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Notation

N0 is used for{0,1,2, . . .}; R are the real numbers, whereasR≥0 , [0,∞). Theℓ-th unit

row-vector in Euclidean space is denotedeℓ, for example,e1 = [1 0 . . . 0], e2 =

[0 1 0 . . . 0]; In is then×n unit matrix, 0n , 0· In;⊗ refers to the Kronecker product.

The convention∑0
j=1a j = 0 is adopted, for alla0,a1 ∈ R. To denote the probability of an

eventΩ, we writePr{Ω}. The expected value of a random variableµ given∆, is denoted

via E{µ |∆}, whereas for the unconditional expectation we writeE{µ}. A real random

variableµ , which is zero-mean Gaussian with covarianceΓ is denoted byµ ∼N (0,Γ).

Mathematical variance is denoted asσ2.

The trace of a matrixA is denoted bytr (A). The∞-norm and the 2-norm are represented

by ‖·‖∞ and‖·‖2, respectively. Given any matrixM, MT denotes its tranpose;M > 0 and

M ≥ 0 denote that the matrixM is positive definite and positive semi-definite, respectively.

The argument of the z-transform is represented asz. AndRsp is the subset of real rational

discrete-time strictly proper transfer functions.

Σ is used to denote a nominal state-space model of a plant andΣ∗ for a state-space

model of a plant with uncertainties.
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xxii Notation

In the case of transfer funtions,G(z) denotes a nominal discrete model of a plant while

G∗(z) is a discrete transfer function model of a plant with uncertainties.

x represents the state of a plant,u is the control signal andy denotes the output.

N is the number of consecutive dropouts induced by the network.

The probability of a successful communication is represented byp.

Nu is the prediction horizon.

W= {x∈ R
n/‖x‖< δ}.

δi, j is the Kronecker delta symbol.
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Chapter 1

Introduction

N
etworked control systems have become a very important field in the control

community due to its cost-effective and flexible applications. Networked con-

trol systems (NCSs) comprise sensors, actuators, and controllers, the opera-

tion of which is coordinated via a communication network. Typically, these systems are

spatially distributed, may operate in an asynchronous manner, but have their operation co-

ordinated to achieve desired overall objectives.

This chapter presents a summary of NCSs, and in particular, the specific cases in which

this thesis is focused. The main issues related with NCSs, with the problems and advan-

tages associated, are described in this section. Lastly, anoutline of the present thesis to-

gether with its most relevant contributions are given.

1.1 Introduction to Networked Control Systems

Networked Control Systems (NCSs) are spatially distributed systems wherein the commu-

nication between plants, sensors, actuators and controllers occurs through a communica-

tion network. This kind of systems and their characteristics are extensively described in

[J. P. Hespanha, P. Naghshtabrizi and Y. Xu, 2007], [W. Zhang, M. S. Branicky and S.

M. Phillips, 2001], [R. A. Gupta, 2010] and [J. Chen, K. H. Johansson, S. Olariu, I. Ch.

Paschalidis and I. Stojmenovic, 2011]. The complexity of system design and realization,

1



2 Introduction

the wiring cost, installation and maintenance can be reduced drastically with the inser-

tion of the communication network. However, the communication network in the system

also brings some inconvenients, such as communication delays, data dropouts, codifica-

tion errors and so on, which could degrade the system performance and even destabilize

the system.

Nowadays, there is a large number of practical situations inwhere the use of com-

munication networks for control is needed for the application or process advises control

engineers. For example, they are specially needed in placeswhere space and weight are

limitated, when the distances under consideration are large and in control applications

where the wiring is not possible.

There are also some generic advantages when using digital communication networks:

1. The complexity in point-to-point wiring connections arevery reduced, as well as the

costs of media. Therefore, installation costs can be also drastically reduced.

2. The reduction of the wiring complexity makes easier the diagnosis and maintenance

of the system, providing cost savings because of the installation and higher operation

efficiency.

3. NCSs are flexible and re-configurable.

4. Reliability, redundancy and robustness to failure.

5. NCSs provide modularity, control decentralisation and integrated diagnostics.

All these advantages suggest that NCSs will play a central role in the near future, being a

very challenging and promising research field.

1.2 Objectives of the Thesis

The general idea of this thesis is to proposed some novel solutions to different problems

related with NCSs. All the considered problems are very typical in the frame of control
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over networks, mainly considering packet dropouts.

Within the context of systems with packet dropouts, different problems will be studied.

In order to obtain different solutions for this kind of systems, the following objectives will

be considered:

• Controller designs.

H∞ controllers, achieving the robustification of systems withuncertainties.

MPC controllers, combined with buffer strategies.

• Filter designs.

H∞ filters for systems with uncertainties, using frecuency techniques and also

Markov chains.

• Algorithm designs.

Dynamic placement of a distributed control in a network formed by a matrix

structure of nodes.

Dynamic placement of the output estimator in a network formed by a line

structure of nodes.

• Distributed cooperative estimation.

Based on local Luenberger observers.

One of the objectives of this thesis will be to analyze the stability and performance

of controlled systems. In some cases, the design will be doneby means the stability con-

straints.
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The robustification of the systems, in particular those oneswith uncertainties, will be

also taken into account. With respect to the analysis and design of controlled system,H∞

techniques will be used.

Another important objective of this thesis will be the design of algorithms for a dy-

namic network, which will be composed by certain structure of nodes. The algorithm will

be able to decide which node will be the controller or the output estimator in the network.

Also stability and performance of controlled system will beanalyzed.

The design of distributed estimation and schemes is also addressed. Networks with

induced time-delays are considered, together with random dropouts. The reduction of en-

ergy consumption will be an important objective in this partof the thesis. In this case, an

event-based communication policy between agents will be examined, providing a trade-off

between performance and communication savings.

1.3 Related literature

There are a lot of studies in the literature about the main problems associated with NCSs.

One way to approach time delay issues is to resort to Lyapunov-Krasovskii functionals

(see, for example, [P. Millan, L. Orihuela, C. Vivas and F. R.Rubio, n.d.] and [D. Yue, Q.

H. and J. Lam, 2005]). Another important topic to be studied in NCSs is the impact of

network-induced data losses. Data dropouts occur, for instance, due to collisions or low

SNR (signal to noise ratio) in wireless channels. There are different ways to deal with this

kind of NCSs. One way is the use of predictive control, which makes it possible to calculate

future model-based data and to use them to compute the control actions. Some examples

of networked control based on MPC for linear and non-linear systems can be found in [P.

Millan, I. Jurado, C. Vivas and F. R. Rubio, n.d.], [D. Muñoz and P. D. Christofides, 2008],

[D. Quevedo, J. Østergaard and D. Nešić, 2011] and [D. Quevedo and D. Nešic, 2011].

A different way to deal with NCSs subject to data dropouts consists in modeling the
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dropouts by means of a switched system, i.e., a Markov jump linear system (MJLS), see

[O. L. V. Costa, M. D. Fragoso, and R. P. Marques, 2005]. Related with this approach,

[Q. Ling and M. Lemmon, 2004] presents a result which shows that, for a specific NCS

architecture subject to data dropouts, the resulting MJLS is equivalent to a linear loop

with an external noise source. This noise has the particularity of having a variance that is

proportional to the variance of another signal within the original control loop. This result is

used in [E. I. Silva and S. A. Pulgar, 2011] to show that there exists asecond order moments

equivalencebetween the considered NCS and an auxiliary control system.In this auxiliary

control system, the unreliable control channel has been replaced by an additive i.i.d. noise

channel that has a Signal to Noise Ratio (SNR) constraint. Inthat paper, the probability

of data losses is fixed and is used in the control synthesis. The objective in [E. I. Silva

and S. A. Pulgar, 2011] is to minimize the error covariance designing the controller via

a Youla parametrization. However, in that work only the ideal case of having a perfect

LTI nominal model is considered. Therefore, robustness properties in the presence of plant

model uncertainties are not guaranteed.

Some works on NCSs that take into account system uncertainties are [N. Elia, 2005],

[H. Ishii, 2008] and [P. Seiler and R. Sengupta, 2005]. In [N.Elia, 2005] the modelling of

the plant and the controller as deterministic time invariant discrete-time systems connected

to zero-mean stochastic structured uncertainty is proposed. The variance of the stochastic

perturbation is a function of the Bernoulli parameters, andthe controller design is posed

as an optimization problem to maximize mean-square stability margins of the closed loop

system.H∞ control approaches were proposed in [H. Ishii, 2008] and [P.Seiler and R.

Sengupta, 2005]. In these works, the considered uncertainty comes from the unreliability

of the network. In contrast, the present work considers bothdropouts of the network and

some structural uncertainties of the plant separately.

In a Networked Control System (NCS), sensor, controller andactuator links are not
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transparent, but are affected by bit-rate limitations, packet dropouts and/or delays, leading

to performance degradation; see, e.g., papers in the special issues [Antsaklis and Bail-

lieul, 2004, 2007, Franceschetti et al., 2008, J. Chen, K. H.Johansson, S. Olariu, I. Ch.

Paschalidis and I. Stojmenovic, 2011]. Ideally, communication artifacts can be alleviated

by transmitting at high bit-rates and with high transmission powers [Pantazis and Vergados,

2007, Park et al., 2008, Quevedo et al., 2010, Cardoso de Castro et al., 2012]. However, if

network nodes are wireless and connected to a finite power source, then energy efficiency

becomes an important issue. This makes the design of NCSs often a challenging task.

An interesting aspect which has not been explored sufficiently is that of architectural

freedom in the design of NCSs. When compared to traditional hard-wired control loops,

wireless NCSs offer architectural flexibility and additional degrees of freedom. In particu-

lar, there is no need to pre-assign in a static fashion which nodes carry out control calcula-

tions, and which nodes merely relay data. Intuitively, and in relation to the packet dropout

issue, the roles of individual nodes should depend upon the information available, thus,

upon transmission outcomes.

As background, [Goodwin et al., 2008] studies performance of three static NCS ar-

chitectures by adopting an additive signal-to-noise ratioconstrained channel model. The

results in that paper suggest that, in the absence of coding,placing the controller at the

actuator node will give better performance than placing it at the sensor node. It is worth

noting that [E. I. Silva and S. A. Pulgar, 2011] showed that the channel model in [Goodwin

et al., 2008] can be used to describe erasure channels where dropouts are independent and

identically distributed (i.i.d.). Viewed from that perspective, it was implicitly assumed in

[Goodwin et al., 2008] that communication acknowledgmentsare not available at the trans-

mitter. The work [C. L. Robinson and P. R. Kumar, 2008] examines NCSs with stochastic

packet dropouts using optimal control techniques. The workshows that optimal control

performance can be achieved if all nodes aggregate their entire history of received data
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and relay it to the controller which is located at the actuator node. Depending upon the

information available at each node, various optimal control problems can be analyzed, see

[C. L. Robinson and P. R. Kumar, 2008] and also [Gupta et al., 2009] for a formulation

where the controller is pre-allocated to a fixed node having perfect access to previous plant

inputs. More recently, [Pajic et al., 2011] investigates a distributed control strategy wherein

the network itself acts as a controller for a MIMO plant. Eachnode (including the actuator

nodes) perform linear combinations of internal state variables of neighboring nodes. In the

case of analog erasure channels with i.i.d. dropouts (without acknowledgments), in [Pajic

et al., 2011] the resulting NCS is then cast, analyzed and designed as a jump-linear system.

In the area of distributed estimation, the problem typically involves limited processing

capabilities of the agents, locally sensed information, and inter-component communica-

tions which are typically carried out asynchronously, wirelessly, and subject to limitations

such as energy or physical constraints in the environment. Examples of active areas of

application include sensor networks, transportation systems, network congestion control

and routing, and autonomous vehicle systems among others [Akyildiz et al., 2002, Briñón

Arranz et al., 2009, Cortes et al., 2004, Estrin et al., 1999,Lu et al., 2011, Xiao et al., 2005].

Regardless of the application, the common challenge remains the same. That is, to de-

rive collective behaviors through the design of individualagent estimation and control al-

gorithms. The primary distinguishing feature of this distributed approach is the distribution

of information. As opposed to ‘centralized’ solutions, no single agent has access to the in-

formation gathered by all the agents. Since sensor networksare usually large scale systems,

it is not advisable or even impossible to employ a centralized processor to gather all sys-

tem data implementing classical centralized estimation techniques. Furthermore, there is

typically a communication cost in distributing locally gathered information. A secondary

distinguishing feature is complexity. Conventional decentralized estimation schemes can

also be unattractive in many situations, provided that all-to-all communication is involved,
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and scalability for high number of nodes is compromised, see[Olfati-Saber, 2005].

There exists a vast literature related to the problem of distributed estimation in sen-

sor networks. The most common approach has been the distributed Kalman filter (DKF)

based on consensus strategies. The methodology implies correcting the local estimations

performed at each node based on the information received from their neighbors. See, for

instance, [Alriksson and Rantzer, 2006, Maestre et al., 2010, Olfati-Saber and Shamma,

2005, Olfati-Saber, 2007].

Apart from the techniques employing Distributed Kalman Filter (DKF), there exists

a number of works that propose different approaches. For example, distributed moving

horizon schemes are employed in [Farina et al., 2009], wherethe solution requires each

sensor to solve a quadratic optimization problem at every sampling time. A finite-horizon

paradigm is proposed in [Dong et al., 2012] and [Shen et al., 2010] to design distributed ob-

servers that take into account quantization errors and successive packet dropouts. Another

significant work from the same authors lying in this filed is that in [Shen, Wang and Xiao-

hui, 2011], in which a stochastic sampling between nodes is considered. A very interesting

research direction considers more general models of the plant, including nonlinearities, in-

ner delays, or different Markov-chain-driven dynamical modes. See, for instance, [Shen,

Wang, Hung and Chesi, 2011], [Liang et al., 2011] or [Liang etal., 2012].

Despite the great deal of effort developed in distributed estimation, there is much room

for research in the topic. Specifically, network-induced problems have historically received

little attention. When a communication network is used to close estimation or control loops

in real time, the assumption of perfect communication channels does not hold. Hence, reli-

able designs must be aware of network-induced constraints,significantly, delays and packet

dropouts. These effects degrade the performance of a given estimation scheme or control

implementation, even resulting in unstable behaviors, see[J. P. Hespanha, P. Naghshtabrizi

and Y. Xu, 2007].
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Furthermore, all the aforementioned works assume a time-driven scenario where the

agents are required to broadcast their states at every sampling time. Event-based methods

are somehow more efficient from the point of view of bandwidthuse, as communications

are invoked only when significant information requires to betransmitted, see [Dormido

et al., 2008, Lunze and Lehmann, 2010] and [Tabuada, 2007]. This approach becomes spe-

cially beneficial in the context of distributed estimation over networks, as the limitations

imposed by the network render the frequency at which the system communicates. A reduc-

tion in the transmission frequency implies bandwidth saving but also an improvement in

average transmission delays and packet collisions, for back-off retransmission algorithms

are reduced. Moreover, in wireless sensor networks, the battery life span is of great impor-

tance, and it is mainly related to the number of transmissions of the device. These two facts

motivate the use of aperiodic communication policies, which allow to avoid the transmis-

sion of irrelevant data, reducing network traffic and energyexpenditure. From the best of

our knowledge, this is the first approach that considers the distributed estimation through

non-reliable networks using an event-based sampling policy.

1.4 Contributions of the Thesis

In this section, a brief summary of the contributions of eachchapter is presented.

In all chapters, an NCS wherein a communication channel introduces data dropouts is

considered.

In Chapter 2, the plant model has structural uncertainties.Therefore, the main goal of

that chapter is to find a robust controller for the plant with uncertainties and with data losses

in the transmission; also minimizing the variance of the error signal.Mean square stability

(MSS) and robustness properties also have to be guaranteed. AnH∞ control approach is

proposed in such a way that both structural uncertainties inthe plant and data losses can be

tolerated, while optimizing the performance of the system.To deal with the plant uncertain-
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ties, a central LTI controller will be calculated. This central controller will be combined

with another transfer function,Q(z), that will be in charge of the minimization of the er-

ror variance. In order to findQ(z), an algorithm is proposed which gives a solution while

satisfying the constraints. The union of these two transferfunctions provides the proposed

controller.

In Chapter 3 the same structure of NCS than in Chapter 2 is used. The difference here

is that a mixedH2/H∞ control technique is proposed in this chapter (while in Chapter 2

only theH∞ technique is used). TheH2 part is designed in such a way that the NCS is

stabilized, taking into account the probability of data dropouts, while theH∞ approach is

used to make the closed-loop system robust enough against structural uncertainties of the

nominal model.

Furthermore, the problem of the glucose control for diabetic patients subject to sensor

errors constraints has been presented to illustrate the perfomance provided by this tech-

nique. To represent the uncertanties, different characteristics of patients have been consid-

ered for the synthesis of the controller.

In Chapter 4, structural uncertainties in the plant are considered also. One goal of this

chapter is to find a robust controller for the plant with uncertainties, which will be carried

out by means of anH∞ control approach. Another important objective is to designa filter

that calculates an estimation of the output of the plant. This estimation will be used when a

packet dropout occurs, so the feedback will not become zero.Mean square stability (MSS)

and robustness properties also have to be guaranteed. The filter design will be done with

a technique based on the location of the unstable poles of themodel of the plant. Further

information can be found in [J. E. Normey-Rico and E. F. Camacho, 2009].

Also in Chapter 4, the networked control system is modelled as a MJLS and an LMI

is derived in order to find a robust filter and controller by means ofH∞ techniques (see [S.

Skogestad, and I. Postlethwaite, 2005]). The designed filter will calculate an estimation of
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the state of the plant. This estimation will be used when a packet dropout occurs, so the

feedback will not become zero.

Chapter 5 proposes a predictive control scheme focussing onthe sensor/actuator vs.

controller information interchange policy. Another concern in this chapter is the design

of a strategy for networked linear systems with disturbances, with large data dropouts, re-

taining good performance. Additionally, limiting the amount of information transmitted

in a Networked control system is a major concern. In this chapter, the effect of reducing

the number of data packet exchanges between the controller and the actuator, while keep-

ing an error threshold for the actuator control signals, is explored. This threshold allows

to limit the amount of information through the network, transmitting only when relevant

information for control is needed.

The network model considered allows for packet dropouts in both links, controller-to-

actuator and sensors-to-controller. This motivates the inclusion of detection and compensa-

tion of missing packets resorting to buffering and state estimator respectively. To show the

behaviour of the proposed compensation strategy, simulation results are provided on the

level control problem of a three-tank system.

It has been also proposed to send from the controller a sequence of control signals that,

appropriately buffered and scheduled at the actuator end, become a safeguard in case of

delays or eventual packet dropouts. This concept naturallyfits the model predictive control

paradigm (MPC), and so has been reported in the literature.

In Chapter 5, it is supposed that the statistics of the time delays and dropouts can be

measured or estimated with enough precision, exploiting this fact to design a stochastic

packetized MPC to improve the control performance.

Chapter 6 studies NCS in which the network is composed of a certain number of nodes

forming a matrix strucure. These nodes follow an algorithm,that decides which node will

calculate the control input. This node will solve a cooperative MPC communicating with its
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neighbors. Each node knows a part of the whole system model and it shares its information

with a group of neighbor nodes, so they cooperate in order to exchange their information

about the system. At each sampling time, a different group ofnodes is chosen to calculate

the control signal. This group of nodes will be chosen depending on the particular network

outcomes for that sampling time. Chapter 6 extends the recent conference contribution [D.

E. Quevedo, K. H. Johansson, A. Ahlén and I. Jurado, 2012] to encompass NCSs with

parallel links and the use of cooperative MPC. The idea is motivated by the fact that the

link transmission outcomes may change at each sampling instant, so one particular node is

not always the best suited to perform the control calculation.

In the network under consideration in this work, the only node that receives the state of

the plant without any dropouts is the sensor node, which is located next to the plant. The

actuator node is directly connected to the plant input, therefore this data is received without

problems. The actuator node is also the only node that provides transmission acknowledg-

ments.

It is supposed that the model of the plant is divided into a certain number of incomplete

subsystems. The control policy to be used will be a cooperative MPC.

With the algorithm proposed, transmission outcomes and their acknowledgments will

determine, at each time instant, whether the control input will be calculated at the actuator

node, or closer to the sensor node.

Chapter 6 also studies a single-loop NCS topology which usesa series connection of

analog erasure channels. Thus, transmissions are affectedby random packet dropouts.

