2 E{Ok+1)0(k+1)T |Z(k) =i}Pr{=(k) = i}. (6.44)

Now, the system equation (6.40) together with the netwodinfa model in Assump-

tion 6.2.6 allow one to write

E{Ok+1)0k+1)T|Z(k) =i} = E{(«(B(k)O(k) + B(B(K))n(k)) (6.45)

— E{/ (B(K)©(NOW) (B |Z(K) =i} + BW(,)T

since{n(k)} is zero-mean i.i.d.
Now, the rule of total expectation, Bayes’ rule and the Mar&o property of the

model (6.40) give that

E{ (B(k)O(KIOK) </ (B(K) |=(k) =i} (6.46)
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=g®E{%(B(k))®(k) (k)" )TZK) =i,5(k-1) =}
xPr{Z(k—1) = j|Z(k) =i}
=%E{%(B(k))®(k) (k)" )= =i,=(k-1) = j}
xPr{Z(k) =i|=(k—1) = j}Pr{Z=(k—1) = j}/Pr{Z(k) =i}
:jépjiEiE{@( KT|=k-1) =} T'M_
Substitution of (6.46) into (6.45) and then into (6.44) pdes the recursion
Hii1i = %@ Pi ZE{OKOK)T|=(k—1) = j} ()T (6.47)

xPr{=(k—1) = j} + ZW(%:)"Pr{Z(k) =i}
=S piiHk ()T +ZW (%) Pr{=(k) =i}
jEB
Since by assumption the system is MSS, it is also asympligtieade-sense stationary [O.

L. V. Costa, M. D. Fragoso, and R. P. Marques, 2005, Thm. 313&fining
Hi £ |im Hyii, ie B,
k—oo 7

and recall thaf=(k)}, k € N is aperiodic, then, (6.47) becomes (6.42), and (6.43) estab
lishes (6.41). The above result quantifies the stationargréance of the system sta@gk).
In view of (6.37) and the fact that(k) = v(k)M), Equation (6.41) can be directly used to

evaluate the plant state and input covariances.

Remark 6.2.8. By using results in [Lancaster, 1970, Sec.5], the matritaa (6.42) can
be expressed in terms of the solution to a system of lineaatems. To be more specific,
if hj is defined as the vectorized versiontyfandb; as the vectorized version of the terms
AW (%)T,i € B, then (6.42) leads to

hi = bi + (o ® ;) Eﬁpjihh i,j€B,
je

from whereh; and thusH; can be readily obtained. O
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6.2.6 Simulation Study

In this example, the network under consideration will hklve- 10 nodes. This simulation
study is comparing the performance obtained by the impléatiens of the controller via
Algorithm 3 with other two NCS architectures. In the first ptiee controller and estimator

are fixed at the actuator node. This system is described via:
X(k+ 1) = Ax(k) + BLX?(k) +w(k),
(k) = AR (k—1) +Bu(k— 1) (6.48)
+T IO (K)K (y(k) — C(AR(k— 1) + Bu(k— 1))),
wherer<1°)(k) is asin (6.19). In the second configuration, the estimatondemented at

the sensor node, the controller is still at the actuator nfdbe controller output is lost,

then the previous plant input is helc][:
x(k+1) = AX(K) + 29 ()BLR(K) 4 (1 — T2 (k))Bu(k — 1) +w(k),
(k) = AR (K — 1) + Ba%(k— 1) (6.49)
+K(y(k) —C(AZ(k—1) +Ba(k—1))),
wherel 19 (k) is as in (6.19) and

s ukk—1) if 6W(k—1)=1L85(k—-1)
k-1 = {if 5D (k—1) = 0.

6.2.7 Independent and identically distributed dropouts

First of all, it is considered i.i.d. transmission processs per Assumption 6.2.4. Fig-
ures 6.11 to 6.13 illustrate histogramsogk), obtained by running the algorithm for 1000
steps with dropout probabilities as indicated. Note théedéht scales used on the y-axes,
and recall Proposition 6.2.5. Fig. 6.11 shows that, withetigerithm proposed, for smaller

link transmission success probabilitipscontrol calculations are at most times, carried out
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Figure 6.11:Histogram of the controller locatiar{k) for an i.i.d. network with success probabilities
p=06andg;=---=qg=1.
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Figure 6.12: Histogram of the controller locatioc{k) for an i.i.d. network with success probabilities
p=08,q=---=0q4=0.88,andgs =--- =g = 0.9.
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Figure 6.13:Histogram of the controller locatiar{k) for an i.i.d. network with success probabilities
p=09,q1=---=q4=0.88,andgs =--- =qg = 0.9.

at the actuator node. On the other hand, if links are morabiglj then the controller will
be placed at the sensor node at most time steps, see Figl®ihfrmediate cases(k)
is more uniformly distributed, see Fig. 6.12.

To illustrate performance of the algorithms, it is consatefirst a plant model with an

integrator, described by (6.11), where

A=

18 08 1
B c=|o , 6.50
L o ] [0], | 0047 Q044 (6.50)

The noise covariances are given Qy= 0.01x I, andR = 0.01, and with Gaussian ini-
tial state having mear(0) = [5 5" and covariancé&, = 0.1 x |,. Controller and esti-
mator gaind andK correspond to the steady state LQG/LQR controller with estzmst
IX(K) |12+ [Ju(k)||?/10; see, [Bertsekas, 2005, Ch.5.2]. All nodes use as irsitik esti-
mates xt(0) = [0 0. The network has i.i.d. dropouts as per Assumption 6.2.4 wit

success probabilitigg=0.9 andg; = --- =g = 1.
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Figure 6.14: Output trajectory of the plant model (6.50) for an i.i.d. network withcass probabili-
tiesp=0.9,q1 =--- = gg = 1 and the system in (6.50).

The baseline NCS with estimator placed at the sensor as48)(Giled to stabilize
the system in the present case. Fig. 6.14 compares the pignttdrajectory obtained by
using the proposed algorithm with that provided by the bas@ICS configuration (6.48),
and also with the algorithm presented in the previous workQDevedo and Jurado, n.d.].
As can be appreciated in that figure, the adaptive estiméitmagion algorithm presented
reacts more quickly to plant outputs. It thereby recoversemuickly from the very bad
local initial state estimates and provides control actileasling to faster convergence to

the origin. If the empirical performance measure is adopted
1000
IE S yK?, (6.51)
K=1
then, with the dynamic architectur@,~ 1.4, whereas for the baseline NCS described
by (6.48),J ~ 3.3, for the baseline NCS in (6.49),~ 1.2 x 1014, and for the dynamic
controller placement presented in [D. Quevedo and Juradd, i~ 2.6.

Table 6.1 illustrates how the performance gained by usiegptioposed method de-



6.2. Estimator Placement for a Single-Loop Networked Control System 165

pends upon the network reliability. For the situation exaadi larger performance gains
are obtained with smallgy. For largerp, the performance gains become less relevant. This
finding is intuitive, since fomp =~ 1 the network becomes transparent and overall perfor-

mance is dominated by the nominal design (6.11)—(6.14).

Table 6.1: Performance indiced when controlling the system (6.50) over an i.i.d. network with
Qg1=--=0q4=0.99,05=--- =g = 0.995.

NCS NCS NCS Algorithm in
P (6.16)—(6.17) (6.48) (6.49) [D. Quevedo and Jurado, n.d.]
0.8 6.81 16.15 | (unstable) 10.21
0.85 1.51 4.15 (unstable) 2.65
0.9 1.23 2.99 (unstable) 1.86

6.2.8 Network with moving obstacle

This section is focused on a sensor-actuator network winene tis an obstacle (e.g., a
robot or crane) moving between four different positiong Béy. 6.15. This situation is
modeled in terms of the network model used in Section 6.5kguthe network state

process(k) € B = {1,2,3,4}. The transition probabilities fat(k) are given by:

099 001 0 0
0.003 Q99 0007 0
0 0003 Q99 0007
0.007 0 0003 Q99

(pij] =

The individual link reliabilities depend on the position thfe obstacle in the network.
Nodes which are not blocked benefit from high success prbtiadi namely 99%. How-

ever, due to the obstacle, some of the success probabilitiest times, be lowered to
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60%:
06 ifie{2)j-12},2j+1}
0.99 in all other cases

06 ifie{2},2j+1}
0.99 in all other cases.