Another flexible NCS architecture where the role played by individual nodes depends

upon transmission outcomes is presented. With this algorithm, transmission outcomes de-

termine, at each instant, which node will calcultate the state estimate.

In Chapter 7 a distributed cooperative estimation framework is discussed based on

local Luenberger-like observers in combination with consensus strategies. Remarkably,
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network-induced delays and packet dropouts are considered. The efficient use of the net-

work resources receives important attention in both, time-driven periodic and event-based

communication between the agents. The former approach reduces the amount of informa-

tion communicated over the network resorting to two different ideas: on the one hand, only

neighbors are allowed to communicate, reducing transmissions with respect to all-to-all

communication schemes. On the other hand, the design of the observers contemplates the

possibility of sharing only a part of the estimated state between neighbors, instead of com-

municating the whole estimated vector state. This economy in the use of network resources

is, by its own nature, further improved with the event-driven communication approach.
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Chapter 2

An H∞ suboptimal robust control
approach for Networked Control

Systems with uncertainties and data
dropouts

T
his chapter studies the design of Networked Control Systemssubject to plant un-

certainties and data losses. The controller design has two main objectives. The

first one is to robustify the control law against plant uncertainties. The other

one is to achieve good performance by minimizing the variance of the error signal. Data

losses are modelled as an independent-identically distributed (i.i.d.) sequence of Bernoulli

random variables. For analysis and design, this random variable is replaced by an additive

noise plus gain channel, which is equal to the successful transmission probability in the

feedback loop. Also, structural uncertainties in the modelof the plant are considered. To

cope with the latter, anH∞ control technique is proposed. The controller is synthesized in

order to make the closed-loop system robust against structural uncertainties of the nominal

model, while achieving optimal performance of the system inthe presence of dropouts.

Therefore, the main goal of this chapter is to find a robust controller for the plant with

uncertainties and with data losses in the transmission; also minimizing the variance of the

error signal.Mean square stability (MSS)and robustness properties also have to be guaran-
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teed. AnH∞ control approach is proposed in such a way that both structural uncertainties

in the plant and data losses can be tolerated, while optimizing the performance of the sys-

tem. To deal with the plant uncertainties, a central LTI controller will be calculated. This

central controller will be combined with another transfer function,Q(z), that will be in

charge of the minimization of the error variance. In order tofind Q(z), an algorithm is

proposed which gives a solution while satisfying the constraints. The union of these two

transfer functions provides the proposed controller.

2.1 H∞ control problem

In this section, a brief summary ofH∞ control is presented. Further information can be

found in [K. Zhou, J. C. Doyle, and K. Glover, 1996], [J. C. Doyle, K. Zhou, K. Glover

and B. Bodenheimer, 1994] and [S. Skogestad, and I. Postlethwaite, 2005]. The control

system described in Figure 2.1 is considered, where the generalized plantP(z) and the

controllerC(z) are both assumed to be real-rational and proper. The signalsinvolved in the

diagram are the following:w∈Rm2 represents the disturbance vector,u∈Rm1 is the control

input,z∞ ∈ R
p1 is the error vector used in quantifyingH∞ performance. The measurement

supplied to the controller is represented bym∈ R
p2.

The synthesis problem considered in this approach consistsin finding an LTI controller

C(z) that minimizes the followingH∞ criterion:

Min γ , subject to: ‖T∞‖∞ < γ γ ∈ R
+, (2.1)

whereT∞(z) denotes the closed-loop transfer function fromw to z∞. It is given by the

lower linear fractional transformation:

T∞(z) = P11(z)+P12(z)C(z)(I −P22(z)C(z))
−1P21(z),

with

P(z) =

[

P11(z) P12(z)

P21(z) P22(z)

]

.
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The transfer functionT∞(z) is chosen to represent a mixed-sensitivityH∞ control prob-

lem, as explained in [S. Skogestad, and I. Postlethwaite, 2005]. For closed loop transfer

functions,S(z) is used to denote the ouput sensitivity of the system, andT(z) to denote the

output complementary sensitivity. Thus,S(z) = (1+L(z))−1 andT(z) = L(z)(1+L(z))−1,

whereL(z) is the transfer function around the loop as seen from the output. Then, two

weighting functions may be chosen:Ws(z) to weight the sensitivity functionS(z) andWt(z)

to weight the complementary sensitivity functionT(z). These weighting functions allow

to specify the range of frequencies of relevance for the corresponding closed-loop transfer

matrix. As it is known, an appropriate shaping ofT(z) is desirable for tracking problems,

noise attenuation and for robust stability with respect to multiplicative output uncertainties.

On the other hand, an appropiate shaping ofS(z) will allow to improve the performance of

the system avoiding steady state errors. Thereby, this approach is useful to have an appro-

priate performance on tracking problems, as well as for the system robustification against

noises and uncertainties.

Figure 2.1: H∞ synthesis setup

Given the above, in order to design a networked controller bymeans of this control

technique, it is necessary to put the original system under consideration into the form

shown in Figure 2.1.
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2.2 Problem definition

This chapter is focused on a Robust NCS (RNCS) wherein the main problems are the

uncertainties in the plant model and the packet dropouts. Therefore, the aim is to design a

controller that stabilizes a system subject to these two issues. Also, it is required to achieve

a small variance of the error signal.

The plant model under consideration is represented by:

G∗(z) = G(z)(I +WI (z)∆(z)), (2.2)

whereG∗(z) represents the family of all the possible plants,G(z) is the nominal plant

model andWI (z)∆(z) is the multiplicative uncertainty, with‖∆(z)‖∞ < 1.

In the following, the way to deal with the information lossesis presented.

The packet dropouts imply that there is an unreliable channel in the feedback path. This

situation is illustrated in Figure 2.2, whereC(z) is the controller,r is the reference andy is

the plant output. The relation between the channel inputv and the channel outputwp is:

wp(k)
.
= (1−dr(k))v(k), ∀k∈ N0, ∀v(k) ∈ N, (2.3)

wheredr models data losses,dr(k) ∈ {0,1}, ∀k∈ N0.

The plant under consideration is a random one, due to the existence of an unreliable

channel with random data dropouts. In this case, the probability of a successful commu-

nication is given byp ∈ (0,1). The plant model is fixed but unknown, because of the

uncertainties considered, see (2.2).

The following notion of stability is adopted:

Definition 1 (Mean square stability) [O. L. V. Costa, M. D. Fragoso, and R. P. Mar-

ques, 2005] Consider a system described byx(k+ 1) = f (x(k),w(k)), wherek ∈ N0, f :

R
n×R

m→R
n, x(k) ∈Rn is the system state at time instantk, x(0) = x0, wherex0 is a sec-

ond order random variable, and the inputw is a second orderwss(wide-sense stationary)
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process independent ofx0. The system is said to be mean square stable (MSS) if and only

if there exist finiteµ ∈ R
n and finiteM ∈ R

n×n, M ≥ 0, such that

lim
k→∞

E{x(k)}= µ ,

lim
k→∞

E{x(k)x(k)T}= M, (2.4)

regardless of the initial statex0.

Figure 2.2: RNCS with packets dropouts

Assumption 1.

• The processdr is an independent sequence of i.i.d. Bernoulli random variables with

P{ dr(k) = 1} =1− p for all k∈ N0.

• The plant transfer functionG(z) belongs toRsp, is SISO, non-zero, has no zeros or

poles on the unit circle, and has a stabilizable and detectable underlying realization.
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Figure 2.3: Equivalent RNCS with packets dropouts

• The initial states of both the plant and the controller are jointly second order vari-

ables.

The following result establishes an equivalence between the system with dropouts and

an associated LTI one.

Theorem 1. (Equivalence, [Q. Ling and M. Lemmon, 2004], [E. I. Silva andS. A. Pul-

gar, 2011]) Consider the feedback loops in Figures 2.2 and 2.3. The signalq in Figure 2.3

is an independent sequence of i.i.d. random variables having zero mean and a varianceσ2
q

that satisfies

σ2
q = p(1− p)σ2

v ,

provided the stationary variance ofv exists and is finite.

Let us suppose thatp∈ (0,1) and that Assumptions 2 and 8 from [E. I. Silva and S. A.

Pulgar, 2011] hold. Then:

1. If the feedback system depicted in Figure 2.2 is MSS and thefeedback system in

Figure 2.3 is internally stable, then the stationary PSDs (Power Spectral Densities)
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of the error (e
.
= r−y) and of all the corresponding signals in the loops are the same

in both situations.

2. The networked system in Figure 2.2 is MSS if and only if the feedback loop in Figure

2.3 is asymptotically stable and

p
1− p

>
∥
∥Tp(z)

∥
∥2

2 , (2.5)

whereTp(z) is the transfer function fromq to vp in Figure 2.3, namely

Tp(z)
.
=−pG∗(z)C(z)(1+ pG∗(z)C(z))−1. (2.6)

As a consequence of Theorem 1, ensuring MSS of the system in Figure 2.2 is equiv-

alent to achieving stability of the system in Figure 2.3, while at the same time satisfying

condition (2.5). Also, minimizing the variance of a signal is equivalent in both systems.

Thereby, the problem can be posed as the searching of a controller C(z) that stabilizes the

system in Figure 2.3, satisfies (2.5) and minimizes the variance of the error, taking into ac-

count that the plantG(z) is the nominal plant model and that the closed-loop system must

be robust against the uncertainties in the plant model.

As mentioned before, a contribution of the current work is that structural uncertainties

are considered in the model of the plantG∗(z). Due to this fact, the mixed sensitivity ap-

proach within theH∞ scope allows to impose robust performance by means of appropriate

design of weighting functions. In particular, as stated in Section II, robust stability can be

guaranteed by weighting the complementary sensitivity function if structural multiplicative

uncertainty is considered ([M. G. Ortega and F. R. Rubio, 2004], [M. G. Ortega, M. Vargas,

L. F. Castaño and F. R. Rubio, 2006]), while performance characteristics can be imposed

by means of a reasonable weight on the sensitivity function.Using this approach acentral

H∞ controller will be obtained.
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Figure 2.4: RNCS and the weighting transfer functions

To incorporate condition (2.5), an additional transfer function (Q(z)) is designed. There-

fore, combining the centralH∞ controller with this transfer function, the finalH∞ controller

is obtained. The above leads to the following control designproblem:

Problem 1 Consider the RNCS in Figure 2.2 where the plantG(z) has bounded struc-

tural multiplicative uncertainties. Then, the problem consists in finding a robust controller

C(z), using the RNCS in Figure 2.3, that achieves the following conditions simultaneously:

• Minimize ‖T∞‖∞ to achieve a good performance on tracking problems and the sys-

tem robustification against the plant uncertainties (see Figure 2.4).

• Minimize the variance of the error signale.

The first objective will be achieved by means of theH∞ central controller. To tackle the

second one, the parametrization in (2.8) will be used. The parameter will be found solv-

ing an algorithm that seeks to minimize the variance of the error signal and satisfies an

appropriate constraint.



2.3. Controller design 25

2.3 Controller design

In this section, the controller synthesis procedure is described. The central controller is

calculated by means of the describedH∞ control technique. Some weighting transfer func-

tions will be considered in the system to deal with the uncertainties of the plant model.

The augmented system is represented in Figure 2.4. The weighting transfer functionsWs(z)

andWt(z) weight the sensitivity function (S(z)) and the complementary sensitivity func-

tion (T(z)), respectively. The outputs of these weighting transfer functions are the signals

zs andzt respectively. The latter represent the components of the vector z∞ =

[

zs

zt

]

in

Figure 2.1.

One of the considered weighting functions is the sensitivity transfer function, that is the

one from the reference to the error signal. The other used transfer function(T(z)) depends

on the open-loop transfer function of the system,L(z). Thus, the output signalv is taken as

the input of the weighting transfer functionWt(z), as represented in Figure 2.4.

The finalH∞ controller is built by a linear fractional transformation of the central con-

troller and a transfer functionQ(z) (see Figure 2.5).Q(z) is calculated in order to deal with

the optimization problem of minimizing the error variance.Therefore, the problem can be

written as:

Q(z)opt = arg in f [σ2
e ]Q(z), (2.7)

whereσ2
e represents the variance of the error.

It is important to note that the resulting controller has thefollowing structure:

C(z) = Kc11(z)+Kc12(z)(1−Q(z)Kc22(z))
−1Q(z)Kc21(z) (2.8)

whereQ(z) has to satisfy the constraint:

‖Q(z)‖∞ < γ
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whereγ is theH∞ perturbation attenuation parameter in (3.1), and

Kc(z) =

[

Kc11(z) Kc12(z)

Kc21(z) Kc22(z)

]

In Figure 2.5, the structure of the global controller is represented. In the present work,

a fixed structure has been considered forQ(z). This is because it is necessary for the search

method described below to know how many parameters have to befound with the itera-

tions, so the best possible performance is achieved. In thiscase, it is supposed thatQ(z)

is a first order transfer function, therefore the parametersare a gain, a pole and a zero.

Therefore, a first order transfer function is chosen forQ(z). With this structure, there are

three parameters to take into account to minimize the error of the system, and each one

is affecting in a different way. A first order system is also chosen in order to not increase

excessively the computational cost of the algorithm. Thereby the structure is:

Q(z) =
KQ(z−cQ)

(z− pQ)

wherecQ ∈ (−1,1) and pQ ∈ (−1,1), this way, theQ(z) is stable and with minimun

phase. Imposing the condition‖Q(z)‖∞ < γ, it can be seen thatKQ < γ 1+pQ
1+cQ

if cQ > pQ

andKQ < γ 1−pQ
1−cQ

if cQ < pQ. If cQ > pQ, then theH∞ norm is localized whenz=−1, and

if cQ < pQ it is localized whenz= 1.

Figure 2.5: Controller structure
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To find Q(z)sub, which is an approximation ofQ(z)opt, the following numerical search

over a grid is used, for any fixed and knownp∈ (0,1):

1. Define a grid forKQ, cQ andpQ:

c̃Q = {cQ1, ...,cQic , ...,cQnc}, cQ1 ≥−1 andcQnc ≤ 1,∀ic ∈ [1,nc].

p̃Q =
{

pQ1, ..., pQip , ..., pQnp

}
, pQ1 ≥−1 andpQnp ≤ 1,∀ip ∈ [1,np].

K̃Q = {KQ1, ...,KQiK , ...,KQnK}.

2. Find the variance of the error ([E. I. Silva and S. A. Pulgar, 2011]),
[
σ2

e

]

Qi(z)
for

everyQi(z) ∈ Q̃(z), whereQ̃(z) =
K̃Q(z−c̃Q)

(z−p̃Q)
.

3. DefineiK∗ , ic∗ andip∗ as the indexesiK , ic andip associated to the smallest
[
σ2

e

]

Qi(z)
.

Approximate the optimal variance of the error by
[
σ2

e

]

Q∗i (z)
.

Therefore, withKQiK∗ ,cQic∗ , pQip∗ , it is possible to approximateQ(z)opt with the desired

precision. In [E. I. Silva and S. A. Pulgar, 2011] a similar procedure is used but the global

controller is designed with a Youla parametrization. This leads to a 2-norm minimization

problem of certain matrix transfer functions, which is solved in a specific way that, in

general, can not be extrapolated to another controller parametrization. The advantage of

the method presented in the present work is that it is not necessary to know exactly the

model of the plant, since structural uncertainties are considered.

As mentioned before, theH∞ control problem will be solved to find an optimal con-

troller which achieves the system robustification against the plant uncertainties and gives

optimal performance. To carry out the synthesis, the systemin Figure 2.4 has to be ex-

pressed, by means of alower linear fractional transformation, in the form as in Figure 2.1.

It is easy to see that, by identifying the terms, the followings expressions hold:

w= [r q]T ,
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P(z) =






Ws(z) 0 | −Ws(z)G(z)

0 0 | Wt(z)G(z)

I −I | −pG(z)






With respect to the minimization problem in (3.1),T∞(z) is chosen as follows:

‖T∞(z)‖∞ =

∥
∥
∥
∥
∥

[

Ws(z)S(z)

Wt(z)T(z)

]∥
∥
∥
∥
∥

∞

2.4 Stability analysis

For the stability analysis, the system in Figure 2.4 is represented as a state space system.

As a consequence of Theorem 1, if the stability of the system in Figure 2.4 is proven, the

system in Figure 2.2 will be also stable.

Notice that constraint (2.5) is imposed in the design of the controller.

The system under consideration is:

x(k+1) = A′x(k)+B′ww(k) (2.9)

z∞(k) = C′x(k)

whereA′ and B′ are the state space realization of the systemPC(z) shown in 2.6. The

controllerC(z) is obtained following the equation (2.8), as explained in Section 2.3.

Theorem 2.Given γ > 0 (obtained from the controller synthesis in Section 2.3) and

matricesA′ andB′, the system (3.5.2) is stable and‖z∞‖2
‖w‖2

< γ if and only if there exists a

matrixX, such that the following matrix inequality holds:








−X 0 XTA′T XTC′T

0 −γI B′w
T 0

A′X B′w −X 0

C′X 0 0 −I







< 0 (2.10)
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whereX = P−1, with P> 0.

Proof:

Consider

V(k) = xT(k)Px(k)

with P> 0, and seek:

V(k+1)−V(k) = xT(k+1)Px(k+1)−xT(k)Px(k)< 0

By incorporating theH∞ condition: ‖z∞‖2
‖w‖2

< γ, the following expression is obtained:

xT(k)A′TPA′x(k)+xT(k)A′TPB′ww(k)+wT(k)B′w
TPA′x(k)+

wT(k)B′w
TPB′ww(k)−xT(k)Px(k)+zT

∞(k)z∞(k)− γwT(k)w(k)< 0
(2.11)

Definingξ = [x w]T , the equation (2.11) is equivalent to:

ξ T

[

−P 0

0 −γI

]

ξ +ξ T

[

A′T

B′w
T

]

P
[

A′ B′w
T
]

ξ+

ξ T

[

C′T

0

]
[

C′ 0
]

ξ < 0

(2.12)

Figure 2.6: System PC(z)
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Using Schur complement and with the following multiplication,








P−1 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I















−P 0 A′T C′T

0 −γI B′w
T 0

A′ B′w −P−1 0

C′ 0 0 −I















P−1 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I







< 0

the linear matrix inequality (2.10) is obtained.

The result follows upon noting that, for linear systems, theexistence of a matrixP> 0

such that (2.10) holds, is a necessary and sufficient condition for the stability of the system,

[J. Daafouza and J. Bernussoub, 2001].

2.5 Numerical example

To illustrate the methodology proposed in this paper, the following unstable nominal plant

is considered:

G(z) =
z−0.5

z(z−1.1)
,

with sampling timetm = 0.05s.

Let us consider a transmission channel with a successful probability p= 0.7. Later, it

will be checked if this probability is enough to keep the systems equivalence and, conse-

quently, the mean square stability of the system.

The plant under consideration has parametrical uncertainties, in the gain and in the dy-

namics as well. Also structural uncertainties are considered, as unmodelled dynamics. In

this example, two non-nominal model structures are considered. To obtain these models,

two high frequency poles are included and a percentage of uncertainty in the model gain

and pole has been considered. From these two systems and the nominal plant, multiplica-

tive uncertainties can be derived. The frequency response of these uncertainties have been

plotted in Figure 2.7.

The two non-nominal models have the following expressions:
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G1(z) =
0.884(z−0.5)

z(z−1.111)(z−0.110)

G2(z) =
1.075(z−0.5)

z(z−1.09)(z−0.215)

From this estimation of the uncertainty bound, the weighting transfer functionWt(z)

for the complementary sensitivity function is designed in such a way that its modulus is

greater than the modulus of the uncertainties at all frequencies (see Figure 2.7):

Wt(z) =
2.438z−1.995

z+0.9802
(2.13)

Ws(z) =
0.07012z−0.04207

z−0.995
(2.14)

Ws is chosen taking into account that at low frequencies the gain ofW−1
s has to be very

small, in order to avoid steady state errors.

By solving theH∞ control problem for this case, using some functions of theµ−Analysis

and Synthesis Toolboxfor Matlab, and considering a success probabilityp= 0.7, a robust

controller is obtained yielding the following performancemeasure:

‖T∞‖∞ = 0.7893< 1

The fact that‖T∞‖∞ < 1 assures that the sensitivity functions are staying below their

bounds.

To obtain the global controller,Q(z) can be calculated by means the algorithm pre-

sented in the previous section, finding the following result:

Q(z)sub=
0.2(z−0.4)

z−0.3
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Figure 2.7: Uncertainties andWt

‖Q(z)sub‖∞ = 0.2154< γ = 0.7893

Once the controller is obtained, it is checked that all the sensitivity functions are below

the inverse ofWs, as it is shown in Figure 2.8.

Figure 2.8 illustrates the sensitivity functions of the nominal and non-nominal plant

models and the inverse of the weighting transfer functionWs(z). This figure shows how

all the sensitivity functions, the one of the nominal systemand the other non-nominal

systems, are bounded (in magnitude) by the inverse of the weighting functionWs(z) due to

the fact that the achieved value ofγ is lesser than one. This fact indicates that the outputv

can follow the referencer for all the plant models under consideration, that is, a tracking

problem can be solved although the plant model is not exactlyknown.

Figure 2.9 represents the complementary sensitivity functions of the nominal and non-
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nominal plant models and the inverse of the weighting transfer functionWt(z). Clearly,

all the complementary sensitivity functions, the one of thenominal system and the other

non-nominal systems, lie below the inverse of the weightingfunctionWt(z). Therefore, the

obtained controller is robust against the uncertainties inthe plant model.

To verify these results, some simulations have been carriedout. These simulations have

been also obtained for the differentQ(z). Figure 2.10 shows how the system follows the

reference with a successful transmission probabilityp = 0.7, which is greater than the

minimal p needed to achieve MSS and robustness properties for this system, which is

obtained from (2.5):

pmin =

∥
∥Tp(z)

∥
∥2

2

1+
∥
∥Tp(z)

∥
∥2

2

,

yielding pmin = 0.65, since
∥
∥Tp(z)

∥
∥2

2 = 1.36 in the case ofQopt(k), and (2.5) has to be sat-

isfied. This figure illustrates output trajectories of the closed-loop system with the nominal

plantG(z), with plantG1(z) and with the plantG2(z). The results are very similar because

of the robustness of the system. However, there exist some differences between the dif-

ferent outputs. For example, the output withG1(z) has an overshoot that is greater than

the overshoot when the nominal model is used. With respect tothe output withG2(z), the

overshoot is reduced with respect the other cases, but the stationary performance is worse.

Illustrative outputs of the different systems for a successprobability of p = 0.9 are

presented in Figure 2.11. In this case, the probability of success in the transmission has

been increased, although the controller used in these simulations is the one calculated for

p = 0.7. Clearly, the results are better than the ones presented inFigure 2.10, but the

differences between the performance with the different systems is the same as in the case

of p= 0.7.

Finally, Figure 2.12 presents the outputs of all systems with p = 0.4, while using the
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Figure 2.10:Simulation results with p = 0.7

same controller as in the preceding simulations. Obviously, the performances get worse for

all systems, and in the case of the plant with the uncertainties 1, the closed-loop system

becomes unstable. Therefore, withp= 0.4, the robust stability is lost.

Some representative results (error variances) are shown inTable 2.1, where two differ-

ent cases are considered. In one caseQ(z)opt is used and in the other the central controller is

used, therebyQ(z) = 0. In the cases, the constraint‖Q(z)‖∞ ≤ γ holds. The error variances

are worse in the case of the non-optimalQ(z) = 0. Clearly, asp increases, performance

improves.

The case of a traditionalH∞ controller has been also considered. This controller does

not take into account the data losses in the system. As expected, the closed loop system

becomes unstable for all scenarios considered in this work.
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Figure 2.11:Simulation results with p = 0.9

Table 2.1:Error variances

p= 0.7 Plant

Q(z) G(z) G1(z) G2(z)

Qopt 1.71 1.84 2.04

0 1.738 1.867 2.09

p= 0.9

Qopt 0.995 1.01 1.09

0 0.9998 1.023 1.127

p= 0.4

Qopt 5.96 29.47 8.98

0 6.155 34.09 9.093
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Figure 2.12:Simulation results with p = 0.4

2.6 Conclusions

The chapter has focused on control loops for SISO LTI plants,where the feedback path

comprises a communication channel affected by Bernoulli data losses. This system has

been studied as an equivalent one wherein the unreliable channel has been replaced by an

additive i.i.d. noise channel, plus a gain. The objective ofthe chapter has been the synthesis

of a controller that compensates model uncertainties and failed transmissions. To perform

this task, anH∞ control problem has been proposed. Numerical examples haveillustrated

closed-loop system performance benefits of our approach.

Future works could consider different structures for the parameterQ(z), non-linear

systems and also to include delays in the communication channel.
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• Isabel Jurado, Manuel G. Ortega, Daniel Quevedo and Francisco R. Rubio.An H∞

suboptimal robust control approach for Networked Control Systems with uncertain-

ties and data dropouts. Submitted to IET Control Theory Applications.



Chapter 3

Mixed H2/H∞ robust control approach
for NCS with uncertainties and data

dropouts

I
n this chapter, a Robust Networked Control System (RNCS) subject to data losses

constraints is again considered. These data losses are modelled as an independent

sequence of i.i.d. Bernoulli random variable. This random variable is replaced by

an additive noise plus a gain, which is equal to the successful transmission probability in

the feedback loop. Also, structural uncertainties in the model of the plant are considered.

To cope with this problem, a mixedH2/H∞ control technique is proposed in this chapter.

In the previous chapter (Chapter 2), only theH∞ technique is used while in this one theH2

approach is added. In this way, theH2 technique is used to stabilize the NCS taking into

account the probability of data dropouts, while theH∞ approach is in charge of making the

closed-loop system robust enough against structural uncertainties of the nominal model.

3.1 Mixed H2/H∞ control problem

In this section, a brief mixedH2/H∞ control approach is described. Further information

can be found in [K. Zhou, J. C. Doyle, and K. Glover, 1996] and [J. C. Doyle, K. Zhou,

K. Glover and B. Bodenheimer, 1994]. The control system described in Figure 3.1 is con-

39
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sidered, where the generalized plantP(z) and the controllerC(z) are both assumed to be

real-rational and proper. The signals involved in the diagram are the following:w ∈ R
m2

represents the disturbance vector,u∈ R
m1 is the control input,z∞ ∈ R

p1 andz2 ∈ R
p3 are

the error vectors, the first one for the measurement of theH∞ performance, and the second

one for theH2 performance. The measurement supplied to the controller isrepresented by

m∈ R
p2.

P(z)

C(z)

Z

Z

mu

w  ∞

2

Figure 3.1: Mixed H2/H∞ synthesis

The synthesis problem considered in this approach consistsin finding a suboptimal LTI

controllerC(z) that minimizes the following mixedH2/H∞ criterion:

Min α ‖T∞‖2∞ +β ‖T2‖22 , (3.1)

subject to:

• ‖T∞‖∞ < γ0

• ‖T2‖2 < ν0

whereT∞(z) andT2(z) denote the closed-loop transfer functions fromw to z∞ andz2, re-

spectively; andγ0, ν0 ∈ R
+.

As will be shown, the minimization of‖T2‖2 implies the minimization of the lower

bound of the success probability in the data transmission.
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In order to find out a controller by means of this control technique, it is necessary to

put the original system into the form of the block diagram shown in Figure 3.1. To do this,

the original system is changed with alower linear fractional transformation.

In this case,T∞ is chosen to represent a mixed-sensitivityH∞ control problem, which is

widely explained in [S. Skogestad, and I. Postlethwaite, 2005]. So two weighting functions

are again chosen:Ws(z) to weight the sensitivity functionS(z) andWt(z) to weight the

complementary sensitivity functionT(z). These weighting functions allow to specify the

range of frequencies of relevance for the corresponding closed-loop transfer matrix.

3.2 Problem definition

As Chapter 2, this one is focused on a RNCS wherein the main problems are the uncertain-

ties in the model of the plant and the packets dropouts. So, the aim is to design a controller

that stabilize a system subject to these two problems together.

The uncertainties under consideration were presented in Chapter 2, as well as the way

to deal with the information losses, theMean square stabilitydefinition and theEquiva-

lencetheorem.

In this chapter, condition (2.5) is imposed by solving anH2 control problem, to find the

minimal probability of success in the transmission (p). Therefore, by mixing theH∞ tech-

nique from Chapter 2 and this one, a mixedH2/H∞ control problem is formulated, with

the following cost function to minimize:α ‖T∞‖2∞ +β ‖T2‖22, where‖T∞‖∞ includes some

weighting functions to achieve the system robustification and ‖T2‖2 will be
∥
∥Tp(z)

∥
∥

2, to

impose condition (2.5).

Problem 2 Consider the RNCS in Figure 2.2 where the plantG(z) has bounded struc-

tural multiplicative uncertainties. Then, the problem consists in finding a robust controller

C(z), using the RNCS in Figure 2.3, that achieves the following conditions simultaneously:
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• Minimize ‖T∞‖∞ to achieve a good performance on tracking problems and the sys-

tem robustification against the plant uncertainties.

• Minimize ‖T2‖2 to calculate the minimal successful probability of data losses possi-

ble for the NCS, imposing condition (2.5), so the systems in the Figures 2.2 and 2.3

are equivalents.

3.3 Controller design

In this section the controller synthesis will be performed by means of the described mixed

H2/H∞ control technique. Some weighting transfer functions willbe introduced in the sys-

tem to deal with the uncertainties of the plant model. The augmented system is represented

in Figure 3.2. The weighting transfer functionsWs(z) andWt(z) weight the sensitivity func-

tion (S(z)) and the complementary sensitivity function (T(z)), respectively. The outputs of

these weighting transfer functions are the signalszs andzt respectively, and they represent

the components of the vectorz∞ in Figure 3.1.

C1(z) G*(z) y
r m1 u1

_

v

q

p

Wt(z)

Ws(z)

m2

u2

z2

zt

zs
C2(z)

Vp

_
e

Figure 3.2: RNCS and the weighting transfer functions

It is important to note that the system under consideration,is a non-unitary feedback

system. Thereby, in order to eliminate the steady state errors, a two-degrees-of-freedom

controller is proposed. Therefore, the controller will be formed by two transfer functions,
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C1(z) andC2(z). Also, the sensitivity function (S(z)) and the complementary sensitivity

function (T(z)) expressions will change. These expressions will be:

S(z) =
1+C1(z)G(z)(C2(z)p−1)

1+C1(z)G(z)C2(z)p

T(z) =
C1(z)C2(z)G(z)p

1+C1(z)C2(z)G(z)p

The sensitivity function (S(z)) represents the transfer function from the reference to

the error signal. The complementary sensitivity function (T(z)) depends on the open-loop

transfer function of the system, which is:L(z) =C1(z)C2(z)G(z)p, so the control signalu2

should be the input of the weighting transfer functionWt(z), as it is represented in Figure

3.2.

The objectives of the controller are the following:

1. Minimize theH∞ norm of the closed loop from the exogenous disturbances vector

to the vectorz∞.

2. Minimize theH2 norm of the closed loop signal from that vector to the signalz2.

So, as mentioned before, the mixedH2/H∞ control problem will be solved to find a subop-

timal controller which achieves a trade-off between the minimum of the two norms under

consideration. To carry out the synthesis, the system in Figure 3.2 has to be expressed, by

means of alower linear fractional transformation, as in Figure 3.1. It is easy to see that, by

identifying the terms, the followings equations hold:

z∞ = [zs zt ]
T , w= [r q]T ,
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P(z) =











Ws(z) 0 | −Ws(z)G(z) 0

0 0 | 0 Wks(z)

0 0 | pG(z) 0

I 0 | 0 −I

0 I | pG(z) 0











With respect to the minimization problem in (3.1),T∞(z) andT2(z) are chosen as fol-

lows:

‖T2(z)‖2 =
∥
∥Tp(z)

∥
∥

2

‖T∞(z)‖∞ =

∥
∥
∥
∥
∥

[

Ws(z)S(z)

Wt(z)T(z)

]∥
∥
∥
∥
∥

∞

The parameters will be chosen in such a way that the condition(2.5) holds. This means

that:

ν0 =
p

1− p

At this point, it is worth mentioning some comments in relation to the choice of the

others parameters. It is interesting to note that, if the priority is to achieve the minimal

possiblep, it is important to obtain a controller that provides anH2 norm of T2(z) very

close to its minimum. Then, for this case, the parameterβ should be greater thanα. On

the contrary, if the interest lies on achieving the best performance and robustness against

noises and uncertainties, it is better to choose the parameter α greater thanβ . This means

that the resulting controller will provide a very smallH∞ norm ofT∞(z).

The probability of success in the transmissionp is assumed to be fixed in the controller

synthesis. This is possible if the network requirements arewell-known. In any case, if the

value ofp changes, the stability of the closed-loop system is guaranteed ifp is greater than

the minimal probability of success in the transmission obtained.
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3.4 Numerical results

To illustrate the methodology proposed in this paper, this section shows the obtained results

when the control strategy is applied to a particular example. In this example the following

unstable nominal plant will be considered:

G(z) =
z−0.5

z(z−1.1)

The sampling time will betm = 0.05s.
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Figure 3.3: Uncertainties andWt

To take into account the uncertainties in the plant, two non-nominal models have been

also considered. To obtain these two other models, the real plant is supposed to have un-

modelled dynamics, so, high frequency poles are include. Also a percentage of uncertainty

in the model gain has been considered. From these two systemsand the nominal plant, the

multiplicative uncertainties can be computed. The frequency response of these uncertain-

ties have been plotted in Figure 3.3.
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From this estimation of the uncertainty, the weighting transfer functionWt(z) for the

complementary sensitivity function is designed in such waythat its modulus must be

greater than the modulus of the uncertainties for all frequency. The frequency response

of Wt(z) has been also represented in Figure 3.3.
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Figure 3.4: S(z) of the nominal plant model andWs(z)

By solving the mixedH2/H∞ control problem for this case using some functions of

the µ−Analysis and Synthesis Toolboxfor Matlab and considering a success probability

p= 0.7, a robust controller is obtained yielding the following results:

‖T∞‖∞ = 0.8441, ‖T2‖2 = 1.3615

By imposing equation (2.5), this means that the system can afford a success probability

p equal to or greater than 0.65, to guarantee MSS and to preserve the demanded robustness

properties.
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Figure 3.5: T(z) of the nominal plant model andWt(z)

In Figure 3.4 the sensitivity functions of the nominal and non-nominal plants models

and the inverse of the weighting transfer functionWs(z) are represented. This graphic shows

how all the sensitivity functions, of the nominal system andsystems with uncertainties, are

below the inverse of the weighting functionWs(z). This fact indicates that the outputy

can follow the referencer for all the plant models under consideration, that is, a tracking

problem can be solved although the plant model is not exactlyknown.

Figure 3.5 represents the complementary sensitivity functions of the nominal and non-

nominal plants models and the inverse of the weighting transfer functionWt(z). From this

graphic it is possible to see that all the complementary sensitivity functions, of the nominal

system and systems with uncertainties, are below the inverse of the weighting function

Wt(z), so the obtained controller is robust against the uncertainties in the plant model.

To corroborate these results, some simulations have been carried out with the proposed

example. Figure 3.6 shows how the system follows the reference with a successful trans-
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mission probabilityp= 0.7, which is greater than the minimalp that can provide MSS and

robustness properties for this system. This graphic represents the outputs of the closed-loop

system with the nominal plant, with the plant with the uncertainties 1 and with the plant

with the uncertainties 2. The results are very similar because the robustness of the system.

However, there exist some differences between the differents outputs. For example, the

output with the uncertainties 1 has an overshoot that is greater than the overshoot when the

nominal model is used. With respect to the output with the uncertainties 2, the overshoot is

reduced with respect the other cases, but the stationary performance is worse.
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Figure 3.6: Simulation results with p = 0.7

The outputs of the different systems for a value ofp = 0.9 are shown in Figure 3.7.

In this case, the probability of success in the transmissionhas been increased, although

the controller used in these simulations is the one calculated for p = 0.7. Obviously, the

results are better than in the ones presented in Figure 3.6, but the differences between the

performance with the different systems is the same as in the case ofp = 0.7. Also, there

are steady state errors because the controller is the calculated forp= 0.7 so the feedback

is non-unitary. These steady state errors might be avoid by calculating the controller using

p= 0.9, but the objective is to compare the results with the same controller, supposing that
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p have changed in the network.

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

2

4

6

Time, t

P
l
a
n
t
 
o
u
t
p
u
t
,
 
y

 

 

Reference
Nominal plant
Plant 1
Plant 2

Figure 3.7: Simulation results with p = 0.90
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Figure 3.8: Simulation results with p = 0.40

Finally, Figure 3.8 presents the outputs of all the systems imposingp = 0.4, while

using the same controller as in the precedings simulations.Obviously, the performances

get worse for all the systems, and in the case of the plant withthe uncertainties 1 and 2, the

closed-loop system becomes unstable. Therefore, withp= 0.4, the robust stability is lost.
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3.5 Application to glucose robust control in diabetes with sensor
failures

In this section, the glucose control for diabetic patients is considered. The problem of

possible sensor failures, that leads into an absence of glucose measurement, is treated. This

sensor errors are taking into account by means of modelling its failures as an independent

sequence of random variable. This random variable is replaced by an additive noise plus a

gain, which is equal to the successful transmission probability in the feedback loop. Also,

to take into account different patients, structural uncertainties in the model of the plant are

considered.

To solve this problem, the mixedH2/H∞ robust control technique presented above

is used. In this way, theH2 approach is used to stabilize system taking into account the

probability of sensor errors, while theH∞ approach is in charge of making the closed-loop

system robust enough against structural uncertainties of the nominal model.

3.5.1 Introduction to glucose problem in diabetes

Insulin is the most important factor for the digestion process, in where the food is decom-

posed to create glucose, the principal source of energy for the body. This glucose passes

to the blood, where the cells absorb it thanks to the insulin.As the glucose concentration

raises, the insulin secretion is stimulated from the pancreas. This makes the insulin level

in blood increases, inducing the glucose absortion into thecells. In a diabetic person, the

insulin deficiency causes the glucose concentration in blood, so the body is deprived of

its main energy source. Furthermore, high glucose levels inblood may damage the blood

vessels, the kidneys and the nerves. Since there is no cure for the diabetes yet, the peo-

ple affected by this metabolic disease have to control the glucose levels in blood, keeping

them close enough to the normal ones by the external insulin supply. An appropiate control

can help preventing diseases related with heart and circulatory system, eyes, kidneys and
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nerves.

Some biological mathematical models provide characteristics of the glucose regulation

behavior in the human body, such theSorensen Model, described in [Kovacs and Kulcsár,

2007], and the one used in this work, theBergman Model, described in [R. N. Bergman

and Cobelli, 1981],[R. N. Bergman and Ader, 1985],[Lynch and Bequette, 2001].

Diabetes is a metabolism disease that is characterised by the increase of the glucose lev-

els in blood (hyperglycemia), caused by the insulin secretion deficiency. Normal limits for

the glucose levels in blood are around 130 mg/dl, even when some greasy and sugar food

have been ingested. This gyclemia stability is achieved by means of a regulator mecanism

extraordinary exact and sensitive.

When a non-diabetic person ingests food, the sugars in it are absorbed and they pass to

the blood, tending the glucose levels to raise. This tendency is detected by the insulin pro-

ducer cells, which respond with a quick insulin secretion. This makes the cells to absorb the

glucose, that way its levels in blood decrease. For a diabetic person, the insulin production

is so low that alters all the regulator mecanism: the glucoserise in blood is not followed by

the sufficient increase of the insulin, thereby the glucose cannot be absorbed by the cells

and its level keeps increasing. As a consequence, the cells cannot produce enough energy

and their functions are altered.

In this work, type I diabetes is considered. In this kind of diabetes, the pancreas does

not produce insulin, and the patient is totally dependent oninsulin from an external source

to be infused at a rate to maintain blood sugar levels at normal ones (72-145 mg/dl).

Since the normal body has a natural feedback regulation system for the insulin produc-

tion, the goal of this paper is to regulate blood sugar level in a type I diabetic by controlling

the insulin infusion rate.

This kind of problem has been treated by means of Model Predictive Control (MPC)

([Lynch and Bequette, 2001, 2002, P. Dua and Pistikopoulos,2005, 2006]), and also with
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Robust Control approaches ([S. Kamath, 2006, R. S. Parker and Peppas, 2000]).

In this work, it will be considered the possible sensor errors, that leads into an absence

of glucose measurement. Some of the most common sensors are:implantable sensors (Min-

iMed), sensors based on blood samples (Accu-Chek) or non-invasive glucometer (GlucoW-

atch). Usually, the sensors samples are taking every 5-10 min. Therefore, it is important to

have proper sensors that measure the glucose precisely. However, sometimes the sensors

are not totally reliable.