Priy(k) = 1|=(k) = J}={
Pr{dW(k—1)=1|Z(k) = j} = {

Figs. 6.16 and 6.17 illustrate how using Algorithm 3 the colter location depends
upon the network stateé(k). It turns out that, in the present case, the plant input iswgdw
provided by one of the nodes located between the sensor modin@ node immediately
following the blocked ones. This behaviour can be explalmedoting that, in absence of
the obstacle, the network is very reliable. In fact, if nofi¢he nodes were blocked, then
the algorithm would (almost) always locate the controllgha sensor node. Fig. 6.18 doc-

uments the associated histogram.

ﬂ»@+@+@+®+@++i*

Figure 6.15: Sensor-actuator network with moving obstacle.

For the plant model (6.50), using the dynamic architectump@sed in the present

work, gave a performance index df= 1.8, see (6.51). In contrast, with the controller



6.3. Conclusions 167

35F : : : 1

st 1

I | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
k

Figure 6.16: Network State trajectong (k).

at the actuator node, see (6.48)- 4.7 is obtained, and with the architecture presented
in [D. Quevedo and Jurado, n.d],= 2.9. In the situations examined, positioning the

controller at the sensor node, see (6.49), failed to szailie plant model.

6.3 Conclusions

In the first section, a flexible cooperative MPC formulatimr NCSs subject to data
dropouts has been presented. Also, an algorithm that dewildieh nodes are in charge of
the calculation of the the control input, and which onesijakty the received information,
has been provided. This decision depends on tranmissi@oms. Once the controller
node has been chosen, it interacts with its neighbors gplinooperative MPC, which
is also subject to data dropouts. Future works may includeesstability analysis of the
proposed architecture, as well as an extension to more W@aodoperative nodes.
The second section has presented a flexible architectutadamplementation of an

estimated state feedback control law over a wireless sextdoator network with analog
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Figure 6.17: Controller locatiorc(k) for the network in Fig. 6.15.

erasure channels without acknowledgments. As with theiguewone, with the algorithm
provided, the role played by individual nodes depends amstrassion outcomes. In par-
ticular, the estimator location depends upon the avaitgluf past plant input values and
transmission outcomes. By deriving a Markovian jump-lir@etem model, a closed form
expression for the stationary covariance of the systere gtathe presence of correlated
dropout processes has been established. Future work maglénextending the ideas pre-
sented to the control of multiple-loops, to general netwiiologies, and to controller

design.

6.4 Related publications

« Isabel Jurado, Daniel E. Quevedo, Karl H. Johansson an@isnthlén.Coopera-
tive Dynamic MPC for Networked Control Systems

Book: Distributed MPC Made Easy

Editors: Dr. José M. Maestre and Dr. Rudy R. Negenborn.
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Figure 6.18: Histogram ofc(k) for the network in Fig. 6.15.

« Daniel Quevedo, Karl H. Johansson, Anders Ahlén and Isilreldo An Adaptive

Architecture for Control using Erasure Channe®&ubmitted to Automatica.






Chapter 7

Distributed estimation in networked
systems under periodic and
event-based communication policies

his chapter’s aim is to present a novel design techniqueifrilslted estima-

tion in networked systems. The problem assumes a networkercionnected

agents each one having partial access to measurements firm@amplant and
broadcasting their estimations to their neighbors. Thedahije is to reach a reliable esti-
mation of the plant state from every agent location. The lese structure implemented
in each agent is based on local Luenberger-like observecsrimbination with consen-
sus strategies. The chapter focuses on the following n&tredaited issues: delays, packet
dropouts, and communication policy (time and event-dijivéhe design problem is solved
via linear matrix inequalities and stability proofs areided. The problem is of applica-
tion for sensor networks and large scale systems whereatigptt estimation schemes are
not advisable and energy-aware implementations are atstte

The design of the observers contemplates the possibilighafing only a part of the

estimated state between neighbors, instead of communmigctité whole estimated vector
state. This economy in the use of network resources is, lmwitsnature, further improved

with the event-driven communication approach.

171
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Simulation examples are provided to show the performandbeoproposed method-

ologies.

7.1 Problem description and motivation

Consider a sensor network intended to estimate the statdiredax plant in a distributed
way, where the sensors measure some variables (outputg)ute a local estimation of the
overall state of the system, and broadcast to a set of neiglgoone information related
with their own estimations. As Figure 7.1 illustrates, tle¢ of nodes are connected by
means of a communication network, which may introduce dekayd packet dropouts.
When the local information received for each of the differ@mservers is not sufficient to
estimate the complete state of the plant, then the propggedof distributed observation
makes sense.

observerj

communication

) observei ]
Figure 7.1: Distributed observation problem

The concepts oliocal observabilityandcollective observabilityefer, respectively, to
a situation in which the measurement performed by any seéasifficient to guarantee
observability of the process state; and to a situation irctvhil the sensors, if put together,
guarantee this property. See [Olfati-Saber, 2007] for apteta explanation. In this chapter

it is assumed that all the sensors must estimate the ovéatdl af the system even when
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local observability does not hold.

To motivate the problem, consider a possible applicatioerelthe state of a plant is
monitored from different geographically distributed ltoas, provided that only some lo-
cal information of the plant can be directly measured frorchelacation. This scenario
might consist of a number of observers having access to spemerally different, plant
outputs. The plant is not necessarily fully observable faomg of the observers. The dif-
ferent observers are able to communicate themselves binghaformation with a set of
neighbors in order to estimate the complete state of the.pléwe communication among
the different observers is assumed to be implemented thraugpmmunication network,
in which time-delays and possible packet dropouts have taken into consideration. A
different situation in which the framework considered iisttvork might be of applica-
tion could be that in which the observers are connected wssitared medium, managing
traffic information in a urban environment.

Taking into account the aforementioned ideas, the pre$eqter focuses on network-
related issues, specifically communication efficiency aulistness against problems in-
duced by the network. The chapter provides an observer mesghod to operate with
time-driven communication between the agents, being thectte to reach a common
reliable estimate of the system state, despite of the pcesaindelays and dropouts. It is
also proposed to include an event-based communicatiotegyréetween agents, aiming
at reducing the traffic over the network and the energy copsiom

In the latter case, the estimation error will eventuallyegirito an arbitrary small region
around the equilibrium point. The size of that region depeod a free parameter that
sets the threshold triggering the communication eventg;wdilows to trade off between

communication savings and estimation performance.
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7.1.1 Network topology

The communication network is represented using a direatgphy’ = (7, &), with ¥ =
{1,2,..., p}, being the set of nodes (observers) of the graph (network) fac ¥ x ¥,
being the set of links. Assuming the cardinality®fquall, and definingZ = {1,2, ...,1},

it is obvious that a bijective functiog : & — £ can be built so that a given link can be
either referenced by the pair of nodes that connécig € & or the link indexr € £, so
thatr = g(i, j). The set of nodes connected to nadetermed the neighborhood fand
denoted as# = {j € 7|(i, ) € &}. Directed communications are considered, so that link

(i, ) implies that nodeé receives information from node

7.1.2 System description

In this work, the system to be observed is assumed to be ama@utus linear time-

invariant plant given by the following equations:

x(k+1)

yi(k)

Ax(K), (7.1)

Cix(k), Vie?, (7.2)

wherex(k) € R" is the state of the plant angk) € R™ are the system outputs. In general,
each of the differenp observers has access to a distinct output of the plant. Giole
observability is assumed, i.e. the pe#;C) is observable, whel@ is a matrix stacking the
output matrice€; of all the agents.