Several causes of failures have been reported for glucose sensors [Zilic and Radecka,

2011]. One cause can be because the body rejects them during the early phase or after

longer use. On the other hand, their sensitivity might degrade. Also, the fluid that flows to

the sensors could be stopped. It was also observed that for some data points, the readings

might be occasionally off, i.e., they drop-out [B. Kovatchev and Clarke, 2008]. Finally,

sensors can completely fail.

To deal with that trouble, the robust controller introducedin this chapter is used for

controlling the glucose levels. The controller synthesis will take into account the model

uncertainties, because the resulting controller must to beaccurate for different patients.

Also it will be considered the previously described sensor errors.

3.5.2 System description

The model used to define the gluco-regulatory system is theBergman Model[R. N. Bergman

and Cobelli, 1981]. In the first place the model formed by the differential non-linear equa-

tions is presented. Then, that model is symplified by means its linearization around an

equilibrium point.

Non-lineal model definition

The Bergman Model, used in this work, is described by means the following differential

non-linear equation described in [R. N. Bergman and Cobelli, 1981]:
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dG
dt

=−P1G−X(G+Gb)+D(t) (3.2)

dI
dt

=−n(I + Ib)+
U(t)
V1

(3.3)

dX
dt

=−P2X+P3I (3.4)

D(t) =
DGAGte−t/tmax,I

VGt2
max,G

(3.5)

where:

• G(t) is the plasma glucose concentration (mmol/L) above basal value.

• I(t) is the plasma insulin concentration (mU/L) above basal value.

• X(t) is proportional toI(t) in remote compartment (mU/L).

• D(t) is the meal glucose disturbance (mmol/Lmin).

• U(t) is the manipulated insulin infusion rate (mU/min).

• Gb and Ib are the basal values of glucose and insulin concentration (mmol/L and

mU/L).

• DG is the carbohidrate ingestion (g CHO).

The model parameters for a tipical patient are:

• P1 = 0.028min−1

• P2 = 0.025min−1

• P3 = 0.000013mU/L

• V1 = 12 L andn= 5/54 min

• AG = 0.8
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• tmax,G = 40min

• tmax,I = 55min

• VG = 13.79 L

• Ib = 15 mU/L

• Gb = 4.5 mmol/L

Linear model

In order to carry out the controller synthesis, a linear model is going to be obtained from

the differential non-linear equations. Therefore, from the linearization of the model around

the equilibrium pointX0 = G0 = 0, the linear model obtained is the following:






Ġ

İ

Ẋ




=






−P1 0 −Gb

0 −n 0

0 P3 −P2











G

I

X




+






0 1

1/V1 0

0 0






[

u1

u2

]

(3.6)

y=
[

1 0 0
]






G

I

X




+

[

0

0

][

u1

u2

]

(3.7)

where
[

u1

u2

]

=

[

U−Ub

D−0

]

(3.8)

WhereUb = 16.66667 mU/min is the insulin necessary to keep the equilibrium around

X0, G0.

3.5.3 Problem definition

Once the gluco-regulatory model is identified, it is possible to apply different control struc-

tures to control the glucose level in blood.
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Figure 3.9: Control scheme with sensor failures

Therefore, the plant under consiteration will be a patient,and the model will be given

by the Bergman Model equations. A sensor will be measuring the glucose level in blood.

There will be also an insulin pump as actuator, injecting insulin intravenously in order

to control the glucose level in blood (see Figure 3.9). The designed controller will be in

charged of providing the quantity of insulin needed by the patient.

There are two main problems considered in this work:

• The uncertainties in the plant model, because the parameters change from one patient

to another.

• The sensor failures. Each sampling time, the sensor has a probability of failing its

measurement.

The aim of this work is to control the glucose levels by means of the insulin injections,

taking into account the explained problems.

The uncertainties are modelled as structural ones, and theyare represented byG∗(z).

The information errors occur due to some sensor faliure. That means that the glucose

measurement is not available at some instants. This situation is illustrated in Figure 3.10,

where the different patientes are represented byG∗(z), C(z) is the controller,r is the refer-

ence that provides the proper glucose levels,y is the glucose level in blood,u is the insulin

injection that will control the glucose in blood, anddr models the sensor failures, that is
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dr ∈ {0,1}.

Figure 3.10:Robust controlled system with feedback failures

3.5.4 Simulation results

In this section, the simulation results obtained from the robust control techniques applica-

tion are presented and analyzed.

The presented simulations take into account the following considerations:

1. Basal equilibrium point: the system is going to be stabilized around the equilibrium

point given by the glucose basal level, that is, 81 mg/dl (4.5mmol/L).

2. Glucose levels in blood: the used limits for a diabetic patient are given by 60 and

180 mg/dl.

3. Controller saturation: the applied control action has tobe inside certain boundaries,
defined by (3.9). This is the real situation when the insulin injections are dosed by
means an external actuator (insulin pump).

0 (mU/min)≤U +Ubasal≤ 100 (mU/min) (3.9)

It is possible to see how, with these boundaries, the controlaction (injected insulin),

is never negative or bigger than 100 mU/min.

4. Sampling time: because of the real limitation of the existing glucose sensors,tm = 5

min.
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5. Meals: the external disturbances added are the ingestionof meals at different times

during the day. They are defined by equation (3.5) with the parameters presented in

Section 3.5.2.

Four daily meals are considered ingested in the following timetable and quantities:

• 08 : 00→ 55.1 g CHO

• 13 : 00→ 87.9 g CHO

• 18 : 00→ 69.0 g CHO

• 22 : 00→ 45.3 g CHO

Taking into account a conversion factor 1000/180 g CHO, the disturbances graphic

(daily meals) is represented in Figure 3.11.

Figure 3.11:Daily meals ingestion
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The designedH2/H∞ robust controller provides the following attenuation values:

γ0 = 0.589

ν0 = 0.136

This controller has been obtained assuming a sensor measurement succesful probability

of 70% (p= 0.7), that way equation (2.5) holds.

Simulations for different patients

Now, different patient models are considered for the simulations, which are defined by the

parameter variationsP1, P2 andP3, which identify them.

The selected patients’ parameters for this work are the following, which vary depending

on their diabetic condition:

• Nominal patient (GN):

P1 = 0.028min−1

P2 = 0.025min−1

P3 = 1.3e−5 mU/L

• Patient 1 (G1):

P1 = 0.026min−1

P2 = 0.024min−1

P3 = 1.1e−5 mU/L

• Patient 2 (G2):

P1 = 0.030min−1

P2 = 0.027min−1

P3 = 1.4e−5 mU/L
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Figure 3.12:Glucose trajectory for different patients andp= 0.9

Figure 3.13: Injected insulin for different patients andp= 0.9
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Figure 3.14:Glucose trajectory for different patients andp= 0.7

Figure 3.15: Injected insulin for different patients andp= 0.7

The robustness of the system can be appreciated for the different patient models, since

the obtained glucose evolution is quite similar for all of them, for the same probabilityp.
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Figure 3.16:Glucose trajectory for different patients andp= 0.5

Figure 3.17: Injected insulin for different patients andp= 0.5
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It can be seen in Figure 3.12 how the glucose is always less than 200 mg/dl for the

probability p= 0.9, and only patient 1 enters in hyperglycemia.

Figure 3.14 shows how the performance gets worse forp= 0.7. Now, the glucose levels

exceed 200 mg/dl, being all the patients at hyperglycemia levels during some minutes.

With p= 0.5, Figure 3.16, the maximum glucose level increases, being all the patients

more time in hyperglycemia.

The glucose level never enters in the hypoglycemia zone, which can cause the death of

the patient.

Figures 3.13, 3.15 and 3.17 show the injected insulin, whichgets more violent whenp

decreases. Also, the times when it reaches the saturation levels increase with smallerp.

3.6 Conclusions

This chapter has focused on a NCS subject to data dropouts constraints. In particular, con-

trol loops for SISO LTI plants, where the feedback path comprises a communication chan-

nel that produces data losses, are considered. This system has been studied as an equivalent

one wherein the unreliable channel has been replaced by an additive i.i.d. noise channel,

plus a gain.

The objective of this chapter has been the synthesis of a controller that avoid the model

uncertainties and support the failed transmissions. Also,the lower bound of the success

probability in the transmission has been found. To perform this task, a mixedH2/H∞ con-

trol problem has been proposed. To obtain a robust controller, some functions have been

chosen to weight some sensitivity functions. Moreover, from this control problem, the min-

imal successful transmission probability is obtained suchthat MSS and robustness proper-

ties for the closed-loop system are guaranteed.

Finally, an application has been exposed to obtain some numerical results that illus-

trates the closed-loop system performance. These simulation results corroborated that ro-
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bust performance is achieved if the successful probabilitytransmission is higher than the

minimum computed, while the differents systems performances get worse, until the robust

stability is lost, as the successful probability transmission decreases.

Also, an application of this technique to the problem of the glucose control for diabetic

patients subject to sensor errors constraints has been presented.

Different patients have been considered, thereby the synthesis of the controller has

been such that avoid the model uncertainties and support thesensor failures. Also, the

lower bound of the success probability in the sensors has been found.

Some simulations have been carried out for different patients to illustrate the closed-

loop system performance. These simulation results corroborated that robust performance

is achieved if the successful sensor measurement probability is higher than the minimum

computed.

3.7 Related publications

• Isabel Jurado, Manuel G. Ortega and Francisco R. Rubio.Networked Mixed H2/H∞

robust control approach for NCS with uncertainties and datadropouts. Proceedings

of the 18th World Congress of the International Federation of Automatic Control

(IFAC), 2011.





Chapter 4

An H∞ Filter and Controller Design for
Networked Control of Markovian

Systems with Uncertainties and Data
Dropouts

T
his chapter considers a Robust Networked Control System (RNCS) subject to

data losses constraints and modelled as a Markovian Jump Linear System. A

filter and a controller will be designed together by means ofH∞ techniques.

This design will provide robustness to the closed-loop system against plant uncertainties,

as well as disturbances attenuation.

The network will introduce data losses which will be modelled as a sequence of in-

dependent and identically distributed (i.i.d.) Bernoullirandom variable. It is considered a

maximum number of consecutive packet dropouts. Moreover, uncertainties in the model of

the plant are included, as well as unknown disturbances.

To cope with this problem, a robustH∞ filter and controller are designed by developing

a Linear Matrix Inequality (LMI).

There are also structural uncertainties in the plant and unknown disturbances. The sys-

tem is modelled as a Markovian Jump Linear System (MJLS) and an LMI is derived in

order to find a robust filter and controller by means ofH∞ techniques (see [S. Skogestad,

65
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and I. Postlethwaite, 2005]). The designed filter will calculate an estimation of the state of

the plant. This estimation will be used when a packet dropoutoccurs, so the feedback will

not become zero.

In the first section of this chapter, a filter and a controller will be synthesized in order to

make the closed-loop system robust against structural uncertainties of the nominal model.

The filter will be also able to deal with network data losses. This will be done by means of

frecuency techniques.

4.1 Filter design using frecuency techniques

This result considers an NCS with data dropouts source as well as structural uncertainties

in the plant. Therefore, one goal of this section is to find a robust controller for the plant

with uncertainties, which will be carried out by means of anH∞ control approach. Another

important objective is to design a filter that calculates an estimation of the output of the

plant. This estimation will be used when a packet dropout occurs, so the feedback will

not become zero. Mean square stability (MSS) and robustnessproperties also have to be

guaranteed. The filter design will be carried out with a technique based on the location of

the unstable poles of the plant model. Further information can be found in [J. E. Normey-

Rico and E. F. Camacho, 2009].

To illustrate the situation, a control structure is presented that depends on whether there

is a packet dropout or not. This structure is represented in Figure 4.1. It can be seen that the

feedback gets lost when a packet dropout occurs. Therefore,one of the main goal of this

section is to design a filter to estimate the plant output whena packet dropout is detected,

so the feedback is not zero when a data is lost. Figure 4.1 shows the system including the

output estimation.

As mentioned before, structural uncertainties will be considered in the model of the

plantG∗(z). So, the controllerC(z) will be designed as a mixed sensitivityH∞ controller,
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F(z)

Fre f(z)
ref

z−1

z−1

C(z)
y

ỹ

ŷ

G∗(z)

G(z)

dr

1−dr

Figure 4.1: RNCS structure with the filterF(z).

using a similar procedure as in Chapter 2. This approach makes possible to impose robust

performance by means of appropriate design of weighting functions. In particular, it is

well known that robust stability can be imposed by weightingthe complementary sensi-

tivity function if structural multiplicative uncertaintyis considered ([M. G. Ortega and F.

R. Rubio, 2004], [M. G. Ortega, M. Vargas, L. F. Castaño and F.R. Rubio, 2006]), while

performance can be imposed by means of a reasonable weight onthe sensitivity function.

Using this approach, theH∞ controller will be obtained.

On the other hand, the filter has to be able to deal with the uncertainties of the plant

in order to give an appropriate estimation of the plant output. Therefore, it is necessary to

obtain the conditions for the robustness of the closed-loopsystem. These conditions are

given by the stability of the the characteristic equation for G∗(z), yielding [J. E. Normey-

Rico and E. F. Camacho, 2009]:

1+C(z)G(z)+F(z)z−1C(z)G(z)Wm(z)∆(z) = 0

Under the assumption of the nominal closed-loop system is stable, the robust stability con-
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dition for the filter is given by the following expression:

∣
∣Wm(e

jp)
∣
∣<

∣
∣1+C(ejp)G(ejp)

∣
∣

|F(ejp)e− jpC(ejp)G(ejp)| ∀ 0< p<
π
2

wherep represents the non dimensional frequency, i.e.,p= ωtm, beingtm the sampling

time.

4.1.1 Filter design

The proposed structure for the design is shown in Figure 4.1.It can be seen that the struc-

ture is very similar to the Smith predictor with two additional filters.Fre f(z) is a traditional

reference filter to improve the set-point response andF(z) is a predictor filter used to es-

timate the system output when a packet dropout occurs.G(z) is the nominal model of the

uncertain plant with uncertaintiesG∗(z).

In the proposed structure, the estimation of the output, ˜y, is only used when a packet

is lost in the feedback channel, i.e.,dr = 1. Otherwise, the measured output is provided to

the controller.

This structure has been particularized for the case in whichthe number of consecutive

packet dropouts cannot more than one. Thus, the estimate output ỹ at the sampling timen

is given by the followings equations:

ỹ(n) = ŷ(n)+F[y(n−1)− ŷ(n−1)]

whereF [ỹ(n−1)− ŷ(n−1)] is the correction factor of the estimation.

The filter,F(z), design is done by means of frecuency techniques, taking into account

the unstable dynamics of the plant. Figure 4.2 shows an equivalent part of the original

system which is used in the filter design procedure. Making some blocks operations it is

straightforward to see thatSF(z) = G(z)(1− z−1F(z)) and it is needed to be stable. Filter

F(z) is calculated in such a way that(1− z−1F(z)) cancels the unstable poles ofG(z) in
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the expression of S(z). Further explanations can be found in[J. E. Normey-Rico and E. F.

Camacho, 2009].

F(z)

SF(z) z−1

u y

Figure 4.2: Structure for the filter design.

4.1.2 Numerical results

In this section some simulation results are presented for anunstable uncertain system. The

nominal model of the plant is represented by the following transfer function, which is the

same of that in the previous chapter, in section 2.5:

G(z) =
z−0.5

z(z−1.1)

The sampling time istm = 0.05sand the probability of success in the transmission is equal

to p= 0.7.

The frequency response of these uncertainties have been depicted in Figure 4.3.

From this estimation of the uncertainty bound, the weighting transfer functionWt(z) for

the complementary sensitivity function is designed in suchway that its module is greater

than the modulus of the uncertainties for all frequencies. The frequency response ofWt(z)

has been also represented in Figure 4.3.

By solving theH∞ control problem for this case using some functions of theµ−Analysis

and Synthesis Toolboxfor Matlab, a robust controller is obtained yielding the following re-
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sults:

‖T∞‖∞ = 0.3243

10
−3

10
−2

10
−1

10
0

10
1

10
2

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

frequency (rad/s)

g
a

in
 (

d
B

)

Sensibility function (diagonals) and its weight

 

 

S
nominal

W
S
−1

S
1

S
2

Figure 4.5: S(z) of the nominal plant model andWs(z)

It is important to note that the control problem here is not the same than the one in

Chapter 2. In contrast to Chapter 2, here theEquivalencetheorem is not used, so the gain

p associated with communication success is not neccessary inthe scheme. Another dif-

ference is that this chapter is not trying to minimize the error variance, while Chapter 2

was.

In Figure 4.5 modulus of the frequency response of the sensitivity functions of the

nominal and non-nominal plants models and the inverse of theweighting transfer function

Ws(z) are represented. This graphic shows how all the sensitivityfunctions, of the nominal

system and systems with uncertainties, are below the inverse of the weighting function

Ws(z). This fact indicates that the outputy can follow the referencer for all the plant

models under consideration, that is, a tracking problem canbe solved although the plant

model is not exactly known.
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Figure 4.4 represents the complementary sensitivity functions of the nominal and non-

nominal plants models and the inverse of the weighting transfer functionWt(z). From this

graphic it is possible to see that all the complementary sensitivity functions, of the nominal

system and systems with uncertainties, are below the inverse of the weighting function

Wt(z), so the obtained controller is robust against the uncertainties in the plant model.

The expressions ofWt(z) andWs(z) are definied by the following equations:

Wt(z) =
2.438z−1.995

z+0.9802

Ws(z) =
0.05558z−0.04442

z−1

As it was explained before, the filterF(z) is chosen in such a way that the transfer

functionSF(z) = G(z)(1−z−1F(z)) is stable. So the filterF(z) is chosen in the following

manner:

F(z) =
0.8971z−0.8195

z2−1.355z+0.4326

In Figure 4.6 some simulation results are presented. As can be seen, all the systems

achieve stability. Logically, the best results are obtained with the nominal system. In order

to reduce the overshoot, the reference filterFre f(z) could be used. Simulations in Figure

4.6 show the results withFre f(z) = 1.

In Figure 4.7 the control signals for the different uncertainties and for the nominal

systems are shown. It can be seen that the signal oscillates when the considered system is

affected by uncertainties. When the system is the nominal model of the plant, the signal

does not oscillate and goes to the reference without steady state errors. This is because the

feedback changes when there is a data loss. This occurs when the plant has uncertainties,

so the output estimated and the real output are different.
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Figure 4.8: Simulations results withp= 0.9.
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Table 4.1:Error variances

Plant

Nominal plant Plant 1 Plant 2

p= 0.7 0.1523 0.3689 0.1931

p= 0.9 0.1523 0.3566 0.1923

p= 0.5 0.1523 0.3706 0.1984

Another simulations results have been obtained when varying the probability of suc-

cessful in the transmission. In Figure 4.8, simulations results when this value is set to

p= 0.9 are shown; and it can be seen how the amplitude of the oscillations decreases. This

is because the feedback doesn’t change so often between the real output and the estimated

output than in the case ofp= 0.7.

The opposite case is shown in Figure 4.9. The oscillations ofthe signal increase because

the feedback commute more often than before.

Logically, in the cases when it is considered that the plant does not have uncertainties

the signals are the same because there are no differences between the real output and the

filter estimation of the output.

To compare the results, the variances of the error signals are shown in the table 7.1. As

it was said before, the results are equal in the case of the nominal plant. The variances get

worse as the probability of success in the transmission decreases. This happens because

as the probability decreases the estimation of the output isused more and more, and the

estimation is not accurate when the plant is affected by uncertainties.

4.2 Problem statement for the Markovian Jump Control System

The aim of this part of the chapter is the design of a filter and acontroller that ensure the

stability of the uncertain system subject to packets dropouts. To deal with this problem, the

system will be represented as a state-state model, and it will be solved by means of Linear
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Matrix Inequalities (LMI). That way, in contrast to the previous section, it is possible to

have a control structure that takes into account the possibility of a random number of

dropouts.

In this part of the chapter, state-space techniques are used, whereas in the previous

part frequency techniques were used, which are more useful to analyze the stability and

synthesized the filter and controller.

In particular, the system structure is posed as a linear Markov system withN+1 modes,

whereN is the maximum number of consecutive dropouts. Each mode represents a struc-

ture of the system depending on the number of consecutive packet dropouts. The controller

and the filter will be time-varying depending on the system mode.