Furthermore, the observers can communicate with each byh@eans of a communi-
cation network that can be represented by the gtdpklore precisely, each neighbpof
the observer communicate some estimated outpyis=C;jX;. It is assumed that node
knows the matribxCjj corresponding to the outpy ”"Exchanging estimates instead of the
measurements from the plant provides some freedom andifigxib choose the informa-
tion sent through the network. That way, taking into accdhetplant dynamics and the

output measured by a particular node, it is possible to codlely the information from its
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neighbors that allows estimation, leading to a policy inehtonly relevant information for
each agent is transmitted.

Let us defind:_i as a matrix stacking the matr and matrice€;j for all j € A{. Itis
assumed that each p@'ﬂ:,(?i) is observable. This is a necessary condition that impose som

restrictions on the network topology and the informaticat ils sent via each connection.

7.2 Periodic time-driven communication between agents

This section is devoted to the observer design method uretérdic communication be-

tween agents. Next, a description of the node dynamics igiexqal in detail.

7.2.1 Node dynamics

The communication between agents may be affected by detalysacket dropouts. There-
fore, it is convenient that the observer to be proposed th&#s effects under considera-
tion. Figure 7.2 illustrates a possible time scheduling ok both effects appears. Let
Tij (K) € N represent the time difference between the current timerktand the instant
in which the last packet received by nodwas sent from its neighboj. This constant
includes the effect of delays and packet dropouts. Noteptheltet dropouts have the effect

of enlargingtjj (k).

k—1j (k) observerj
| | | | >
N\ | ]
X X X
dropouts observeii
I | I t >
k
| —
delay
— ~ )
7ij (k)

Figure 7.2: Time scheduling
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Assuming that the number of consecutive data dropouts indmmlibyn, and that the
effective network-induced delays are also boundedihy and dmay, it is obvious that

Ti; (k) belongs to the intervdkm, Tv|, where
Tm == dmin, (73)
M = Np+0Omax (7.4)

Figure 7.3 illustrates a characteristic shapetfp(ik). For the sake of simplicity in the
technical developments to come, it is assumed that the ramimlelay bound is exactly
zero,Tn = 0, and the maximum delay will be denotedtyy. In other works as [Millan et al.,
2012] or [Orihuela et al., 2011], this assumption is relaeading to a more cumbersome,
but still solvable, design problems.

ij (K)

™

Y N 5 T Sy
.

L]
O IR QU
--l--0---------
[ O A

Tm

Figure 7.3: Qualitative evolution offjj (k)

Also note that eacts;; is directly associated to a link, j) € &. Then, it is possible
to establish a relation between each connection and thespwndingrij. Numbering the

links from 1 tol the following equivalent notation can be used:
Tr(k):'[ij(k), r=1,..1, (7.5)

wherer = g(i, j). That is,T can refer either to a pair of nodes;{ or to a link (t;).
Once the considerations about delays and packet dropowtsbieen done, structure

for the observers given by the following equation is projgose

%i(k+1) = A% (k) +Mi (Gi%i (k) — yi (K))+ (7.6)
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> Nij (Cij&j (k—1ij (k) — Gij%i (k—Tij (K))),

jeMm

fori € ¥. The structure of the observers comprises two main panselya

* A local Luenberger-like observer, weighted with matridés that corrects the es-
timated state of the plant based on the measured oyiflgt accessible for each

observer.

» A consensus-based observer, weighted with matfiggsvhich takes into account

the information received from neighboring observers.

The name consensus comes from the fact that all the nodegweititually achieve
the same value of the estimated state. Note that the nodist known the exact value of
the actual artificial delay;j (k), as it needs to compare the received informa@g®; (k —

Ti; (k) with past values of its own estimated st&gX;(k — 1 (k)). To do that, the nodes
must be synchronized. Assuming that some kind of synchatiniz algorithm is running,
the delayt;j (k) can be known by adding a timestamp to every data packet. éfurtre,
each node must buffer all its past estimates until indtanty.

Let us consider now the observation error of a generic olbsémefined as (k) =
%i (k) — x(Kk), i.e. the difference between the estimation of nbded the state of the plant.
Taking into account equations (7.1) and (7.6), the dynawofitise observation error can be
written as:

a(k+1) = (A+MC)e (k) + jezA/NijCij (ej(k—Tij (k) —&i(k—1ij(k))) (7.7)
Considering that the number of observers is givenpbyhe dynamic equations of the

observation errors can be written in a compact form definirggagked error vector as

') =[ef(k) ek .. ek

e(k+1) = O(.2)e(k) + A(A)d(K) (7.8)
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whered(k) is a delayed version of the stacked error vector taking ictoant the de-
lays of the different links (see equation (7.8))(k) = [e" (k— 11(K)) ... e(k—1;(k))T], or
equivalently the delays of the communications betweenhtigsi and j. The matrices
®(.#) and/A\(.#") depend on the sets of observers to be design#d= {M;,i € ¥’} and

A ={Njj,i € 7,j € A}. Itis not difficult to see that the structure of such matriaes

given by:
A+MCy 0 0
0 A+MCp --- 0
&) = : : . (7.9)
NA) = [Nz N] (7.10)

whereAr, r =g(i, ) € {1,...,1}, are block matrices in correspondence with each of the
links r communicating the observewith j, in which the only blocks different from zero

are—N;;Gjj andN;;Gj in the(i,i) and(i, j) positions respectively:

column i j
ro ... 0 . 0 .. 0]

/\r: . . . . .
o --- —-NjG; --- NG - 0 row i
L0 - 0 o0 e 0

7.2.2 Observers design

In the following the main result of this section is introddc&or periodic communication
between agents, next theorem states a sufficient conddiahé asymptotic convergence
of the estimates of each observer to the plant state.

Theorem 7.2.1. Giventy according to equatioif7.4), if the nonlinear matrix inequality
(7.11) has a feasible solution for positive definite masiZg Z,, R, i € ¥/, and observers
matrices M,N;j, i € 7, j € 4, then the estimations of all the observers asymptotically
converge to the plant state.
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Il
©
o

ST (AP (OT(A)—1)PTy |
x W o AT(P AT (AN )Py

« o+ Q 0 0 <0, (7.11)
x ok ok —-P 0
* % * * —%Pzglp

where:
P = diag(Py,P,, ..., Pp),
== —P+Zl - |227
| times

@:[Z2 Z - 22]’

| times

——
W= dlag(_2227 e 7_222)5
Q=-21-125.

Proof: Choose the following Lyapunov-Krasovskii functional:

V(k) = €' (k)Pe(k) +i kgw e’ (i)Z1e(i) +1 x Ty ,—% Hi_:;llAeT(i)Zer(i), (7.12)

whereAe(k) = e(k+ 1) — e(k). Note that the third term is includddimes, one for each

communication link. The forward difference can be caladizds

AV (k) = € (k+1)Pe(k+ 1) — €' (k)Pe(k) + €' (K)Zye(K) — €" (k— Tm)Z1e(k— Tw)

k—1
+1 x 13 0e" (k) Zone(k) — | x Ty ; A€' (j)ZoDe(j)
j=K=1Tm

.
=[ K dK | :TE;/VZ; Pl oca) A | l Zl}?l?) ]
+[ e"(k) e (k—1w) } [ Zl(;P _21 1 e(ke(—k)rM) 1

k—1

+1 x T3 0e" (k) Zone(k) — | x Ty g j)Zone(j).
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Defining the augmented state vector

e(k)
e(k—11(K))
_ e(k)
10T I I A
: e(k—Ty)
e(k—1(k))
e(k—1v)

the forward difference of the Lyapunov-Krasovskii funciéd can be written using the

following quadratic form:

[ z2-P 0 O o ()
AV(K) = £T(K) £ 0 0 |+| AT [P o) AH) O]
| x * =71 0
[ o () -1
HIxth | AT(a) | Z2] (@a)-1) Ay o] | &K
0

k—1
— x Ty Z AT (j)Zabe(j).
=

J:
In order to take into account the delay of each different comigation link (; (K), Vr =
1,...,1), the last term in the above equation (which appéaimes) in 2 terms is split,

considering the delay in each specific link:

k-1 k—=1r (k) -1 k-1
D) D€' (j)Zo0e(j) = —Tm > A€t (j)Zohe(j)— Y LeT(j)Zone()).
j=k=1m j=k=1m j=k=1r (k)

The resulting terms can be bounded using the Jensen ingguali

-T

k—Tr (K)—1 Mk—1r (K)—1 Mk—1r (K)—1
—Tm D€' (j)Zabe(j) < — Z Ae(j)| Z2 g Ae(j) |,
j=k=1m j=k=Tm j=k=1m
k-1 [ k-1 17 T k1 1
vy deT(DZpe()<—| Y de())| Zo| Y oe()].
j=k—Tr (K) Li=k—Tr (k) i Li=k—Tr (k) _
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The terms in brackets can be cancelled in pairs, except #teafid the last one in the

summatory, yielding:
k—1r (k)—1
~Tu D€' (j)Zate(j) <

J=K=Tm
—[e(k—1¢(k)) — e(k— )] Zz[e(k— 77 (K)) — e(k— Tw)]

k—1
“tw S B ()Zabe(]) < — [e(k) —e(k— 1 (K)]" Zz[e(k) — e(k— 17 (K))].
j=k=1r (k)

The above terms are also written in the same quadratic manner

k-t (k)—1
—Tm e’ (j)ZaLe(j) <

J=K=Tm

| e k=1(K) € (k—1w) |

-7 2 ] [ e(k—1r (k) ]

x =2y e(k—1v)
k—1
—tv Y Ae(j)Zle(j) <
j=k=1r (k)

—7Z> Zo e(k)
e'(k) e (k—1(k)) } l -7, ] [ e(k— 17 (k) ]

Including all the terms, the forward difference is:

AV (K) = ET(K)L1& (K)

where
=0 0 o' (2)
L=&"®| |+ w O |+]| AT() P[qn(///) AN o} (7.13)
* x  Q 0
T ()~
Hxth | N(a) | Ze| (@) -1) A#) O] |EK
0

In order to show the error convergence to zero, it will be destrated thaf\V (k) < 0

for all £ (k) # 0 through the negative definitenesd ef Applying Schur complements, one
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can obtain that previous matrix is negative definite if anty dfrthe following holds:

=0 0 () (P (A)—1)1y
« W ool AT() AT (AN )Tm

* x  Q 0 0 <0
* ok % —p-1 0
¥ % * * —%Zgl

And the negative definiteness of this matrix is equivalenthi@t of the matrix in
Theorem 7.2.1, which can be obtained by pre- and post- nyitigp previous matrix by

diag(l,I,I,P,P) and its transpose. O

As it is clearly seen from (7.11), the matrix inequality todmved in order to design
the observers is not linear because of the presence of e @& (.#)P, AT(.#)P and
PZ,P.

The two first nonlinearities, related ®' (.#)P, AT(.#")P, can be trivially settled by
definingMiR =W andN;jR = Xj. That way, those terms are now a function of the new
matrices in the change of variables, #€,(.#)P — ®(# ) andAT (/)P — A(Z), where
the sets are defined # = {W,i € ¥} and 2" = {Xj,i € ¥, ] € A}

In the following subsections, two solutions in order to detth the nonlinearit)PZ,;lP
are presented. The first one introduces an additional @nsivhich let us address the
problem by means of a set of linear matrix inequalities. Téwmoad solution employs the
cone complementary algorithm to transform the nonlineagirality into an iterative opti-
mization problem with linear constraints. Comparing battusons, the former could be
more conservative, but it is computationally more efficiexrst the number of constraints

and variables is lower.
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Constraint on PZ,*P

A method to deal with this nonlinearity consists in introthgcthe following additional
constraint:

fPZglP<f%P,

being u a positive design scalar. Note that previous condition isivedent toZ, < uP.

Then, the nonlinear constraint in Theorem 7.2.1 can be cegdlay:

V<0, (7.14)
Z; < uP

whereY is the matrix required to be negative definite in (7.11), ludssituting the terms
®T ()P, AT(4)P andPZ,*P by ®T (#), AT(2’) and ;P respectively.

It is worth comparing the proposed method with the one intoed in [D. Yue, Q. H.
and J. Lam, 2005] and used in other works to handle the sanmearity. While in [D.
Yue, Q. H. and J. Lam, 2005] it is directly impos&gd to be P times a given scalar, our
method just restrictZ, < uP, which covers a much wider range of possible solutions in

the space of positive definite matrices.
Cone complementary algorithm

As it has been done in other works, an extended procedurdEs&haoui et al., 1997])
can be also adapted, which let us address the nonlind%th)}P by introducing some
new matrix variables and constraints. Following the samapssthan [Moon et al., 2001],
the original inequality (7.11) can be replaced by the follmyvnonlinear minimization

problem involving LMI conditions:
MinimizeTr (PP+ Z,Z; + T2 T,) (7.15)

subject to

T P <0, Pl >0, Z | >0, L >0, (7.16)
* —Z> | — * P | x 2y | T x T |~
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whereY is as before the matrix required to be definite negative ih1(j7 but substituting
PZZTlP by T,. The set of additional linear constraints and variablesla¢e be introduced
to ensure the convergence of the solution.

In order to solve the aforementioned minimization probl&mi%) the algorithm intro-

duced in [El Ghaoui et al., 1997] can be implemented. It han kenitted here.

Remark. The computational burden required to solve the LMIs (7.1 &.16) di-
rectly depends on the dimension of the system, the numbegesfts, and the number of
links between them. Although the implementation of theritigted estimation scheme is
completely distributed, the design procedure is cengdlias all the weighting matrices
are designed together. With respect to centralized scheaheesumber of links is now the
bottleneck of all the proposed solutions in the literatitrezould be of undeniable interest
to distribute the mathematical calculus, in such a way taahenode does not need infor-
mation of the rest of the nodes, but only of its neighboursidsign its observer. This is

matter of future research.

7.3 Event-based communication between agents

This section analyzes an asynchronous event-based comrationipolicy between agents
to reduce the energy consumption and make an efficient ube oigtwork resources. The
event-based communication is a means to reduce the inflematchange rates between
the components in the network by triggering the commuracatinly after an event has
indicated that a certain relevant variable exceeds a tulerare-defined threshold. Next,
the event-based implementation of the observer desigresibpisly is studied in detail.
From a modeling point of view, the main difference betweenttme-driven scheme
in Section 7.2 and the event-driven paradigm describedibéhe non-uniform pattern of

transmission of information.
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=
=
=z

CASE 1 CASE 2
Figure 7.4: Different cases regarding the transmission of information from rjdde

Transmissions are now assumed to be triggered at specificitistants, when a trig-
gering condition is satisfied. L&t (k) denote the time instant when nogisent the more
recent packet available for the nodat current time instarik. Then,{ljj(k)} C N, as node

j only sends packets when an event is triggered.

Triggering condition: Given a threshold, at instank nodej broadcasts its estimates

to every ageni such thatj € 4 if
1% (lij (k) = Xj(K)[|lo > &, for k> i (k). (7.17)

In this section, packet dropouts are not considered, sod®igys affect the communi-

cation between agents.

7.3.1 Remodelling of node dynamics

This section introduces the modifications needed to renthdedystem dynamic equations
according to the approach introduced above. Consider aigeagenti at time instank.
As Figure 7.4 suggests, there are two possible situatiotis r@spect to the information

received from each of its neighbourg A

¢ Case 1:The last packet received in nodeas sent befork — 1y. It is obvious that

lij (K) < k—Tw. In this case, nodiedoes not have in memotyhe estimatex {lij (k).