The Markov process under consideration is:{θk,k≥ 0}, with state spaceS = {1, ...,N+

1} and state transition matrixP= {pi j }i, j∈S , i.e., the transition probabilities are:

P{θk+1 = j|θk = i}= pi j , ∀i, j ∈S

with pi j ≥ 0,∀i, j ∈S and∑N+1
j=1 pi j = 1,∀i ∈S .

This kind of systems satisfies the property given by the following definition:

Definition: Markovian property. (See [O. L. V. Costa, M. D. Fragoso, and R. P. Mar-

ques, 2005]) A stochastic process has the Markov property ifthe conditional probability

distribution of future states of the process depends only upon the present state, not on the

sequence of events that preceded it, that is:

Pr{x(k)|x(k−1),x(k−2), ...,x(0)}= Pr{x(k)|x(k−1)} (4.1)

The system dynamics is described by means of the following equations:

Σ∗(θk) :=

{

x(k+1) = A(θk,k)x(k)+B(θk,k)u(k)+Bw(θk)w(k)

z(k) =C(θk,k)x(k)+D(θk,k)u(k)+Dw(θk)w(k),
(4.2)

wherex(k) ∈ R
n is the state of the system,u(k) ∈ R

m1 is the control signal,z(k) ∈ R
p1

is the error vector used for quantifying theH∞ performance andw(k)∈Rm2 are the external

perturbances, for eachθk ∈S .
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Uncertainties under consideration are represented by the following equations:

A(θk,k) = A(θk)+∆a(θk,k)

B(θk,k) = B(θk)+∆b(θk,k)

C(θk,k) =C(θk)+∆c(θk,k)

D(θk,k) = D(θk)+∆d(θk,k)

whereA(θk), B(θk), C(θk) andD(θk) are matrices with appropriate dimensions and

represent the nominal model of the system. The uncertainties of the system are denoted

by ∆a(θk,k), ∆b(θk,k), ∆c(θk,k) and∆d(θk,k), which are unknown matrices satisfying the

following:

(

∆a(θk,k) ∆b(θk,k)

∆c(θk,k) ∆d(θk,k)

)

=

(

G1(θk)

G2(θk)

)

∆(θk,k)
(

H1(θk) H2(θk)
)

with ∆T(θk,k)∆(θk,k)≤ I , ∀θk ∈S .

It is assumed thatΣ∗(θk,k) is the real system and, as represented in Fig. 4.10,Σ(θk)

is the nominal model of the system (without uncertainties),shown in equation (4.3). This

nominal model will be useful when there is a dropout in the feedback channel. That way,

it will be possible to estimate the state of the plant ˆx.

Furthermore, a bufferb(θk) will be used. This buffer will store the system states of

Σ∗(θk,k) and also the states of the nominal systemΣ(θk). When one or more dropouts

occur, the buffer will provide the last available state fromΣ∗(θk) and the state estimation

from Σ(θk) corresponding to the same instant.

The filter to be designed will be splitted in two matrices:F1(θk) and F2(θk). Both

together will provide an accurate correction for the estimation of the state ˆx.

Σ(θk) :=

{

x̂(k+1) = A(θk)x̂(k)+B(θk)u(k)

ẑ(k) =C(θk)x̂(k)+D(θk)u(k)
(4.3)
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b(θk)
xb(k)

x̂b(k)

Figure 4.10:Scheme of the networked control system

The controllerK(θk) is also represented in Fig. 4.10, and it will be designed, as the

filters, depending on the modeθk.

4.3 Buffer policy

In order to store the states of the systemsΣ∗(θk) andΣ(θk) and count the number of con-

secutive dropouts so the filters inputs are from the appropriate time instant, the bufferb(θk)

is added to the system structure.

The buffer is represented byb(θk) with N+1 positions. Besides the system state, as

can be seen in Fig. 4.10, it has alsodr(k) as input. That will be useful to perfome the buffer

policy. Using the inputdr(k), the following variable can be computed:

dc(k) = dr(k)(1+dc(k−1)),

which is a buffer inner variable that counts the number of consecutive dropouts at time

instantk. Taking that into account, it will be possible to know which is the first non-empty
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position in the buffer, that is, the most recent instant whenthere was not a dropout.

Thus, the output of the buffer will be

xb(k) =
([

δ0(k) δ1(k) · · · δN(k)
]

⊗1n
)
×









x(k)

x(k−1)
...

x(kN)









, (4.4)

where

δ0(k) = 1−dr(k),

δ1(k) = dr(k)(1−dr(k−1))...(1−dr(k−N)),

δ2(k) = dr(k)dr(k−1)(1−dr(k−2))...(1−dr(k−N)),

...

δN(k) = dr(k)dr(k−1)...(1−dr(k−N)).

x(k) = 0

x(k)

x(k−1)

x(k−2)

x(k− i)

x(k−N)

dr(k) = 1

dc(k) = i

b(θk)

θk = i+1

xb(k) = x(k− i)

Figure 4.11:Buffer example
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Fig. 4.11 represents an example wherein there is a dropout atinstantk, that implies

x(k) = 0, and there have beeni consecutive dropouts, so the output of the buffer isxb(k) =

x(k− i).

4.4 Model description

First of all, the different modes, depending on the droputs situation, are presented in the

following:

θk = 1⇒
{

dc(k) = 0

δ0(k) = 1,δ1(k) = δ2(k) = ...= δN(k) = 0

θk = 2⇒
{

dc(k) = 1

δ1(k) = 1,δ0(k) = δ2(k) = ...= δN(k) = 0

...

θk = N+1⇒
{

dc(k) = N

δN(k) = 1,δ0(k) = ...= δN−1(k) = 0

(4.5)

Mode θk = 1 represents the situation where there is not dropout atk, so the number

of consecutive dropouts is zero. In modeθk = 2 there is a dropout atk and there was no

dropout atk−1, therefore in this case the number of consecutive dropoutsis one. Following

the same reasoning, the number of consecutive dropouts increase with the mode until the

maximum is reached.
In order to make the system a Markov system, the Markovian property (4.1) has to hold.

To ensure that, the state has to be augmented with the state ofthe previous time instants
and their estimations, as it is shown in equation (4.6).

x(k) =
[

xT(k) xT(k−1) · · · xT(k−N) x̂T(k) x̂T(k−1) · · · x̂T(k−N)
]T

(4.6)

with x(k) ∈ R
2n(N+1).

Therefore, the closed-loopaugmented modelof the system can be represented as:
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x(k+1) = (A(θk,k)+B(θk,k)K(θk)
︸ ︷︷ ︸

A(θk,k)

)x(k)+Bw(θk)w(k) (4.7)

z(k) = (C(θk,k)+D(θk,k)K(θk)
︸ ︷︷ ︸

C(θk,k)

)x(k)+Dw(θk)w(k), (4.8)

With the uncertainties

A(θk,k) = A(θk)+G1(θk)∆(θk,k)H1(θk) (4.9)

C(θk,k) = C(θk)+G2(θk)∆(θk,k)H1(θk), (4.10)

with H1(θk) =H1(θk)+H2(θk)K(θk)

where

A(θk,k) = diag{












A(θk,k) 0 · · · · · · 0
I 0 · · · · · · 0

0
.. .

...
...

.. .

0 · · · 0 I 0












,












A(θk) 0 · · · · · · 0
I 0 · · · · · · 0

0
. . .

...
...

. . .
...

0 · · · 0 I 0












},

B(θk,k) =

[

B11(θk,k) B12(θk,k)

B21(θk) B22(θk)

]

,

B11(θk,k) =






δ0(k)B(θk,k) δ1(k)B(θk,k) · · · δN(k)B(θk,k)

∅




 ,

B12(θk,k) =






d(k)B(θk,k) −δ1(k)B(θk,k) · · · −δN(k)B(θk,k)

∅




 ,
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B21(θk) =






δ0(k)B(θk) δ1(k)B(θk) · · · δN(k)B(θk)

∅




 ,

B22(θk) =






d(k)B(θk) −δ1(k)B(θk) · · · −δN(k)B(θk)

∅




 ,

The controller is composed by the following matrices:

K(θk) = diag{K1(θk),K2(θk)},

K1(θk) = diag{δ0(k)K(θk),δ1(k)K(θk)F1(θk), . . . ,δN(k)K(θk)F1(θk)},

K2(θk) = diag{dr(k)K(θk),δ1(k)K(θk)F2(θk), . . . ,δN(k)K(θk)F2(θk)},

As it can be seen in Fig. 4.10, the filter is composed by two matrices:F1(θk) andF2(θk).

Bw(θk) =






Bw(θk)

∅




 ,

C(θk,k) = diag{
[

C(θk,k) 0 · · · 0
]

,
[

C(θk) 0 · · · 0
]

},
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D(θk,k) =

[

D11(θk,k) D12(θk,k)

D21(θk) D22(θk)

]

,

D11(θk,k) =
[

δ0(k)D(θk,k) δ1(k)D(θk,k) · · · δN(k)D(θk,k)
]

,

D12(θk,k) =
[

d(k)D(θk,k) −δ1(k)D(θk,k) · · · −δN(k)D(θk,k)
]

,

D21(θk,k) =
[

δ0(k)D(θk) δ1(k)D(θk) · · · δN(k)D(θk)
]

,

D22(θk,k) =
[

d(k)D(θk) −δ1(k)D(θk) · · · −δN(k)D(θk)
]

and

Dw(θk) =






Dw(θk)

∅




 .

The uncertainties are now:

A(θk,k) = A(θk)+∆A(θk,k)

B(θk,k) = B(θk)+∆B(θk,k)

C(θk,k) = C(θk)+∆C(θk,k)

D(θk,k) = D(θk)+∆D(θk,k)

The unknown matrices satisfy the following:
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(

∆A(θk,k) ∆B(θk,k)

∆C(θk,k) ∆D(θk,k)

)

=

(

G1(θk)

G2(θk)

)

∆(θk,k)
(

H1(θk) H2(θk)
)

with

G1(θk) =






G1(θk)

∅




 , G2(θk) =






G2(θk)

∅




 ,

H1(θk) =
[

H1(θk) 0 · · · 0
]

and

H2(θk) =
[

H2(θk) H2(θk) · · · H2(θk)
]

.

4.5 H∞ filter and controller synthesis

First, let us introduce an useful lemma for the main result:

Lemma 4.5.1. (see [L. Xie, 1996]) Let Z, E,∆, F be matrices with appropriate dimensions.

Suppose Z is symmetric and∆T∆≤ I, then

Z+E∆F +FT∆TET < 0

if and only if there exists scalarε > 0 satisfying

Z+ εEET +
1
ε

FTF < 0.

Next, we introduce the definition of robust MSS.

Definition:Robust mean square stability.System (4.3) is said to be robustly MSS if

∞

∑
k=0

E{‖z(k)‖2} ≤ γ2
∞

∑
k=0

‖w(k)‖2

for any noise disturbancew(·) ∈ ℓ2.

The following theorem is the main design result of this section.
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Theorem 4.5.2. If there exist matrices

Y = (Y1, ...,YN)> 0,

diagonal matrices

X = (X1, ...,XN)> 0,

scalarsεθk > 0 andµ > 0 such that the following LMI is feasible for all admissible uncer-

tainties:

Ψ < 0, (4.11)

where

Ψ =











−Xθk
0 J13(θk) J14(θk) J15(θk)

0 −µI D
T
w(θk) B

T
w(θk)W(θk) 0

JT
13(θk) Dw(θk) −I+ εθk

G2(θk)G
T
2 (θk) εθk

G2(θk)G
T
1 (θk)W(θk) 0

JT
14(θk) W(θk)

T
Bw(θk) εθk

W(θk)
T
G1(θk)G

T
2 (θk) J4(θk) 0

JT
15(θk) 0 0 0 −εθk

I











and

J13(θk) = XθkC
T(θk)+YT

θk
D

T(θk),

J14(θk) = (A(θk)Xθk +B(θk)Yθk)
TW(θk),

J15(θk) = XθkH
T
1 (θk)+YT

θk
H

T
2 (θk),

J4(θk) =−X + εθkW(θk)
T
G1(θk)G

T
1 (θk)Wθk

with

X = diag{X1, ...,XN+1},

then system (4.7) is robustly stochastically stable (MSS) with a noise attenuation level of

the closed-loop system equal to
√µ.
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Proof: Define

G(θk) =W(θk)PWT(θk)

where

W(θk) =
( √

pθk,1I · · · √pθk,N+1I
)

P = diag{P(1), ...,P(N+1)}

Define also the Lyapunov functionalV(x(k),θk) with the augmented statex(k)

V(x(k),θk) = xT(k)P(θk)x(k)

∆V(x(k),θk) = E{V(x(k+1),θk+1)|x(k),θk}−V(x(k),θk)

∆V(x(k),θk)≤ xT(k)[A
T
(θk,k)G(θk)A(θk,k)−P(θk)]x(k)+

2xT(k)A
T
(θk,k)G(θk)Bw(θk)w(k)+wT(k)BT

w(θk)G(θk)Bw(θk)w(k)

In order to ensure the noise attenuation levelγ =
√µ the following terms are added:

∆V(x(k),θk)+zT(k)z(k)− γ2wT(k)w(k) = ξ T(k)Ξ(θk,k)ξ (k),

with

ξ T(k) =
[

xT(k) wT(k)
]

and

Ξ(θk,k) =

[

Ξ11(θk,k) Ξ12(θk,k)

ΞT
12(θk,k) Ξ22(θk,k)

]

,

with

Ξ11(θk,k) = A
T
(θk,k)G(θk)A(θk,k)−P(θk)+C

T
(θk,k)C(θk,k),

Ξ12(θk,k) = A
T
(θk,k)G

T(θk)Bw(θk)+C
T
(θk,k)Dw(θk)

and

Ξ22(θk,k) =−γ2I +D
T
w(θk)Dw(θk)+B

T
w(θk)G(θk)Bw(θk).
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And now a performance functionJT is introduced:

JT = E{
T

∑
k=0

[zT(k)z(k)− γ2wT(k)w(k)]|x0,θ0}

JT = E{
T

∑
k=0

[zT(k)z(k)− γ2wT(k)w(k)+∆V(x(k),θk)]}−E{
T

∑
k=0

∆V(x(k),θk)}=

=
T

∑
k=0

ξ T(k)Ξ(θk,k)ξ (k)+V(x(0),θ0)−V(x(T +1),θT+1)≤V(x(0),θ0)

therefore, whenT→ ∞⇒ J∞ ≤V(x(0),θ0).

Ξ(θk,k) =

[

−P(θk) 0
0 −γ2I

]

︸ ︷︷ ︸

Ξ(θk)

+









A
T
(θk,k)W(θk)PWT(θk)A(θk,k)+

+C
T
(θk,k)C(θk,k)

A
T
(θk,k)WT(θk)PW(θk)Bw(θk)+

+C
T
(θk,k)Dw(θk)

B
T
w(θk)W(θk)PWT(θk)A(θk,k)+

+D
T
w(θk)C(θk,k)

D
T
w(θk)Dw(θk)+

+B
T
w(θk)WT(θk)PW(θk)Bw(θk)









=

= Ξ(θk)+

[

C
T
(θk,k)

D
T
w(θk)

]
[

C(θk,k) Dw(θk)
]

+

[

A
T
(θk,k)W(θk)PWT(θk)A(θk,k) A

T
(θk,k)WT(θk)PW(θk)Bw(θk)

B
T
w(θk)W(θk)PWT(θk)A(θk,k) B

T
w(θk)WT(θk)PW(θk)Bw(θk)

]

≤ 0

Applying Schur complement






−P(θk) 0 C
T
(θk,k)

0 −γ2I D
T
w(θk)

C(θk,k) Dw(θk) −I




+

+






A
T
(θk,k)W(θk)

B
T
w(θk)W(θk)

0




P

[

WT(θk)A(θk,k) WT(θk)Bw(θk) 0
]

≤ 0
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Taking into account the uncertainties,








−P(θk) 0 C
T
(θk) A

T
(θk)W(θk)

0 −γ2I D
T
w(θk) B

T
w(θk)W(θk)

C(θk) Dw(θk) −I 0
WT(θk)A(θk) WT(θk)Bw(θk) 0 −P−1







+

+








0
0

G2(θk)

WT(θk)G1(θk)








∆(θk,k)
[

H1(θk) 0 0 0
]

+

+








H
T
1 (θk)

0
0
0








∆T(θk,k)
[

0 0 G
T
2 (θk) G

T
1 (θk)W(θk)

]

≤ 0

And applyingLemma4.5.1,








−P(θk) 0 C
T
(θk) A

T
(θk)W(θk)

0 −γ2I D
T
w(θk) B

T
w(θk)W(θk)

C(θk) Dw(θk) −I 0
WT(θk)A(θk) WT(θk)Bw(θk) 0 −P−1







+

+εθk








0
0

G2(θk)

WT(θk)G1(θk)








[

0 0 G
T
2 (θk) G

T
1 (θk)W(θk)

]

+

+
1

εθk








H
T
1 (θk)

0
0
0








[

H1(θk) 0 0 0
]

≤ 0








−P(θk) 0 C
T
(θk) A

T
(θk)W(θk)

0 −γ2I D
T
w(θk) B

T
w(θk)W(θk)

C(θk) Dw(θk) −I + εθk
G2(θk)G

T
2 (θk) εθk

G2(θk)G
T
1 (θk)W(θk)

WT(θk)A(θk) WT(θk)Bw(θk) εθk
WT(θk)G1(θk)G

T
2 (θk) Ĵ4(θk)







+

1
εθk








H
T
1 (θk)

0

0

0








[

H1(θk) 0 0 0
]

≤ 0,
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Ĵ4(θk) =−P−1+ εθkW
T(θk)G1(θk)G

T
1 (θk)W(θk)

Applying Schur complement, doingXθk = P−1(θk) and pre- and post-multiplying by
[

Xθk

I

]

,










−Xθk
0 Xθk

C
T
(θk) Xθk

A
T
(θk)W(θk) Xθk

H
T
1 (θk)

0 −γ2I D
T
w(θk) B

T
w(θk)W(θk) 0

C(θk)Xθk
Dw(θk) −I + εθk

G2(θk)G
T
2 (θk) εθk

G2(θk)G
T
1 (θk)W(θk) 0

WT (θk)A(θk)Xθk
WT (θk)Bw(θk) εθk

WT (θk)G1(θk)G
T
2 (θk) J4(θk) 0

H1(θk)Xθk
0 0 0 −εθk

I










≤ 0

LettingYθk =K(θk)Xθk andγ2 = µ , the LMI (4.11) is obtained. This completes the proof

of Theorem 4.5.2.

�

4.5.1 Simulations results

This section presents some simulations results. The plant and the setup are described, pro-

viding all the considerations related to the scheme.

Plant description

The considered plant is a variant of the quadruple-tank process originally proposed in [Jo-

hansson, 2000], see [FeedBack, 2012]. Water is delivered tothe four tanks by two inde-

pendently controlled, submerged pumps. Notation related to the plant is given in Table

4.2.

For the simulationes, the following configuration is chosen(see Figure 4.12):

• Input water is delivered to the upper tanks. Pump 1 feeds tank 1 and pump 2 feeds

tank 3.

• Tanks 1 and 3 are coupled by opening the corresponding valve.

Figure 4.13 shows a block diagram of the whole system. In tank1 (respectively 3) the

water level is measured and the control signal is applied to pump 1 (2). In the tanks 2 and 4
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Description

hi Water level of tanki

vi Voltage of pumpi

h0
i Reference level of tanki

v0
i Reference voltage of pumpi

∆hi Increment ofhi with respect toh0
i

∆vi Increment ofvi with respect tov0
i

s Output to be tracked

r Output reference fors

∆hr Reference level with respect toh0

∆vr Reference voltage with respect tov0

Table 4.2:Notation related to the plant

1

2

3

4

pump 1 pump 2

Figure 4.12:Schematic configuration of the coupled tanks

the water level is measured. The tanks are linked by means of the topology 2⇔ 1⇔ 3⇔ 4.

The objective is to control the water level of the two lower tanks.
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1

2

3

4

Figure 4.13:Control scheme with 4 tanks. Tanks 1 and 3 have sensors and actuators; tanks 2 and 4
have sensors. Blue dotted lines represent the communication links.

Plant modelling

The coupled tanks can be easily modelled by means of the following nonlinear equations:

dh1(t)
dt

= −a1

A

√

2gh1(t)+ηv1(t)−
a13

A

√

2g(h1(t)−h3(t)),

dh2(t)
dt

=
a1

A

√

2gh1(t)−
a2

A

√

2gh2(t),

dh3(t)
dt

= −a3

A

√

2gh3(t)+ηv2(t)+
a13

A

√

2g(h1(t)−h3(t)),

dh4(t)
dt

=
a3

A

√

2gh3(t)−
a4

A

√

2gh4(t),

wherehi(t) (i = 1, ...4) denotes the water level in the corresponding tank,vi (i = 1,2) are
voltage applied to the pumps.ai (i = 1, ...4) are the outlet area of the tanks,a13 is the outlet
area between tanks 1 and 3;η is a constant relating the control voltage with the water flow
from the pump,A is the cross-sectional area of the tanks, andg is the gravitational constant.

This system is linearized around the equilibrium point given byh0
i andu0

i , yielding

∆̇h(t) = A∆h(t)+B∆v(t), (4.12)

where∆h(t) =
[
h1(t)−h0

1 . . . h4(t)−h0
4

]T
and∆v(t) =

[
v1(t)−v0

1 v2(t)−v0
2

]T
. Matri-

cesA andB are obtained by using a Taylor expansion of the nonlinear equations of the
model (4.13).

4.5.2 Results

In this section the simulation results are presented for thesystem with uncertainties. Taking
into account the described plant and with a sampling timetm = 2s., the numerical values
are:
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A=













− a1g

A
√

2gh0
1

− a13g

A
√

2g(h0
1−h0

3)
0 a13g

A
√

2g(h0
1−h0

3)
0

a1g

A
√

2gh0
1

− a2g

A
√

2gh0
2

0 0

a13g

A
√

2g(h0
1−h0

3)
0 − a3g

A
√

2gh0
3

− a13g

A
√

2g(h0
1−h0

3)
0

0 0 a3g

A
√

2gh0
3

− a4g

A
√

2gh0
4













,

B =








η 0

0 0

0 η
0 0








(4.13)

Value Unit Description

hi 0-25 cm Water level of tanki

vi 0-5 V Voltage level of pumpi

A 0.01389 m2 Cross-sectional area

ai 50.265e-6 m2 Outlet area of tanki

a13 50.265e-6 m2 Outlet area between tanks 1 and 3

η 0.22 cm
V.s Contant relating voltage and flow

h0
1 9.55 cm Reference level of tank 1

h0
2 16.9 cm Reference level of tank 2

h0
3 7.6 cm Reference level of tank 3

h0
4 14.1 cm Reference level of tank 4

v0
1 3.3 cm Voltage level of pump 1

v0
2 2.6 cm Voltage level of pump 2

Table 4.3:Parameters of the plant.
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A(θk) =








0.9106 0 0.05119 0

0.0295 0.9736 0.0004058 0

0.03298 0 0.9284 0

0.000184 0 0.02085 0.9706







,

B(θk) =








0.6585 0.008969

0.005122 0

0.005796 0.6595

0 0.003594







,

C(θk) =








1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1








and D(θk) =








0 0

0 0

0 0

0 0







∀θk.

For this example, the chosen uncertainties are the following:

G1(θk) = G2(θk) =








0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01







, ∀θk,

H1(θk) =








1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1








and H2(θk) =








1 1

1 1

1 1

1 1







∀θk.

The external noise is:|w(k)| ≤ 1, with

Bw =
[

1 1 1 1
]T

and

Dw =
[

1 1 1 1
]T

.

Three different modes are considered, therefore:θk = {1,2,3}. That means that the
maximum number of consecutive dropouts is two. Ifθk = 1 no dropout has occurred atk,
if θk = 2 a dropout has ocurred atk but the packet arrived atk−1, finally, if θk = 3 there
was a dropout atk−1 and also atk.

Given these modes, the trasition probabilities are:

pi j =






0.4 0.2 0.3

0.5 0.2 0.3

0.2 0.5 0.3




 .
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The water levels for the controlles systems are depicted in Fig. 4.14. In these simula-
tions, the initial water levels are 20 cm for all the tanks.

The results for the Markovian structure presented in this chapter is compared in Fig.
4.14 with a classical structure, in where the controller input is null when a dropout occurs.
The controller used in this structure is the calculated forθk = 1, which is the mode that
represents the no dropout situation.

It can be seen how the performance is improved with the Markovian structure, that
provides a quicker response.
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Figure 4.14:Water levels for the Markovian Jump Linear System.

The empirical performance measures are adopted

Ji ,
500

∑
k=1

h2
i , i = {1,2,3,4} (4.14)

Table 4.4 shows how the performance improves by using the proposed method instead
a classical structure.
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Table 4.4:Performance indicesJi when controlling with the Markovian Jump structure with the filter
and with the classical structure.

Markovian

structure

Classical

structure

J1 4.92×103 5.54×103

J2 9.31×103 10.01×103

J3 3.86×103 4.43×103

J4 7.89×103 8.30×103

4.6 Conclusions

The paper has focused on a NCS subject to data dropouts constraints. In particular, the feed-
back path comprises a communication channel that produces data losses, are considered. It
is considered that the maximum number of consecutive dropouts is known.

The NCS is modelled as a Markov Jump Linear System, with modesdepending on the
network situation.

The objective of this paper has been the synthesis of a controller and a filter that avoid
the model uncertainties and support the failed transmissions. When a data dropout occurs,
the sytem uses an estimated output given by the filter to do thefeedback. To perform this
task, aH∞ control problem has been proposed in order to calculated thecontroller. The
filter is calculated with anH∞ technique together with the controller.

Finally, a plant has been chosen to obtain some numerical results that illustrate the
closed-loop system performance. These simulations corroborated that robust performance
is achieved.
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Chapter 5

Packetized Model Predictive Control for
Networked Control Systems subjects

to time-delays and dropouts

I
n this chapter, two predictive packetized predictive control techniques are introduced

in order to deal with time-delays and packet dropouts.

Therefore, this chapter presents a model predictive control formulation for Networked

Control Systems subject to independent and identically distributed (i.i.d.) delays and packet

dropouts. The system takes into account the presence of a communication network in the

control loop, resorting to a buffer in the actuator to store and consistently apply delayed

control sequences when fresh control inputs are not available.

The first approach presents a practical algorithm to design networked control systems

able to cope with high data dropout rates. The algorithm is intended for application in

packet based networks protocols (Ethernet-like) where data packets typically content large

data fields. The key concept consists in the use of packets to transmit not only the current

control signal, but predictions on a finite horizon without significantly increasing traffic

load. Thus, predictive control is used together with buffered actuators and a state estimator

to compensate for eventual packet dropouts. Additionally,some ideas are proposed to de-

crease traffic load, limiting packet size and media access frequency. Simulation results on

97



98
Packetized Model Predictive Control for Networked Control Systems subjects to

time-delays and dropouts

the control of a three-tank system are given to illustrate the effectiveness of the method.

The second approach presents a stochastic model predictivecontroller. It has been pro-

posed to send from the controller a sequence of control signals that, appropriately buffered

and scheduled at the actuator end, becomes a safeguard in case of delays or eventual packet

dropouts. Although a significant body of research has developed different strategies, com-

bining MPC and buffering strategies there is still room for further research and improve-

ments. On the one hand works such as [D. Quevedo, J. Østergaard and D. Nešíc, 2011]

or [D. Muñoz and P. D. Christofides, 2008] neglect the effect of the network induced de-

lays focusing the attention on the problem of packet dropouts, while in [G.P. Liu, J.X. Mu,

D.Rees, S.C. Chai, 2006] only delays are considered. Further, in many works on MPC for

NCS a deterministic approach is considered, yielding a worst-case approach.

This second technique considers both packet dropouts and random delays. A stochastic

approach is adopted which allows to improve the control performance provided that the

statistical distribution of the delays are known.

5.1 Networked Predictive Control of Systems with Data Dropouts

5.1.1 Problem statement

This technique is focused on the design of a predictive control structure for a networked

control system with packet dropouts.

Systems to be considered are unconstrained discrete-time linear multiple-inputs plants,

under the effect of bounded disturbances as:

x(k+1) = Ax(k)+Bu(k)+Bww(k) (5.1)

with k∈ N0 , N∪{0} and

u(k) ∈ U⊆ R
m1, x(k) ∈ X⊆ R

n, ∀k∈ N0
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disturbances,w(k) are considered to be bounded as

w(k) ∈W, W= {x∈ R
n/‖x‖< δ}

In this setup, the plant and controller are assumed to be linked through a communication

network (see Figure 5.1). Our interest lies in clock-drivenEthernet-like networks linking

both, controller outputs to plant inputs, and plant outputs(sensors) to controller inputs.

Data are sent in large packets, so that the relevant phenomena for control purposes are

transmission delays and packet dropouts.

More precisely, only the problem of packet dropouts is addressed. Random delays are

not a concern in this section, since small round-trip communication delays (the sum of

delays from the sensor to the controller and from this to the actuator) are assumed, that

is, delays are considered negligible with respect to sampleperiods. Thus, in the event that

data packets do not arrive, or arrive later than a certain threshold, they are considered as

missing packets.

This approach does not assume secured links in neither end ofthe communications

chain. That is, packets can be dropped either in sensor to controller path, or in the controller

to actuator one. This feature is particularly remarkable since usually dropouts are only

considered in the controller to actuator path.

To this end, acknowledgment is assumed as part of the networkprotocol (TCP-like

protocols), so that at any time instantk, the controller knows whether a control packet

arrived at destination or not. Packets are also assumed to betime-stamped so they can be

correctly sequenced at any point of the control loop.

To summarize, for the proposed control algorithm to work, all elements in the control

loop are assumed to behave in a time-driven manner. Thus, thenetwork model operates at

the same sampling rate as the plant-controller model, with the following rules:

1. Time-driven sensors periodically sample plant outputs and states.
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2. A time-driven predictive controller computes a control sequence at each sampling

time.

3. A time-driven buffered actuator applies control signalsat each sampling time.

4. Network is affected by dropouts at any point.

5. Delayed packets are taken as dropouts.

In order to achieve an appropriate performance level, it is proposes the use of a finite

horizon predictive optimal control framework.

The predictive controller has access to the plant statesx(k), and computes at every time

instantk a finite horizon optimal control sequenceUk ∈ (U)Nu of lengthNu, such that the

following functional is minimized

V(U(k),k) =
k+Nu−1

∑
i=k

ℓ(x′(i),u′(i))+F(x′(k+Nu)) (5.2)

wherex′(·) andu′(·) denote predicted plant states and outputs respectively. Also in (5.2),

ℓ(·) denotes the stage cost andF(·) is the terminal cost.

Assuming this setup, it is shown next how this predictive control structure can be com-

bined with an appropriate buffering and queuing strategy providing remarkable robustness

to packet dropouts.

5.1.2 Packetized control and buffering strategy

In order to compensate for eventual packet dropouts and delays, one key feature of this first

proposed predictive control scheme is buffering control signals in the actuator side.

In this scheme, also exploited for instance in [Yang et al., 2006], [Wenshan et al., 2007],

[D. Muñoz, C. Panagiotis D., 2007], the buffered signals actas a safeguard against packet

dropouts. Thus, as depicts the proposed control structure in Figure 5.1, the buffer stores a
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Figure 5.1: NCS proposed scheme

number of model-based predictions on future control actions, so the actuator can provide

appropriate control in the event of dropouts.

The buffering policy is designed such that whenever new packets arrive, buffer is over-

written. The actuator is then sequentially feeded with the information in the buffer until

new packets arrive. This corresponds to the intuitively appealing idea of "Use the most

recent control sequence if available. If not, use predictions from the buffer."

The amount of consecutive dropouts this strategy can compensate for, is obviously

equal to the buffer length. In this sense, the buffer can be reasonably dimensioned to store

as many control actions as the prediction horizonNu
1, and so is the maximum consecutive

dropouts allowed by the proposed control structure.

This simple idea can be formalized as: Let us represent the state of the buffer at a given

time instantk asb(k) ∈ (U)Nu. Then, the dynamics of the buffer can be expressed as the

recursive rule

b(k) = αc(k)Uk+(1−αc(k))Sb(k−1) (5.3)

1Note that a larger buffer size is useless as the buffer receives at mostNu control predictions. There is also
little point in using a smaller buffer since the last few predictions of every received sequence would be lost.
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where matrixS∈ R
m1Nu×m1Nu is a shift matrix defined as the block matrix

Si, j = δi+1, j · Im1; i, j = 1, ...,Nu.

In (5.3), αc(k) ∈ {0,1} is a signal accounting for reception acknowledgment in the
controller to actuator link, such that

αc(k) =

{

1 if packetU(k) arrives to buffer at timek

0 if packetU(k) does not arrive to buffer at timek

With this description the control actionu(k) released from the buffer at instantk can be

expressed as

u(k) =
[

Im1 0m1 ... 0m1

]

b(k).

This basic mechanism implicitly assumes that the controller computes and sends a whole

control sequence of lengthNu at every sampling time. This, as it has been discussed, does

not significantly increase network load, as information is bundled in rather lengthy packets.

Nonetheless, specific situations in networked control systems suggest to reduce net-

work access to its minimum. That is the case for instance of wireless sensor networks

where typically energy saving is a major concern. In this kind of systems, it is advisable

to design network protocols that avoid unnecessary networkuse, for example transmitting

data packets of minimum length and only when relevant information for control is avail-

able.

In this sense, a further refinement can be introduced in this scheme in order to alleviate

network load to a greater extent. The key idea here is comparing at every time instantk

the control sequence in the buffer,β (k), and the current controller sequence in the actuator,

U(k). This comparison is performed in the controller, so if both sequences match up to a

certain degree, only the relevant changes are sent, or even no sequence might need to be

sent at all.

Note that, as an acknowledgment signalαc(k) is assumed part of the protocol, the

controller has full access to the buffer state,b(k), at every time instantk. That is, the buffer

dynamics can be accurately reproduced at the controller side.
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It is a natural assumption that the buffer’s most distant predictions in the future, should

be those differing to a greater extent with the more recentlycomputed sequences in the

controller. This intuitive idea suggests reducing packet size to form a trimmed packet by

sending just the last few components that differ more than a certain threshold from the

buffer state.

This packet management policy can be formalized as:

Considerb(k) the buffer state, andU(k) the computed control sequence at time instant

k. Denoteb j(k) andU j(k) as thej-th component of the corresponding sequences at time

instantk.

The length of a trimmed packetNT can be determined according to buffer at instantk

as

NT = Nu−arg min
j∈{1,...,Nu}

‖U j(k)−b j(k)‖> ε .

That is, only the lastNT components of sequenceU(k) need to be sent to the buffer, that is

with the actuator as represented in Figure 5.1, as the firstNu−NT match those in the buffer

up to a certain toleranceε.

With this definition, a trimmed packet of lengthNT ≤ Nu, U∗(k) ∈ (R)NT , can be built

as

U∗(k) =
[

0m1NT×m1(Nu−NT ) Im1NT

]

U(k).

Thus, the buffer dynamics in (5.3) can be trivially modified to deal with trimmed packets

U∗(k) as

b(k) = αc(k)
[
bT

1 (k−1), ...,bT
Nu−NT

(k−1),(U∗1 (k))
T , ...,(U∗NT

(k))T]T

+(1−αc(k))Sb(k−1) (5.4)

The proposed networked control structure in this work also considers the possibility of

missing data packets in the sensor to actuator path. This issue, not treated in most previous
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works, is specially relevant to take into account realisticnetworked control problems, as

plant and controller are usually physically distributed.

To deal with eventual missing state measures, this work resorts to a model-based es-

timator that approximates plant states when no updated information from the sensors is

received. The estimator takes the form

x̂(k+1) = αs(k)x(k)+(1−αs(k)) f (x̂(k),u(k)) (5.5)

wherex̂(k) ∈ R
n is the estimated plant state at instantk, and f (x̂(k),u(k)) is an open-loop

approximation of the plant dynamics. Considering the plantmodel (5.1),f (x̂(k),u(k)) =

Ax̂(k)+Bu(k) can be taken.
As in equation (5.3), the estimator (5.5) makes use of a signal αs(k) accounting in

this case for the acknowledgment of reception of packets sent in the link from sensors to
controller. In a similar fashion

αs(k) =

{

1 if packetU(k) arrives to controller at timek

0 if packetU(k) does not arrive to controller at timek

whereαs(k) = dr(k)−1.

As can be easily interpreted from the estimator equation (5.5), the estimated state ˆx(k)

is updated with the measured statex(k) when data packet from the sensor arrives, otherwise

the plant state is estimated from the plant model.

It is worth to mention that signalαs(k) is not directly provided by the network proto-

col, as packet reception is acknowledged at the controller side. Nonetheless,αs(k) can be

synthesized from the packet time stamps arriving from the sensor. Since clock-driven net-

working protocol is assumed, a simple procedure consists inchecking the arrival time of

every packet, so that only those arriving within the currentsample period, are considered

as valid states measures, otherwise dropout is assumed.

The addition of the estimator in the control scheme allows the controller to be feeded

with the plant states at each sampling time, regardless of packet dropouts. This input to the

controller can be measured or estimated depending on the arrival of the most recent sensor

packet.
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This estimation procedure at the controller together with the packet management policy

above discussed, constitute the basic predictive networked control scheme proposed in

this work. It is worth to remember that the network predictive controller is not required

to satisfy network constraints of any kind, as it is designedregardless of the underlying

network structure. From this point of view, the proposed methodology can be regarded as

network compensation technique rather than a control methodology by itself.

Remark (Stability)

Stability of the proposed compensation methodology can be ensured as far as a number of

mild requirements are satisfied.

Let u(k) be the stabilizing predictive control action for system (5.1) computed at time

instantk without network. As it has been discussed, packet dropouts associated to the inclu-

sion of a network in the control structure, implies that there is no guaranty that signalu(k)

is accurately applied at every time instantk. Instead, the presented methodology computes

a compensated control,uc(k), based on buffered predictions and state estimations.

From this point of view, the inclusion of the network, together with the proposed com-

pensation scheme, amounts to introducing an additional disturbance term on system (5.1),

as the following decomposition suggest

x(k+1) = Ax(k)+Bu(k)+B(uc(k)−u(k))+Bww(k)

= Ax(k)+Bu(k)+Bwu(k)+Bww(k) (5.6)

wherewu(k) = uc(k)−u(k) represents the network effect on the predictive control struc-

ture.

Moreover, it can be checked that this additional termwu(k) is bounded. Notice that,

as new packets arrive, the buffer and estimator are reset to match the computed sequence,

hencewu(k) = 0. As by assumption the number of consecutive network dropouts is limited,
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the difference between the compensated control,uc(k), and the computed control,u(k), can

only grow between valid packets, thus it is bounded.

Also by assumption the termw(k) is bounded, thus the overall disturbance termΩ(k) =

Bwu(k)+Bww(k) is also bounded.

As discussed in [D.Q. Mayne, J.B. Rawlings, C.V. Rao, 2000] astabilizing predictive

controller can always be found under appropriate conditions for the unperturbed system

(5.6).

Recalling results in [D. Limon, T. Alamo, E.F. Camacho, 2002]:

(A1) Let x(k+1) = F(x(k)) be the closed loop dynamics of the unperturbed system (5.6),

with the origin being a fixed point.

(A2) LetV(x) a Lyapunov function of the system Lipschitz in a neighborhood of the origin

Λr = {x∈ R
n/V(x)≤ r} such that

a· ‖x‖p≤V(x)≤ b· ‖x‖p

V(F(x))−V(x)≤−c· ‖x‖p

wherea, b, c are positive constants andp> 1.

Then there exits a constantµ > 0 such that for all disturbancesΩ(k) ∈ Bµ = {Ω(k) ∈

R
n/‖Ω(k)‖ < µ} the perturbed systemx(k+1) = F(x(k))+Ω(k) is asymptotically ulti-

mately bounded∀x(0) ∈ Λr .

To conclude stability of the proposed control methodology,notice that conditions (A1)

and (A2) are satisfied for system (5.6) takingp= 2, and considering a Lyapunov function

of the formV(x) = xTPx, which is trivially Lipschitz in a neighborhood of the origin Λr

for arbitrarily large values ofr.
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5.1.3 Simulation results

Process modelling

The proposed algorithm has been tested on a level control model as depicted in Figure 5.2.

The system is composed of three tanks, with the control problem consisting in tracking a

reference level in the last one, acting on the flow poured in the first one. The model of the

process can be easily obtained from a mass balance as:
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Figure 5.2: Three tank system
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Figure 5.3: Influence of allowed error
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wherehi represent the level of tanki.