1Recall that each node stores only a finite amount of past estimas was explained in Section 7.2.
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Then, it compares its older buffered state, tha¢ (k= 1y ), with the available state

of its neighbourx;(l;j (k)) to correct its estimation.

» Case 2:The last packet received in nodevas sent aftek — 1y, solij (k) > k— .

Given that the estimate(T;; (k)) is still in the buffer of the nodg it compares it with

the received informatior; (lij (k)).

Taking into account these cases, the dynamics of a genetii man be rewritten as
%i(K+1) = A% (k) + Mi(9i (k) —yi(k)) (7.18)

+ > NiGij (%) (lij (k) = %i (k= pij (K)))

jen
where

o ™. lij (K) < k—1Tm,
Hlj(k)—{ k—1ij (K), |;(k)2k—TM.

Considering the addition of the ter#R; (k— 4; (k)) and defining
wij (k) = X (1ij (K)) = % (k= i (K)), (7.19)
equation (7.18) can be rewritten as:
%i(k+1) = AR (K) + M (%1 (K) — vi(K))
+ > NiGij (%) (k— pij (k) =i (k= pij () + > NijGijwj (k).
jen jen
This way, the observer have a dynamics equivalent to thdteoperiodic communica-
tion case, difference being in the terms that depends; i), which can be interpreted as
an external perturbation due to the discontinuous flow afrimfation between neighbors

that is reset to zero at every transmission time. In this pg$k) plays the role of;j (k) in

equation (7.7). Itis straightforward to check that Qu; (k) < Ty for cases 1 and 2.
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Moreover, it is easy to see that
[1wij (K) oo <9,

in both cases. In the case; (k) = 0. In the case 1, it holdsij (k) = X; (I;j (k)) — X;(k—
™), with ljj (k) < k— tv. Since no packet has been transmitted betwiggh) andk — 1y
(because, otherwise, this packet had been available iniraddeirrent instark), it implies
that||X; (lij (k)) —Xj(k— ™)/ < & (see the triggering condition defined above). Therefore,
[wij (K)||o < & holds for both cases.

The dynamics of the augmented observation veetky is similar to that of the time-

driven case, but including an additional term related witsst disturbances:
e(k+1) = d(AZ)e(k) + A(A)d(K) + T (A )w(K), (7.20)

wherew" (k) = [w] (K), -+, w (K),--,w (K)], withr = g(i, ). As before, it is not difficult

to see that matrix (.#") has the following structure:
FA)=| Ta(A) o Te(A) - T(A) |

wherel (), r =g(i,j) € {1,...,1}, are vectors of matrices, in which the only block

different from zero ig\;;Cjj in thei row:

Fr(/V): NijCij row i

As it has been mentioned, in this section it is consideretttigeobservers are designed
according to Theorem 7.2.1, so in the following, notatdb\,I" will be used instead of

O(A)NA),T(AN).
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7.3.2 Practical stability for delayed asynchronous systems

Next, the main result of this section is introduced. Givem diistributed observer synthe-
sized by Theorem 7.2.1, the following result proves thaipiygglementing the event-based
sampling policy described above, the observation efiorcan be ultimately bounded into
an arbitrary small region that depends on the triggeringstwldd. The proof of the the-

orem makes use of the Lyapunov-Krasovskii functional (Yar®d the fact that it can be

written in the following quadratic way

V(K) = T (K)Lad (K), (7.21)
where
e(k)
e(k—1)
= | ek-2) |
e(k—.rM)

andL, is a positive definite matrix that can easily found, for a# terms in the functional

are quadratic.

Theorem 7.3.1. Consider a set of distributed observers designed by The@r2rh. Then,
using an event-based communication with triggering coowlif7.17) the estimation error
e(k) € R" whose dynamics is given in equation (7.20) is ultimatelynoed by

Lq

lle(k)lo < A”,;""X [([®lleo + [[Alle0) D1+ [T 0]

min

where matrices B, A andl” are given in Theorem 7.2.1 and

o el /Lol + ARl
1= /\Q

min

L=r"P[o A 0]+"Z[ (@-1) A 0],

Ls=TTPr+r"zr,

being Q any positive definite matrix such tha® > L,, with Ly given in equatior{7.13)
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Proof: Consider the Lyapunov-Krasovskii functional (7.12). litihg the disturbances

due to the asynchronous flow of information, the forwardetéhce takes the form:
AV (K) < T (K)L1E (K) + 2w (K)L2& (K) +WT (k)Law(k).

From Theorem 7.2.1 the matrix is negative definite, so there exists a positive matrix

Q such that; < —Q. Taking norms
AV (K) < =Amin 1€ (N + 21 Lalle WK e [1€ (K) oo + (1Ll e [W(K)[Z
so taking into account the triggering condition (7.17),iélgls
AV (K) < =As [IE (K% + 212l S 11 (K)o + IIL 3] 057

Therefore, solving the second order equation it can be edstimatAV (k) < 0 for

IL2lleo+1/ L2012 +A 2 ILsleo 5
2Q )
min

For a generic vectox and a positive scaldp, let Bf denote the region of the space

defined by{x: ||| < D}. Given thaV/ (k) is positive and decreasing fék) ¢ Bfl, there
exists a time instark* whené (k*) enters into the regioBél. Since itis considered infinite
norms ance(k) is included in the augmented vec®fk), it turns out thae(k*) € B .

Asé (k") e Bél for any realization ofi (k) € [0, Tm], r € .Z, it also holds thaf (k*) €
BS,.

Onceé (k*) belongs to this region, the Lyapunov function is not neadlgsdecreasing
and the augmented state may jump outside, thdt(ls,+ 1) ¢ B¢. Using the dynamics of
the observation error given in equation (7.20), it is pdssib bound the error at instant

k*+1 by
l[e(K" 4+ 1) [leo < [|®]foo][€(K")[[eo + [[A]eo [[A(K"){]oo =+ [|T[[eo [ W(K") [ co

< ([Pl + [[Alleo) D1+ [T 0B
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Figure 7.5: Trajectory of the error in a two-dimensional space

Thene(k* +1) € Bf , whereDz = (|[®|[eo + [|A]|eo) D1 + ||| S. Figure 7.5 illustrates
a possible evolution of the observation error and the differegions.
This way, & (k* +1) and { (k* + 1) may leave the regionBé1 and Bél, respectively.

Then, the Lyapunov-Krasovskii functional must be decrggsaigain, implying that
Vk>k 41, V(k) <maxV(k*+1)} = max{¢" (k' +1)Lsl(k* +1)}
< Agumax{ |1 (k" +1)[2}
< Ake,D3.

Finally, to get the final bound og(k) for k > k* + 1, note that all the terms of the

Lyapunov functional involve positive definite matrices, so
e(k)TPe(k) < V(K), VK,

V(K) < Aka.DZ vk > k* + 1.
And using fairy extended properties, it yields

Abinle(K)[IZ < e(k)TPe(k) < Ak,D3

Ly

= Jle(k) [l < )\rgaXDz.

min




7.4. Numerical example 191

This ends the proof. O

Note that the final bound of(k) depends on the threshofiithat triggers the sam-
pling. With 8 = 0, the event-based sampling becomes a periodic one andythmptagic
convergence will be accomplished. Furthermore, it is fsdb use the theorem to find
the suitabled in order to achieve a prescribed final bound on the estimaioor and a

trade-off between estimation performance and traffic rédnc

7.4 Numerical example

Consider a plant whose dynamics is given by:

099 0 0 0 0 0
0 1005 O 0 0 0
skip—| O 0 09945 —008757 0 0 |
0O 0 01248 09945 0 O
o 0 0 0 09 009
. 0o o0 0 0 0o 1 |

Observer 1 measures the output= x; while observers 2, 3, and 4 receiwes= x,
Y3 = X4, andys = Xg respectively. The observers are connected according tocamiplete
communication graph, depicted in Figure 7.6. The outputasue=d from every node and

the received estimates are summarized in Table 7.1.