The system is linearized to apply the proposed control structure around a trimming

point H1, H2, H3 andQ. Thus:

h1 = H1+∆H1,h2 = H2+∆H2

h3 = H3+∆H3,q= Q+∆Q

yielding the linear equation:

∆Ḣ = L∆H +M ∆Q (5.8)

where:

∆H =
[
∆H1 ∆H2 ∆H3

]T

L =







−C1
2S
√

H1−H2

C1
2S
√

H1−H2
0

C1
2S
√

H1−H2

−C1
2S
√

H1−H2
− C2

2S
√

H2−H3

C2
2S
√

H2−H3

0
C2

2S
√

H2−H3

−C2
2S
√

H2−H3
− C3

2S
√

H3







M =
[

1
S 0 0

]T

A discrete model is then easily obtained from (5.8) as

x(k+1) = Ax(k)+Bu(k)

Application to a three-tank system

A number of simulations for different network operational conditions have been performed,

taking as system parametersS= 0.16m2, C1 = C2 = 0.0256 m3

sm1/2 andC3 = 0.0251 m3

sm1/2 ,

with an operation pointH1 = 1m, H2 = 0.7m, H3 = 0.4m, Q= 0.014m3/h.

As an standard tool to compare performance results, the integral square error (ISE)

measure has been employed.
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Figure 5.4: Reduction of transmitted data

Figure 5.5: Step Response

First, the proposed strategy for reducing network traffic iscompared with the conven-

tional case where the entire control sequence is sent over the network at each sampling time.

The influence of a successful transmission probabilityp, and allowed errorε is shown in

Figure 5.3. This graphic represents the average ISE performance index for a number of ex-

periments taking a step-like sequence with periodT = 2000sas reference. and a simulation

time of 5000 s.

In Figure 5.4 the percentage reduction of controller-to-actuator transmissions is shown.

This reduction is computed as the amount of information transmitted with the proposed
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Figure 5.6: Tracking of references

queueing/buffering scheme with respect to the full information transmission case. It can

be observed that savings above 85% can be obtained for sufficiently high allowed error

ε. Nonetheless, from Figure 5.3, it is clear that there is little point in taking excessively

high values ofε, as ISE performance starts degrading faster than transmission saving. For

instance, in view of Figure 5.3 and Figure 5.4, by selectingε = 0.2 ·10−4 a reduction of

70% is reached without worsening significantly the system response.

Figures 5.5 and 5.6 show the system response with a remarkable 30% packet dropout

probability. It can be observed that the algorithm retains good performance even when with

high dropout probability. Nonetheless, in some cases, depending on the random dropouts,

the response may exhibit small overshoot.

Not surprisingly, performance degrades as either the allowed errorε, or the data dropout

rate, increase. Remarkably, the controller can cope with data dropout rates above 40%.

In Figure 5.7, the transmission profile for a step tracking experiment with different

values ofε are shown. It can be observed that, as expected, an intense transmission pattern

is observed for the first instants of simulation, corresponding to the transient regime. As

the system approaches steady state, traffic load is drastically reduced.
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5.2 Stochastic Packetized Model Predictive Control for Networked
Control Systems subjects to time-delays and dropouts

In this section both packet dropouts and random delays are considered . A stochastic ap-

proach is adopted, which allows to improve the control performance provided that the

statistical distribution of the delays are known.

5.2.1 Problem formulation

Consider the following discrete linear system:

x(k+1) = Ax(k)+Bu(k)+Bww(k), (5.9)

x(0) = x0. (5.10)

wherex(k) ∈ R
n, u(k) ∈ R

m1 and are the state vector and control input vector respectively

andw(k) ∈ R
m2 is an exogenous disturbance affecting to the plant.

In this setup, the plant and controller are assumed to be linked through a communi-

cation network (see Fig. 5.8). The relevant phenomena to consider in this section are

transmission delays and packet dropouts, which can degradethe control performance or

even destabilize the plant. The random nature of both effects in real-time communication

networks motivates the stochastic approach taken in this work. Delays and dropouts are

assumed to be stochastic i.i.d. processes with known statistical distributions.

Controller
ref

U(k)

b(k)

Buffer

u(k)

Plant SensorNetwork

x(k)

w(k)

Figure 5.8: Networked Control System
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To summarize, for the proposed control scheme to work, all elements in the control

loop are assumed to behave in a time-driven manner, with the following elements:

1. Sensors periodically sample the plant statex(k) and send it to the controller.

2. A stochastic predictive controller computes a control sequenceU(k) = [u(k|k) u(k+

1|k) ... u(k+Nu|k)] at each sampling time and sends it through the network.

3. At the actuator side, control inputs are applied to the plant according to the last signal

stored in the buffer. The buffer is updated discarding old control sequences whenever

a newer one arrives.

4. Network is affected by i.d.d. dropouts and i.d.d delaysτ(k). Where

τ(k) =







i if U(k) is received at timek+ i

at the actuator node,

∞ if U(k) is lost

(5.11)

Assumption 1:The process{τ(k)}k∈N0 is i.i.d., with delay distribution,

Prob{τ(k) = i}= pi , i ∈ N0, (5.12)

and dropout probabilityProb{τ(k) = ∞}= p∞.

In order to achieve an appropriate performance level, this work proposes the use of a
stochastic predictive controller framework. That way, thecontroller will try to minimize
the expected value of the following cost function:

V (x(k),Ud(k),T (k),U(k)) =
k+Nu−1

∑
i=k

ℓ
(
x′(i),u′(i))+F(x′(k+N)

)
, (5.13)

whereNu is the prediction horizon,x(k) is the measured state of the plant ink, Ud(k) is the
set of optimal control sequences sent betweenk−1 andk− τmax,

T (k), τ(i), ∀i ∈ [k,k−1, ...,k− τmax]

is the set of possible delays of those control sequences,U∗(k) is the new control sequence
to be computed by the controller at timek, ℓ(·) denotes the stage cost andF(·) is the
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terminal cost. Moreover,x′(i) andu′(i) are state and control input open-loop predictions
according to the buffer policy and the delay and dropouts statistical distribution:

Open loop predictions







x′(k) = x(k),

x′(k+1) = Ax(k)+Bu′(k),

x′(k+2) = Ax′(k+1)+Bu′(k+1),
...

(5.14)

whereu′(k), u′(k+1), ... is the predicted control sequence.
When random time-varying delays and dropouts are taken into account, one of the main

difficulties is the impossibility of predicting the system trajectory in a deterministic way, as
the inputs actually applied to the plant are unknown by the controller. Different approaches,
including min-max or worst-case approaches can be taken to deal with this difficulty.

In this work it is exploited the fact that the statistics of time delays and dropouts can
be measured or estimated to improve the control performance. That way, the open-loop
predictions described above depend on future delay and dropout realizations, so that the
control inputs applied to the plant can be predicted by explicit enumeration of the real-
izations. For instance, when considering the caseτ(k) = t, then u′(k+ t) = u(k+ t|k),
u′(k+ t +1) = u(k+ t +1|k) and so on.

The actual control inputs applied to the plant depends on thearrival of the control se-
quences sent by the controller and the buffer policy.

Let us represent the state of the buffer at a given time instant k asb(k) ∈ R
m1N and

denote

k̂= max{k− l : τ(k− l) = l}

It easy to see thatτ(k− l) = l indicates that the optimal control sequence computed in
k− l , that isU(k− l), arrives at timek to the buffer. Then, the dynamics of the buffer can
be expressed as the recursive rule:

b(k) = α(T (k))U(k̂)+(1−α(T (k))S̃b(k−1) (5.15)

whereS̃∈ R
m1N×m1N is a shift matrix defined as the block matrix:

S̃=
















0m1×m1 Im1 0m1×m1 0m1×m1 0m1×m1 · · · 0m1×m1

0m1×m1 0m1×m1 Im1 0m1×m1 0m1×m1 · · · 0m1×m1

0m1×m1 0m1×m1 · · · Im1 0m1×m1 · · · 0m1×m1

0m1×m1 0m1×m1 0m1×m1 · · · Im1 · · · 0m1×m1
...

...
...

...
.. .

...
...

0m1×m1 0m1×m1 0m1×m1 · · · · · · Im1 0m1×m1

0m1×m1 0m1×m1 0m1×m1 · · · · · · 0m1×m1 0m1×m1















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In (5.15),α(T (k)) ∈ {0,1} is a signal accounting for reception of control sequences
at the buffer computed by the controller subsequent to thosereceived before, such that:

α(k) =

{

1 if k̂∈ {k,k−1, ...,k− τmax}
0 if k̂≡ /0

With this description the control actionu(k) provided by the buffer at instantk can be
expressed as

u(k) =
[

Im1 0m1 ... 0m1

]

b(k) (5.16)

From equations (5.9)-(5.10) and (5.16) one can easily see that the state of the buffer is
involved in the state of the NCS. However, the controller does not have access to the state
of the buffer at any timek entailing a non standard MPC problem. Every sampling time,
the controller has access to the plant statesx(k) and finds a finite horizon optimal control
sequenceU(k) ∈ R

m1N by solving the following optimization problem:

min
U(k)∈Rm1N

E{V(x(k),Ud(k),T (k),U(k)|x(k),Ud(k),T (k))} (5.17)

where expectation is taken with respect to the discrete distribution of T (k). This can be
done by explicit enumeration of the realization ofT weighting all these realization with
the corresponding probability.

As a consequence ofAssumption 1, the minimization problem becomes:

min
U(k)∈Rm

1

∞

∑
i∈N0

piV(x(k),Ud(k− i), i,U(k)) (5.18)

Assuming this setup, it will be next illustrated how this stochastic predictive controller
combined with a buffer provides robustness to packet delaysand dropouts.

5.2.2 Simulation results

In this section the control strategy described above is applied to the following unstable
system:

x(k+1) =

[

1 1

0 1

]

x(k)+

[

0

1

]

u(k)+

[

1

0.5

]

w(k)

Delays are discrete uniformly distributed between 0 and 4, while the disturbance are
random bounded disturbances with|w(k)|< 0.5.

The results obtained applying the proposed method in this section will be compared
with the results from the method described in [D. Quevedo, J.Østergaard and D. Nešić,
2011], assuming no quantization issues.
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Figure 5.9: x(1) evolution with N=15
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Figure 5.10:x(2) evolution with N=15
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Figures 5.9 and 5.10 represent the evolution of the state by using the approach described
in this paper and also the one in [D. Quevedo, J. Østergaard and D. Nešíc, 2011]. It can be
seen that the proposed controller improves the results because it takes into account in the
objective function the different delay realizations.

In Figures 5.11 and 5.12 are shown the values of functionVt , which is defined in the

following: Vt =
ts

∑
i=0

l(x(i),u(i)), wheretS = 100s is the simulation time. This funtion is

represented with differents values of the control horizon and the initial value ofx. In both
figures it is possible to see how the value ofVt decreases with larger control horizons, as
well whenx(0) is decreased,

x(0) = x0

[

1 0

0 1

]

,

beingx0 a scalar that gives the initial state and will be varying in Figure 5.11.
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Figure 5.11:Vt evolution with the proposed control method.

5.2.3 Experimental results

This section presents an application of the proposed schemeto test its performance in a real
system. The plant is the same one described in section 4.5.1 of Chapter 4. In this section,
the experimental setup is described, providing all the considerations related to the scheme.
After this, experimental results are presented.

Plant description

The plant, as in Chapter 4 is a variant of the quadruple-tank process, originally proposed in
[Johansson, 2000], see [FeedBack, 2012]. A picture of the platform is given in Figure 5.13.
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Figure 5.12:Vt evolution with the controller in [D. Quevedo, J. Østergaard and D. Nešić, 2011]

This educational plant is a model of a fragment of a chemical plant. It has 4 tanks, each one
with a pressure sensor to measure the water level. The couplings between the tanks can be
modified using seven manual valves to change the dynamics of the system.

For the experiments, the chosen configuration is the same than in section 4.5.1 of Chap-
ter 4 (see Figure 4.12).

The objective of the experiments is twofold. First, the state of the plant must be moni-
tored from every tank. Secondly, the water level of the two lower tanks is to be controlled.

Plant modelling

The non-linear and linearized model were described in Chapter 4.
The objective here is not only to stabilize the plant around the linearization point, but

also to track references. In order to do that, the output of the system is set as,s, Cr∆h,
whereCr is a matrix that selects the water level of tanks 2 and 4. The references are given
by the vectorr. To perform the tracking task, the equilibrium points(∆hr ,∆vr) associated
with referencesr are found as follows.

∆ḣr = 0= A∆hr +B∆vr ,

s= r =Cz∆hr .

Rewriting in blocks the equation above yields

[

0

r

]

=

[

A B

Cz 0

][

∆hr

∆vr

]

,
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Figure 5.13:Plant of four coupled tanks.

so that the equilibrium point associated withr can be easily obtained

[

∆hr

∆vr

]

=

[

A B

Cz 0

]−1[
0

r

]

.

It is assumed that the references are reachable by the system, that is, the inverse does
exist. Finally, to track references, the following system must be stabilized.

ẋ(t) = Ax(t)+Bu(t), (5.19)

wherex(t), ∆h(t)−∆hr andu(t), ∆v(t)−∆vr .

Results

In this section the experiments results are presented, using the described plant.
Delays are discrete uniformly distributed between 0 and 4, while the disturbance are

random bounded disturbances with|w(k)|< 0.5.
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Value Unit Description

hi 0-25 cm Water level of tanki

vi 0-5 V Voltage level of pumpi

A 0.01389 m2 Cross-sectional area

ai 50.265e-6 m2 Outlet area of tanki

a13 50.265e-6 m2 Outlet area between tanks 1 and 3

η 0.22 cm
V.s Contant relating voltage and flow

h0
1 9.55 (12.6) cm Reference level of tank 1

h0
2 16.9 (12.6) cm Reference level of tank 2

h0
3 7.6 (11) cm Reference level of tank 3

h0
4 14.1 (11) cm Reference level of tank 4

v0
1 3.3 (3.5) cm Voltage level of pump 1

v0
2 2.6 (1.5) cm Voltage level of pump 2

Table 5.1:Parameters of the plant. The terms in parentheses are related to the simulation experiments.

Fig. 5.14 and 5.15 show the outputs of tanks 2 and 4, with theirrespective references.
Fig. 5.14 compares the performance of a classical MPC when the network under consider-
ation is perfect and when it introduces dropouts. It can be seen how the dropouts make the
performance much worse.

Fig. 5.15 considers the network with dropouts. It compares the classical MPC with the
stochastic MPC presented in this chapter. It can be seen how the proposed stochastic MPC
improves the perfomance.

5.3 Conclusions

This chapter has presented two model predictive control strategies in order to deal with
time-delays and packet dropouts introduced by a communication network.

The first approach has presented a methodology to compensatefor data dropouts and
delays in networked control systems. The methodology takesadvantage of the intrinsic
computation of future control signals in predictive control, to cope with eventual data
dropouts. A key aspect is the inclusion of a buffering strategy together with a model based
plant estimator that, under certain conditions, ensure stability of the controlled system.

Simulation results show that remarkable data dropout ratesup to 40% can be achieved
without significant performance degradation, as well as traffic load alleviation up to 85%
with respect to conventional buffered predictive control systems.

In the second approach, a stochastical model predictive controller has been designed,
showing how statistical information on packet delays and dropouts can be used in the
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Figure 5.14:Tanks 2 and 4 outputs with a classical MPC

design of a networked control system. Also some simulationshave been presented.
Future works may include studying closed loop stability andperformance issues.
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Chapter 6

Dynamic Controller Placement for
Networked Control Systems

T
his chapter presents two algorithms for Networked Control Systems with mul-

tiple wireless nodes. Communication between them is affected by random

packet dropouts. Two algorithms are presented to decide which nodes will cal-

culate the control input and which will only relay data. These algorithms make the archi-

tecture flexible by adapting the control to the possible changes in the network conditions.

Wireless sensor-actuator networks offer flexibility in thedesign of networked control

systems. One novel element when using networks with multiple nodes is that the role of

individual nodes does not need to be fixed. Stochastic modelsfor transmission outcomes

and characterize the distribution of controller location and the covariance of system states

are adopted. Simulation results illustrate that the proposed architecture has the potential to

give significantly better performance than limiting control calculations to be carried out at

a fixed node.

In the first section of this chapter, the network is composed of a certain number of nodes

in matrix formation. These nodes follow an algorithm, that decides which node will calcu-

late the control input. This node will solve a cooperative MPC communicating with one of

its closet neighbors. A survey in NCSs, dealing as well with interactions between network

components is presented in [J. A. Giraldo and N. Quijano, 2011]. In the topic of coopera-

123
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tive NCS, [ R. Olfati-Saber, J. A. Fax and R. M. Murray, 2007] introduced some consensus

protocols, where the main objective is to reach an agreementregarding an interaction rule

that specifies the information exchange between an agent andall of its neighbors. Further-

more, [F. Xiao and L. Wang, 2008] developed a consensus algorithm for discrete systems

with delays. In [U. Münz, A. Papachristodoulou and Frank Allgöwer, 2008], the authors

study the stability of multi-agent system formations with delayed exchange of information

between the agents.

In the network under consideration in this work, the only node that receives the state

of the plant without any failure probability is the sensor node, which is located next to

the plant. The actuator node is directly connected to the plant input, therefore this data

is received without problems. The actuator node is also the only node that provides trans-

mission acknowledgments. It is assumed as well that there isan array of nodes between

the sensor and the actuator nodes, as shown in Fig. 6.1. The nodes in a column send the

information to the following column of nodes. Also, it is considered that the nodes, ex-

cept the sensor and the actuator nodes, can communicate withits closest neighbors in the

same column, and many thereby cooperate and exchange information. The sensor and ac-

tuator nodes cannot calculate control values, they only areable transmit information. The

communication between nodes is limited and subject to dropouts.

It is supposed that the model of the plant is divided in two incomplete subsystems. This

can be easily generalized for the case of any number of incomplet subsystems. Each node

will know only a part of the model of the system, that is why it has to collaborate with

its neighbors, which know the other part of the system. Therefore, each node will estimate

just a part of the state.

The control policy to be used will be a cooperative MPC. Within this context, a flexible

NCS architecture where the role played by cooperative nodesdepends upon transmission

outcomes and their acknowledgments is presented. With the algorithm proposed, trans-
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mission outcomes and their acknowledgments will determine, at each instant, whether the

control input will be calculated at the actuator node, or closer to the sensor node.

An example of an application for this algorithm can be a situation where the network

of nodes have moving obstacles in between, difficulting the communication. This way,

depending on the position of the obstacles, the best pair of nodes to calculate the control

value is varying.

In the second section of this chapter, a flexible architecture for a single-loop NCS topol-

ogy using multiple nodes connected in series over analog erasure channels is presented.

The control architecture proposed adapts to changes in network conditions, by allowing

the role played by individual nodes to depend upon transmission outcomes. The proposed

algorithm will decide which nodes assume estimator functions and which ones merely re-

lay data.

In this last section it is assumed that the control policy consists of a pre-designed state

feedback-gain combined with a state observer, which, in theabsence of network effect,

would lead to the desired performance. Within this context,a flexible NCS architecture

where the role played by individual nodes depends upon transmission outcomes is pre-

sented. With the algorithm proposed, transmission outcomes determine, at each instant,

whether the state estimation will be calculated at the actuator node, at the sensor node

or at one of the intermediate nodes. It turns out that, if individual dropout processes are

i.i.d., then the estimator location has a stationary distribution, which can be easily charac-

terized. To analyze the performance of the dynamic NCS architecture in the presence of

correlated dropouts, a jump-linear system model is derivedand the network model recently

introduced in [Quevedo et al., 2011] is adopted.

The first section of the chapter is a extension of the conference contribution [D. E.

Quevedo, K. H. Johansson, A. Ahlén and I. Jurado, 2012] to consider NCSs with parallel

links and the use of cooperative MPC. Also, in the second section, the contribution [D.
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E. Quevedo, K. H. Johansson, A. Ahlén and I. Jurado, 2012] is extended by allowing the

nodes to transmit their state estimates.

Figure 6.1: Control over a graph with dropouts and unreliable acknowledgments of actuator values.

6.1 Cooperative MPC for Networked Control Systems

6.1.1 NCS Setup

A MIMO LTI plant model of the following form is considered

x(k+1) = Ax(k)+Bu(k)+w(k) (6.1)

wherex(0) ∼N (0,P0), P0 > 0. In (6.1),u(k) ∈ R
m1 is the plant input,x(k) ∈ R

n is the

state, andw(k)∼N (0,D), D > 0 is driving noise.