X2
X1 ’Aé‘_—\ X4
. .3
| - -
N |
N

\\l
X6

Figure 7.6: Graph representing the network connectivity
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Measurements Received outputs
Node 1| y1 =Cix=[10000Qx Ci2=[C2;C3;C4]
Node 2 y2:C2X: [01000QX C23:C3, Cos= [Cl;C4]
Node 3 y3:C3x: [0001OQX Cao= [C]_;CZ;C4]
Node 4 y3:C3x: [000001X Cu= [01;04]

Table 7.1: Outputs and information shared with neighbours

State evolution

50 100 150

I
150

I I
50 100

50 100 150 200

Figure 7.7: Evolution of the estimates for observer 1

Note that local observability is not achieved from any of tfxservers. The design of

the observation matrices and the simulation have beennpegfbfor a maximum delay of

v = 3in all links.

Figures 7.7 and 7.8 represent the evolution of the planést@ontinuous lines) and

the estimated states (dashed lines) for observers 1 angédctagly. The initial states for

all the observers are set to zero. The plant’s initial s&te i

.
x(0):[-4 12 05 -1 35 5} .

It is worth pointing out that all the observers convergedrnso the states that can be

locally estimated, given that they are not affected by comication effects (delays and

asynchronicity).
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State evolution

0 5‘0 160 1E")0 200 0 5‘0 160 150 200 0 56 160 150 200
k ) k . k
Figure 7.8: Evolution of the estimates for observer 4

For both observers, the simulations on the left corresponmbtiodic communication
policy (6 = 0). As expected, when the threshold to communicate is exdathe observers
broadcast less information to their neighbors and the asitim performance progressively
diminishes. Nonetheless, it is possible to find an adequedetoff between estimation per-
formance and communication savings, achieving remarkabigction on the network traf-
fic load while maintaining an estimation performance clasthé periodic communication
case.

Finally, Figure 7.9 shows the percentage of packets tratemnwvith respect to periodic

communication policy for observer 1 and different commatian thresholds.

7.5 Conclusions

In this chapter, the problem of distributed estimation adersng network-induced delays
and dropouts is solved. Two schemes are analyzed, namsatydjogime-driven and event-
based approaches, the latter being specially beneficialinst of economy of use of net-
work resources. For both scenarios, the observers empémablluenberger-like structure

and consensus matrices to weight the information recenad fheighbors. The informa-
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Figure 7.9: Normalized percentage of transmitted packets for different thresholds

tion shared between neighbors does not need to be necg#isatbmplete estimated state,
but can be selected to reduce communication requiremetatisili§y proofs are provided
and performance of the design methods is showed by a simletample.

Future research may include the consideration of diffedtefgty bounds for each link as
well as the robustification of the method to deal with paraimencertainties in the system
model and exogenous perturbations or noise. Other impditenof research consists in
reducing the computational requirements of the proposgoristhms, by distributing the

design algorithms.
7.6 Related publications

» Pablo Millan, Luis Orihuela, Isabel Jurado Carlos Vivasl &rancisco R. Rubio.
Distributed Estimation in Networked Systems Under Peciadd Event-Based Com-

munication PoliciesInternational Journal of System Science.



Chapter 8

Conclusions and future work

n this chapter a summary of the main contributions includethis thesis is pre-
sented. It also provides some possible directions to foitoarder to continue with

the research lines that have been started in this thesis.

8.1 Conclusions

This thesis has been focused in the field of Networked Colystems (NCSs), in partic-
ular in those that the network introduces packet lossesvié Ibeen also considered other
problems such as delays and uncertainties in the model qfiéime. Different techniques
have been studied in order to deal with these problems.

The main contributions can be included in three differeetar The first three chap-
ters (Chapters 2, 3 and 4), have been focusetiprechniques, dealing with plant with
uncertainties in their models. Chapter 5 has presentedileotibns in the area of Model
Predictive Control. Chapter 6 has also used MPC strategiesder to solve a distributed
control problem. That chapter has presented contributdsin the last area under con-
sideration in this thesis, the distributed controlled syst. This area is exclusively treated

in Chapter 7, which has been centered in distributed edtmat

« Firstly, Chapter 2 has focused on control loops for SISO @lahts, where the feed-

195
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back path comprises a communication channel affected bpdBér data losses.
These systems have been studied as equivalent ones whereinreliable channel
has been replaced by an additive i.i.d. noise channel, pgama The objective of

the chapter has been the synthesis of controllers that amsape model uncertain-
ties and failed transmissions. To perform this taskiHarcontrol problem has been

proposed.

In Chapter 3 NCSs subject to data dropouts constraints ese considered. The

unreliable channel has been replaced by an additive ididerchannel, plus a gain.

A controller that avoid the model uncertainties has beethggized. Also, a lower
bound of the success probability in the transmission has tmead. To perform this
task, a mixedH,/H. control problem has been proposed. Moreover, the minimal
successful transmission probability that guarantees M&Sr@bustness properties

for the closed-loop system has been obtained.

Also, some numerical results that illustrate the closexpleystem performance have
been presented. These simulation results showed that qmdrdisrmance is achieved
if the successful probability transmission is higher thhe minimum computed,
while the differents systems performances get worse, thatitobust stability is lost,

as the successful probability transmission decreases.

Furthermore, an application of this technique to the pnobdd the glucose control
for diabetic patients subject to sensor errors constrhgdgdeen presented. Different
patient characteristics have been considered, reprageiig uncertainties to take

into account for the synthesis of the controller.

Chapter 4 has focused also on control loops for SISO LTItplamhere the feedback

path comprises a communication channel that producesakzead.

Firstly, it is considered that only one consecutive packet e lost.
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One of the objective of this chapter has been the synthesigoftroller and a filter
that avoid the model uncertainties and compensate fad@dnissions. When a data
dropout occurs, the control system uses an estimated agitfit by the filter to do
the feedback. To perform this taskiHa control problem has been proposed in order
to calculate the controller. To obtain a robust controk@me functions have been
chosen to weight some sensitivity functions. The filter isulated with a technique

based on the location of the unstable poles of the model gfltre.

An example has been exposed to obtain some numerical réisattdlustrates the
closed-loop system performance. These simulation resoiteborated that robust

performance is achieved.

The other objective of the chapter has been the synthesisafitaoller and a filter
that avoid the model uncertainties and compensate fagatnissions considering

that the maximum number of consecutive dropouts is known.

The NCS has been modelled as a Markov Jump Linear Systemmeidles depend-

ing on the network situation.

When a data dropout occurs, the system uses an estimated gwgruby the filter
as feedback. To perform this taskiHa control problem has been proposed in order
to calculated the controller. The filter is calculated withHh, technique together

with the controller.

Finally, some simulations have been showed to illustragectbsed-loop system per-

formance. These results corroborated that robust perfuren achieved.

The first part of Chapter 5 has presented a methodology tpensate data dropouts
and delays in networked control systems, using model piieelicontrol. The method-
ology takes advantage of the intrinsic computation of faitcontrol signals in pre-

dictive control, to cope with eventual data dropouts. A kepest is the inclusion of
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a buffering strategy together with a model-based planinedtr that, under certain

conditions, ensure stability of the controlled system.

Simulation results show that remarkable data dropout tatés 40% can be achieved
without significant performance degradation, as well aid¢repad alleviation up to

85% with respect to conventional buffered predictive colrgystems.

Secondly, Chapter 5 has shown how statistical informatiorpacket delays and

dropouts can be used in the design of a networked contrasyst

Also, an experimental plant has been chosen to obtain somerizal results.

Chapter 6 has presented a cooperative MPC formulation €8$\subject to data
dropouts. An algorithm that decides which nodes are in @éafghe calculation of
the the control input and which ones just relay the receinéatination is provided.
This decision depends on transmission outcomes. Once thter node has been
chosen, it interacts with its neighbors over unreliablé&disolving a cooperative

MPC.

Also, Chapter 6 has presented a flexible architecture fointipdementation of an
estimated state feedback control law over a wireless satsoator network with
analog unreliable channels without acknowledgments. Wighalgorithm provided,
the role played by individual nodes depends on transmissigcomes. In partic-
ular, the state estimator location depends upon the auéifatf past plant input
values and transmission outcomes, while the controlleiniays located at actuator
node. By deriving a Markovian jump-linear system models iestablished a closed
form expression for the stationary covariance of the systte in the presence of

correlated dropout processes.

Finally, in this Chapter 7 the problem of distributed esttion considering network-

induced delays and dropouts is solved. Two schemes arezadalyamely, periodic
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time-driven and event-based approaches, the latter bpéialy beneficial in terms
of economy of use of network resources. For both scenatiesplbservers employ
a local Luenberger-like structure and consensus matricegight the information

received from neighbors. The information shared betweéghbers does not need
to be necessarily the complete estimated state, but caldmeskto reduce commu-
nication requirements. Stability proofs are provided aadggmance of the design

methods is showed by a simulation example.
8.2 Future work
Future works that could be considered for further study laedallowing:

« Different structures for the parametg(z) in Chapter 2, non-linear systems and also

to include delays in the communication channel.

« Studying closed loop stability and performance issuegfercontributions on Chap-

ter 5 and Chapter 6.

¢ Study a practical application of the method proposed inpgB#rab6 for systems con-
trolled over unreliable networks with time-varying relilly, for example, if there
are moving obstacles blocking the nodes. Also, future workyg include extending
the ideas presented to the control of multiple-loops, toegaimetwork topologies,

and to controller design.

* In Chapter 7, future researches may include the considaraf different delay
bounds for each link as well as the robustification of the metto deal with para-
metric uncertainties in the system model and exogenougreattons or noise. Other
important line of research consists in reducing the contjmurtal requirements of the

proposed algorithms, by distributing the design algorghm






Capitulo A

Resumen en Castellano

0s sistemas de control a través de redes se han convertitioéeeaimportante

dentro de la comunidad de control, lo cual es debido a su loaje ¢ a la flex-

ibilidad de sus aplicaciones. Los sistemas de control &s¢rde redes (NCSs)
se componen de sensores, actuadores y controladoreselasiopes entre ellos se coordi-
nan a través de una red de comunicacion. Tipicamente, éstimmas estan espacialmente
distribuidos, y pueden funcionar de manera asincrona, es@peraciones han de estar
coordinadas para conseguir los objetivos deseados.

En este resumen se presenta una perspectiva general de $ss Weén particular, los
casos especificos en los que se ha basado esta tesis, abdaat@ias principales rela-
cionados con NCS, con todos los problemas y ventajas assgiad describen en este
resumen. Por Ultimo, se presenta un indice de la tesis conosisbuciones mas rele-

vantes.

A.1 Introduccién a los Sistemas de Control a través de Red

Los Sistemas de Control a través de Red (NCSs) son sistepasiamente distribuidos
donde la comunicacion entre plantas, sensores, actuagamestroladores se realiza a

través de una red de comunicacion. Este tipo de sistemasgmaderisticas son descritos

201
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ampliamente en [J. P. Hespanha, P. Naghshtabrizi and Y. 0Qi/]2[W. Zhang, M. S.
Branicky and S. M. Phillips, 2001], [R. A. Gupta, 2010] and@hen, K. H. Johansson, S.
Olariu, I. Ch. Paschalidis and I. Stojmenovic, 2011].

La complejidad en el disefio y la realizacion, el coste delezatw, la instalacién y el
mantenimiento pueden ser reducidos drasticamente inulioyena red de comunicacion.
Sin embargo, las redes de comunicacion en los sistemaséartraien algunos incove-
nientes como los retrasos y la pérdida de datos, los errerendificacion, etc. Estos
incovenientes pueden ser la causa de la de la degradaciéardpbrtamiento del sistema
e incluso causar su desestabilizacion.

Hoy en dia, hay un gran nimero de situaciones practicas equiael uso de redes
de comunicacién para el control son necesarias para aiplieeco procesos de control en

ingenieria. Algunos ejemplos son:
« Situaciones en las que el espacio y el peso estan limitados.
« Situaciones en las que las distancias a considerar sodegan
« Aplicaciones de control donde el cableado no es posible.
El uso de redes de comunicacién digitales proporciona tamddgunas ventajas:

1. La complejidad en el cableado en conexiones punto a pentedsice mucho, asi
como el coste. Ademas, los costes de instalacién puedeairseltambién drastica-

mente.

2. Lareduccion en la complejidad del cableado hace muchdan#é®l diagndstico y
el mantenimiento del sistema, dando lugar a un ahorro ensé cebido a que la

instalacion y el funcionamiento tienen una eficiencia mayor
3. Los NCSs son flexibles y reconfigurables.

4. Fiabilidad, redundancia y robustez ante los fallos.
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5. Los NCSs proporcionan modularidad, control descertrdb y diagnoésticos inte-

grados.

Todas estas ventajas sugieren que los NCSs jugaran un piayegdal en un futuro cercano,

siendo un area de investigacion muy prometedora.
A.2 Objetivos de la tesis

La idea general de esta tesis es proponer algunas soluciomedosas a diferentes pro-
blemas relacionados con NCSs. Todos los problemas coadmeson tipicos dentro del
marco del control a través de redes, considerandose painednte el de las pérdidas de
paquetes en la transmision de datos.

Dentro del contexto de sistemas con pérdida de paqueteansestudiado diferentes
problemas. Para obtener soluciones diferentes para gstedisistemas, se han considera-

do los siguientes objetivos:

* Disefo de controladores.

Controladores$i.,, que consigan la robustificacion de sistemas con incertidum

bres.

ControladoreMPC, combinados con estrategias de buffer.
« Disefio de filtros.

Filtros He para sistemas con incertidumbres, usando técnicas freialesy

cadenas de Markov.
 Disefio de algoritmos.

Localizacion dinamica de un control distribuido en una remginfada por una

estructura matricial de nodos.
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Localizacién dinAmica del estimador de la salida del siatean una red for-

mada por una estructura lineal de nodos.

« Estimacién distribuida cooperativa.

Basada en observadores locales de Luenberger.

Uno de los objetivos de esta tesis ha sido el andlisis dedhiidad y comportamiento
de sistemas bajo control. En algunos casos, el disefio salwad® imponiendo restric-
ciones en cuanto a la estabilidad.

La robustificacion de sistemas, en particular la de aquetiasncertidumbres, ha sido
también tenida en cuenta. Las técnicas de cohtgade han usado en los casos de andlisis
y disefio de sistemas de control.

Otro objetivo importante de esta tesis ha sido el disefio gerithos para una red
dinamica, la cual esta compuesta por cierta estructura diesn&l algoritmo es capaz de
decidir qué nodo sera el controlador o el estimador de ldaaléel sistema en la red. La
estabilidad y el comportamiento del sistema de control d@analizado.

También se ha abordado el disefio de estimacion y esquenvasuili®s. Se han con-
siderado redes que introducen retrasos temporales, jantpérdidas aleatorias. La reduc-
cion en el consumo de energia ha sido un objetivo importanes parte de la tesis. En
este caso, se ha examinado una politica de comunicaci@agentes basada en eventos,
la cual da lugar a un compromiso entre el comportamientoiskelnsa y los ahorros en la

comunicacion.

A.3 Contribuciones de la tesis

En esta seccion, se presenta un breve resumen con las goiutni&s de cada capitulo.
En todos los capitulos, se considera un NCS en el que un cawcahdaunicacion intro-

duce pérdida de datos.
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En el Capitulo 2, se considera que el modelo de la planta imeeetidumbres estruc-
turales. Asi pues, el principal objetivo de este capitulereontrar un controlador robusto
para la planta con incertidumbres y con pérdida de datos gaflamision; a la vez que
se minimiza la varianza de la sefial de error.Estabilidad Media Cuadratica (MSS)
propiedades de robustez tienen que estar garantizadaigitar8b propone una técnica de
controlH,, de manera se puedan tolerar las incertidumbres estruesurdhs pérdidas al
mismo tiempo, a la vez que se optimiza el comportamientoistelrsa. Para tratar con las
incertidumbres de la planta, se ha calculado un controlegiotral LTI. Este controlador
central se combina con una funcién de transferer@ia), que es la que esta a cargo de
la minimizacion de la varianza del error. Con el fin de en@n@®(z), se propone un algo-
ritmo que proporciona una solucion que satisface las cegtries. La union de estas dos
funciones de trasferencia proporciona el controlador yesfo.

En el Capitulo 3 se ha usado la misma estructura para el NC&mugleCapitulo 2. La
diferencia aqui ha sido el uso de la técnica de comiegH., (mientras que el Capitulo
2 s6lo se ha usado la técnie,). La parteH, se ha disefiado de manera que estabilice
el NCS, teniendo en cuenta la probabilidad de pérdida desdati@ntras que la parte
H. se ha usado para hacer el sistema en lazo cerrado suficiem¢erbkusto frente a las
incertidumbres estructurales del sistema.

Ademas, se ha presentado una aplicacién de esta técnical gararol de la glucosa
en pacientes diabéticos, teniendo en cuenta que los posibieres producidos por los
sensores. Se han considerado diferentes caracteristigaigéntes, lo cual representa las
incertidumbres a tener en cuenta en la sintesis del codtnola

En el Capitulo 4, también se consideran incertidumbresastnales en el modelo de
la planta. Uno de los objetivos de este capitulo es encomtraontrolador robusto para
la planta con incertidumbres, lo cual se ha realizado mésli@ntécnica de contrdf.,.

Otro objetivo importante es el disefio de un filtro que calcuia estimacion de la salida
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de la planta. Esta estimacion se usa cuando se produce da piepaquete, de manera
que sustituya a la realimentacion cuando ésta no esté didpola Estabilidad Cuadrati-
ca Media (MSS)y las propiedades de robustez tienen que estar garantizadbiEn. El
disefio del filtro ha sido realizado mediante una técnicadaaea la localizacion de los
polos inestables del modelo de la planta. Se puede encomainformacion sobre este
tema en [J. E. Normey-Rico and E. F. Camacho, 2009].

En este mismo capitulo, se ha modelado el sistema comdarkov Jump Linear
System (MJLS) se ha derivado un LMI para encontrar un filtro y un controtadbustos
mediante técnicabll, (ver [S. Skogestad, and I. Postlethwaite, 2005]). El filtise@iado
calcula una estimacion del estado de la planta. Al igual gquesaesta estimacion se usa
cuando haya una pérdida y se anule la realimentacion.

El Capitulo 5 propone un esquema con control predictivo gugasa en una politica
de intercambio de informacién del sensor/actuador vs.rgtamdor. El problema aqui es
el disefio de una estrategia para sistemas lineales con medryido, con pérdida de datos
grande, de manera que se conserve un buen comportamieitmn@ainente, también ha
sido un aspecto de interés el limitar la cantidad de inforématransmitida en el sistema
de control a través de red. En este capitulo, se ha explaaatudn el efecto de reducir el
intercambio de paquetes entre controlador y actuador.tragque se conserva un umbral
para el error de las sefiales de control del actuador. Esteabipgymite limitar la cantidad
de informacién a través de la red, de manera que se transfifiteisando sea necesaria
informacion relevante para el control.

El modelo de la red considera pérdida de paquetes tanto eméxién controlador-
actuador como en la de sensor-actuador. Esto motiva quelsgarun buffer para la de-
teccidn y compensacion de paquetes perdidos y un estimatlestédo, respectivamente.
Para mostrar el comportamiento de la estrategia propuestardpensacion, se han inclu-

ido resultados de simulacién para el problema del contralield de agua en un sistema
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de tres tanques.

Se ha propuesto también el envio desde el controlador decanarzia de sefiales de
control que, tratadas apropiadamente en el buffer y enaddot, actlian como salvaguarda
en el caso de retrasos o pérdidas de paquetes eventuakesoBsepto encaja de forma
natural en el modelo de control predictivo (MPC).

También en el Capitulo 5, se supone que se pueden medir coiestdiprecision las
propiedades estadisticas de los retrasos y las pérdidasegsuede explotar para el disefio
de un MPC estocéstico basado en paquetes para mejorar ebitamigento del control.

El Capitulo 6 estudia NCSs en los que la red estd compuestmparierto nimero de
nodos que forman una estructura matricial. Estos nodogisign algoritmo que decide
cual sera el que calcule la sefial de control. Este nodo resurlMPC cooperativo comu-
nicandose con sus vecinos. Este nodo conoce parte del naeledstema y comparte su
informacion con un grupo de nodos vecinos, de manera quescampara intercambiar su
informacion sobre el sistema. En cada instante de muesrelige un grupo diferente de
nodos para calcular la sefial de control. Este grupo de nalekegido dependiendo del
particular estado de la red en ese tiempo de muestreo.

El Capitulo 6 extiende también el reciente trabajo [D. E.\@de, K. H. Johansson, A.
Ahlén and |. Jurado, 2012] para incluir NCSs con enlacedglasentre nodos y el uso de
MPC cooperativo. La idea estd motivada por el hecho de quetali@ de las conexiones
pueden cambiar en cada instante de muestreo, de manera goeai@n particular no sera
siempre la mejor opcion para el célculo de la sefial de control

En el Capitulo 6 también se estudia un NCS con un lazo simpeuga conexiones
en serie a través de un canal con pérdidas. Asi pues, lamisamses estan afectadas por
pérdidas aleatorias de paquetes. En este capitulo, se $rataciones en las que los nodos
tienen limitados la energia y la potencia de procesado. iEbimodo que proprociona real-

imentacién es el actuador, que transmite el valor de la@atiglicada a la planta a través
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de enlaces paralelos no fiables a los nodos intermedios. Ztevafrontar formulaciones
de control 6ptimo (que dependen de los parametros de la rectgep ser dificiles de
implementar en la practica), el controlador ha sido prédide. Mas especificamente, se
asume que la politica de control consiste en una ganandspi®da en la realimentacion
del estado combinada con un observador del mismo, el cualysancia de los efectos de
la red, daria lugar al comportamiento deseado. Dentro @ecestexto, se ha presentado
una arquitectura flexible para NCSs donde el papel que desengada nodo en particular
depende del resultado de las transmisiones. Con el algoptopuesto, los resultados de
las transmisiones determinan, en cada instante, si laadtimdel estado se calcula en el
nodo actuador, en el sensor o0 en algunos de los intermedios.

En el Capitulo 7 se ha discutido el caso de estimacién disttdbcooperativa, basada
en observadores locales de Luenberger, en combinacionstaiegias de consenso. Se
considera que la red induce retrasos y pérdidas de padietfgiencia en el uso de los
recursos de la red recibe mucha importancia, tanto en eldmsomunicacion periddica
entre agentes como en el de comunicacion basada en eventagaQle reducir la cantidad
de informacion que se transmite a través de la red recuniardbs ideas diferentes: por
un lado, sélo nodos vecinos pueden comunicarse entre sicieadlo las transmisiones
con respecto a esquemas en los que todos comunican con Radtastro lado, el disefio
de los observadores contempla la posibilidad de compaatie plel estado estimado entre
vecinos, en vez de comunicar el vector de estado estimadplemmEsta economia en el
uso de los recursos de la red es, por su propia naturalezhl@otente mejorada con la

estrategia de comunicacién basada en eventos.
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