The model described in (6.1) represents the whole plant. But, as foreshadowed in the

introduction, individual nodes do not have knowlegde of this whole model. Thus, nodes

have to interact with their neighbors to get all the information about the plant. It will be

considered that, between two neighbor nodes, they have all the information about the plant

model.
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The composite model

For each node, thecomposite model (CM)[A. N. Venkat, J. B. Rawlings and S. J. Wright,

2007], is the combination of the decentralized model and allthe interaction models (in

the present work, it will be considered that the cooperationis done pair wise between two

nodes in the same column, i. e., one interaction model). The decentralized state vector in

node(i j ), x(i j ), is augmented with the state from the influence of the neighbor node(i∗ j).

Therefore, the augmented statex(i j ) = [xT
(i j )(i j ),x

T
(i j )(i∗ j)]

T represents the CM states for

the node(i j ), (i∗ j) being the neighbor node interacting, pairwise, with(i j ), which is in the

same column andi∗ ∈ {(i−1),(i+1)}. In this augmented state,x(i j )(i
∗ j) is the influence

of the node(i∗ j) on the node(i j ), andx(i j )(i j ) is the part of the state that take into account

just the part of the model that the node(i j ) knows, so it is a decentralized state. In this case,

the CM for the node(i j ) is written as

x(i j )(k+1) = A(i j )x(i j )(k)+B(i j )u(i j )(k)+W(i j )(i∗ j)u(i∗ j)(k) (6.2)

where

A(i j ) =

[
A(i j )(i j )

A(i j )(i∗ j)

]

, B(i j ) =

[
B(i j )(i j )

0

]

, W(i j )(i∗ j) =

[
0

B(i j )(i∗ j)

]

.

The interactive matrices are written depending oni∗ because

A(i j )((i−1) j) = A(i j )((i+1) j) and B(i j )((i−1) j) = B(i j )((i+1) j),

since between two neighbor cooperative nodes there is the whole information about the

system. Therefore, the node(i j ) has one part of the model, and the neighbor nodes((i−

1) j) and((i +1) j) have the other part of the model. This could be extended to thecase in

where the global state vector is divided in more than two parts, so the cooperation between

all the nodes that have access to different information about the system will have to be

considered.
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The augmented control signal is denoted as

u(i
∗ j)

(i j ) (k) = [u(i j )(k)
T ,u(i∗ j)(k)

T ]T , k∈ N0, (6.3)

and will be calculated with MPC techniques employing pair wise cooperation among the

neighboring nodes. Thus,

u(i
∗ j)

(i j ) (k) =Cooperative MPC
(
x(i j )(k),x(i∗ j)(k)

)
, k∈ N0, (6.4)

wherex(i j )(k) andx(i∗ j)(k) represent the CM states for the nodes(i j ) and (i∗ j), respec-

tively.

Network issues

Sensor and actuator nodes are connected via a wireless network, characterised via a graph

havingM×M+2 nodes, see Fig. 6.1. Control values cannot be calculated bythe sensor nor

the actuator nodes, they are just used to measure the plant state and apply the control signal,

respectively. Therefore, according to Fig. 6.1, the network hasM×M nodes that could act

as the controller. Transmissions are done in sequential manner as shown in Fig. 6.2. More

precisely, the packets(i j )(k) is transmitted from node(i j ) to its closest neighbors, these are

(i +1)( j +1), i( j +1) and(i−1)( j +1), at timeskT+ iτ, whereT is the sampling period

andτ ≪ T/(M+1) refers to the times between transmissions of packets. The plant input

u(k) is applied at timekT+(M +1)τ. It is assumed that in-network processing is much

faster than the plant dynamics (6.1) and, as in, e.g., [C. L. Robinson and P. R. Kumar,

2008], neglect delays introduced by the network.

A distinguishing characteristic of the situation at hand isthat (due to channel fading)

the network introduces stochastic packet dropouts. To study the situation, an analog erasure

channel model is adopted and the binary success random processes is introduced

γ(i( j−1))
(i j ) (k) ∈ {0,1}, k∈ N0, i ∈ {0,1,2, . . . ,M+1}, j ∈ {0,1,2, . . . ,M+1}
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Figure 6.2: Transmission Schedule;t ∈ R≥0 is actual time.

whereγ(i( j−1))
(i j ) (k) = 1 indicates that transmission of the packets(i( j−1))(k) from node(i( j−

1)) to node(i j ) at timekT+( j +1)τ, is successful, i.e., error-free;γ(i( j−1))
(i j ) (k) = 0 refers

to a packet-dropout. Throughout this work it is assumed thatthe sensor node(00) has

direct access to plant output measurements. For notationalconvenience,γ(00)(k) = 1, for

all k∈ N0.

To save energy, in this formulation the wireless nodes(i j ) ∀i ∈ {0,1,2, . . . ,M} and

∀ j ∈ {0,1,2, . . . ,M} do not provide acknowledgments of receipt of the packets. How-

ever, the actuator node,((M+1)(M+1)), will in general have less stringent energy con-

straints, so at timekT + (M + 1)τ the control signal is received, atkT + (M + 2)τ this

control value is applied and at timekT + (M + 3)τ, the actuator broadcasts the control

value applied, namelyu(k) = [uA
(i j )(k)

T ,uA
(i∗ j)(k)

T ]T , back to the wireless nodes(i j ) ∀i ∈

{0,1,2, . . . ,M} and∀ j ∈ {0,1,2, . . . ,M}, and withi∗ ∈ {(i−1),(i+1)}, see Fig. 6.1. This

acknowledgment-like signal is unreliable and affected by dropouts with associated success

processes

δ (i j )(k) ∈ {0,1}, k∈ N0, i ∈ {0,1,2, . . . ,M}, j ∈ {0,1,2, . . . ,M}.

More precisely, ifu(k) is successfully received at node(i j ), thenδ (i j )(k) = 1; see also

[E. Garone, B. Sinopoli and A. Casavola, 2010] and [O. C. Imerand S. Yüksel and T.
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Ba̧sar, 2006] for studies on the importance of acknowledgments in closed loop control. It

is assumed that the actuator node has perfect knowledge of plant inputs, and thus, writes

δ ((M+1)(M+1))(k) = 1,∀k∈ N0.

Due to packet dropouts, plant state measurements are not always available at the actua-

tor node. On the other hand, the sensor node will, in general,not have perfect information

of previous plant inputs. This makes the implementation of (6.4) via estimated state feed-

back a challenging task. The main purpose of the present workis to investigate which nodes

of the network (with the exception of the sensor and actuatornodes) should use their local

state estimates to implement the control law (6.4). This approach will lead to a dynamic

assignment of the role played by the individual network nodes. Which tasks are carried

out by each node at each time instant, will depend upon transmission outcomes, i. e., on

γ(i( j−1))
(i j ) (k) andδ (i j )(k).

A flexible NCS architecture

The packets transmitted by each node(i j ) have three fields, namely, state measurements,
tentative plant inputs (if available) and the value of the objective function under considera-
tion:

s(i j )(k) =
(
x(k),u(α

∗β )
(αβ ) (k),J(k)

)
,α ∈ {1, . . . , i},α∗ ∈ {(α−1),(α +1)},β ∈ {1, . . . , j}. (6.5)

The plant statesx(k) includes the two components corresponding to the cooperation nodes,

that isx(k) = [x(i j )(k)
T ,x(i∗ j)(k)

T ], with i∗ ∈ {(i−1),(i +1)}.

The control signalu(k)(α
∗β )

(αβ ) in (6.5) with the structure shown in (6.3), is the plant input

which is applied at the plant provided the packets(i j )(k) is delivered at the actuator node.

If s(i j )(k) is lost, then by following Algorithm 2, which will be described in Section 6.1.4,

the plant input will be provided by one of the nodes in subsequent columns, see Fig. 6.1,

which thereby takes on the controller role at timek. For further reference, the node which

calculates the plant input at timek will be denoted as

c(k) ∈ {(11),(12), . . . ,(1M),(21), . . . ,(2M),(M1), . . . ,(MM)} .
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Example

Consider the network in Fig. 6.3. Some nodes in the network will have one part of the
plant model and the other nodes will have the other part. Therefore the information will be
distributed like this:(11), (31), (12), (32), (13) and(33) will have the same information
about the plant, that is

A(11) = A(31) = A(12) = A(33) = A(13) = A(33), B(11) = B(31) = B(12) = B(33) = B(13) = B(33)

and
W(11)(21) =W(31)(21) =W(12)(22) =W(32)(22) =W(13)(23) =W(33)(23).

On the other hand, the rest of the nodes will have the other part of the information about
the plant:

A(21) = A(22) = A(23), B(21) = B(22) = B(23)

and
W(21)(11) =W(21)(31) =W(22)(12) =W(22)(32) =W(23)(13) =W(23)(33).

Moreover, the cooperating couples are:

(11)←→ (21), (12)←→ (22),

(13)←→ (23), (31)←→ (21),

(32)←→ (22), and (33)←→ (23).

So, it is easy to see that:

A(11)(11) = A(12)(12) = A(13)(13) = A(31)(31) = A(32)(32) = A(33)(33),

B(11)(11) = B(12)(12) = B(13)(13) = B(31)(31) = B(32)(32) = B(33)(33),

A(21)(21) = A(22)(22) = A(23)(23), B(21)(21) = B(22)(22) = B(23)(23),

Figure 6.3: Graph with 3×3+2 nodes.
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A(11)(21) = A(31)(21) = A(12)(22) = A(32)(22) = A(13)(23) = A(33)(23),

B(11)(21) = B(31)(21) = B(12)(22) = B(32)(22) = B(13)(23) = B(33)(23),

A(21)(11) = A(21)(31) = A(22)(12) = A(22)(32) = A(23)(13) = A(23)(33)

and
B(21)(11) = B(21)(31) = B(22)(12) = B(22)(32) = B(23)(13) = B(23)(33).

In this example the numerical values are:

A(11) =









[

1 1

0 1

] [

0 0

0 0

]

[

0 0

0 0

] [

0.1 0

0 0.2

]









, A(21) =









[

1 1

0 1

] [

0 0

0 0

]

[

0 0

0 0

] [

0 0

0 0.1

]









,

B(11) =









[

0

1

]

[

0

0

]









, B(21) =









[

0

1

]

[

0

0

]









,

W(11)(21) =









[

0

0

]

[

0

0.4

]









, W(21)(11) =









[

0

0

]

[

0

1

]









.

So the decentralized models are:

A(11)(11) =

[

1 1

0 1

]

, A(21)(21) =

[

1 1

0 1

]

,

B(11)(11) =

[

0

1

]

, B(21)(21) =

[

0

1

]

,

whereas the interacting models are given by:

A(11)(21) =

[

0.1 0

0 0.2

]

, A(21)(11) =

[

0 0

0 0.1

]

,

B(11)(21) =

[

0

0.4

]

, B(21)(11) =

[

0

1

]

.



6.1. Cooperative MPC for Networked Control Systems 133

6.1.2 Control Implementation

To implement the control law (6.4) over the network using packets of the form (6.5), a

cooperative MPC will be used.

In this work it is assumed that pairs of neighbor nodes in the same column can exchange

information. In Algorithm 1 the cooperation between a pair of nodes is shown. Then, with

the CM in (6.2) and the Algorithm 1, it is possible to calculate aFeasible Cooperation-

Based MPC (FC-MPC), that is well explained in [A. N. Venkat, J. B. Rawlings and S.J.

Wright, 2007].
The calculation of the suboptimal control input,u∗p

(i j ), for each iterationp, is performed
by solving the FC-MPC problem. So, the objective function will be chosen as a linear
combination of the individual nodes’ objectives, i.e.,

J(i j ) = J(i∗ j) = ϖ(i j )V(i j )+ϖ(i∗ j)V(i∗ j), ϖ(i j ),ϖ(i∗ j) > 0,ϖ(i j )+ϖ(i∗ j) = 1, i∗ ∈ {(i−1),(i+1)}

The local objective for each cooperative node is depending on the value ofγ((i−1)( j−1))
(i j ) (k),

γ((i)( j−1))
(i j ) (k) andγ((i+1)( j−1))

(i j ) (k). If any of them is equal to 1, the cost function will be:

J(i j ) =V(i j )(x
′p
(i j )(k),u

′p
(i j )(k);x(i j )(k)) =

∞

∑
t=k

xp
(i j )(t|k)

TQxp
(i j )(t|k)+up

(i j )(t|k)
TRup

(i j )(t|k), (6.6)

where

x′p(i j )(k) = [xp
(i j )(k+1|k)T ,xp

(i j )(k+2|k)T , ...]T ,

u′p(i j )(k) = [up
(i j )(k|k)

T ,up
(i j )(k+1|k)T , ...]T ,

andQ> 0 andR> 0 are weighting matrices. To calculate these predictions the CM for the

node(i j ) (6.2) has been used.

The notationp indicates the iteration number. During each MPC optimization, the state

and input trajectories (x′(i∗ j)(k), u′(i∗ j)(k)) of the interacting node MPC are not updated, so

they remain at (x′p−1
(i∗ j)(k), u′p−1

(i∗ j)(k)).

On the other hand, ifγ((i−1)( j−1))
(i j ) (k) = γ((i)( j−1))

(i j ) (k) = γ((i+1)( j−1))
(i j ) (k) = 0, no informa-

tion about the state has arrived at node(i j ), so an estimation is used. Therefore, the cost
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function will be an expected value ([K. J. Åström, 2006]):

J(i j ) =
∞

∑
t=k

x̂p
(i j )(t|k)

TQx̂p
(i j )(t|k)+ tr

(
QP(i j )(k)

)
+up

(i j )(t|k)
TRup

(i j )(t|k), (6.7)

whereP(i j )(k) approximates the covariance ofx(i j )(k) and is calculated as follows:

P(i j )(k+1) = A(i j )
(
I −Γ(i j )(k)I

)
P(i j )(k)AT

(i j )+D, (6.8)

where

Γ(i j )(k) = α ∈ {0,1, . . . , i−1}β ∈ {0,1, . . . , i−1}

γ(ig
∗ jg∗)

(αβ ) (k) is equal to 1 if and only ifx(i j )(k) is available at node(i j ) at timekT+( j−1)τ,

and(ig∗ jg∗) will be one of the preceding nodes of (ij) and will be the one that provides the

best (the smallest or unique) value ofJ(i j )(k).
Remark.The objective functionJ(i j ) is an approximation of:

J(i j ) ≈ E{V(i j )(x̂
′p
(i j )(k),u

′p
(i j )(k); x̂(i j )(k))},

sinceP(i j )(k) is not the covariance ofx(i j )(k), but just an approximate value. Therefore the

termtr
(
QP(i j )(k)

)
([K. J. Åström, 2006]) is not exact.

The following notation is used for simplicity:x(i j ) ≡ x(i j )(k) andu(i j ) ≡ u(i j )(k).

In the Algorithm 1, the state sequence generated by the inputsequenceu(i j ) and ini-

tial statex(i j ) has been represented byx
(u(i j );x(i j ))

(i j ) . Also, the notation ˆx is representing

[x̂T
(i j ), x̂

T
(i∗ j)]

T .
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Algorithm 1 Cooperative MPC algorithm

Given(ū0
(ι j),x(ι j)(k)), Q> 0, R> 0, ι ∈ {i, i∗}, i∗ ∈ {(i−1),(i +1)}, pmax(k)≥ 0, ε > 0,

p← 1, e(ι j)←Φ andΦ >> 1. {beingε a bound fore(ι j)}

while e(ι j) > ε for someι ∈ {i, i∗} andp≤ pmax(k) do ∀ι ∈ {i, i∗}

u∗p
(ι j) ∈ argmin

(ι j)
FC−MPC(ι j)

up
(ι j) = ϖ(ι j)u

∗p
(ι j)+(1−ϖ(ι j))u

p−1
(ι j)

e(ι j) =
∥
∥
∥up

(ι j)−up−1
(ι j)

∥
∥
∥

for eachι ∈ {i, i∗} do

The node(ι j) transmitsup
(ι j) to its neighbor

end for

if γ((i−1)( j−1))
(i j ) (k) = 1∨ γ(i( j−1))

(i j ) (k) = 1∨ γ((i+1)( j−1))
(i j ) (k) = 1 then

xp
(ι j)← x

(ūP
(i j ),ū

p
(i∗ j);x(ι j))

(ι j) , ∀ι ∈ {i, i∗}

else

x̂p
(ι j)← x̂

(ūP
(i j ),ū

p
(i∗ j);x̂(ι j))

(ι j) , ∀ι ∈ {i, i∗}

end if

p← p+1

end while

Due to the communications constraints, the maximum number of iterations pmax is

limited. It is also possible to loose information during thecooperation. For these reasons

only a suboptimal control inputu∗p
(i j ) will be available.

Notice thati∗ ∈ {(i−1),(i +1)}, that means that the node(i j ) can communicate with

the nodes((i−1) j) and((i +1) j), see Fig 6.4. Therefore,(i j ) will solve two cooperative

MPC and will have two control values. The control value that the node(i j ) will transmit

will be the one that provides the lowest cost.
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Figure 6.4: Cooperative nodes for node(i j ). Figure 6.5: Packets received by node(i j ).

6.1.3 State Estimation

While only the nodec(k), will provide the plant input at instantk, in the present formulation

all nodes compute local state estimates, ˆx(i j )(k), by using the data received from one of the

preceding nodes,(ig∗ jg∗). This serves as safeguard for instances when the loop is broken

due to dropouts.

Since the nodes do not have full information about the plant,they are only able to

calculate a part of the state. That means that ˆx(i j )(k) is not an estimate of the global state

of the plant.

In the following, it will be assumed that the acknowledgments of plant inputs arequite

reliable. Thus, the state estimates are simply calculated as:

x̂(i j )(k) = A(i j )x̂(i j )(k−1)+B(i j )u(i j )(k−1)+W(i j )(i∗ j)u(i∗ j)(k−1)+ (6.9)

K(i j )(k)
(
x(i j )(k)− (A(i j )x̂(i j )(k−1)+B(i j )u(i j )(k−1)+W(i j )(i∗ j)u(i∗ j)(k−1))

)
, (6.10)

whereK(i j )(k) = Γ(i j )(k)I .

In (6.9), u(i j )(k− 1) andu(i∗ j)(k− 1) are local plant input estimates. In particular, if

δ (i j )(k−1) = 1, then[uA
(i j )(k−1)T ,uA

(i∗ j)(k−1)T ]T = u(k−1), andu(i j )(k−1) = uA
(i j )(k−

1) andu(i∗ j)(k−1) = uA
(i∗ j)(k−1). On the other hand, at instances whereδ (i j )(k−1) = 0,

node(i j ) uses the tentative plant input value transmitted in the second field of the previous

packets(i j )(k− 1) (if non-empty), or otherwise setsu(i j )(k− 1) andu(i∗ j)(k− 1) as per

(6.4), see Algorithm 2.
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Intuitively, good control performance will be achieved if the state estimation is accurate.

Clearly, nodes which are closer to the sensor will have access to more output measurements,

see Fig. 6.1. On the other hand, one can expect that nodes which are physically located

closer to the actuator node will on average receive more plant input acknowledgments,

thus, have better knowledge of plant inputs.

6.1.4 Algorithm for Dynamic Controller Placement

Algorithm 2 is run at every node(i j ). Since it is assumed that acknowledgment from the

actuator node is, in general, available, but transmissionsof packetss(i j )(k) are less reliable,

nodes closer to the sensor nodes can be expected to have better state estimates than nodes

located further down the network. Therefore, preference isgiven to forward incoming ten-

tative plant input values.

The sensor node(i j ) = (00) uses as input:s(00)(k) = (x(k), /0, /0), γ(00)(k) = 1, where

/0 means that the field is empty.

This node just passes the information to all the nodes in the first column. The node

(00), as the node(M+1,M+1), cannot calculate control values.

The rest of the nodes in the network can only send informationto their three closest

neighbors in the following column, except for the lower and uppermost nodes who can

only send to two neighbors, see Fig. 6.2. Therefore, the generic node(i j ) can receive zero,

one, two or three (if not border node) packets. In the case that it receives more than one

packets (as shown in Fig. 6.5), it will have to choose betweenthem. Then, the chosen one

will be the one with the minimun value of the cost functionJ.
The first column of nodes, the nodes(i j ) with j = 1, calculate control values cooperat-

ing between them per pairs, as explained in Section 6.1.2. And each node of that column
transmits:

s(i j )(k) =
(
[x(i j )(k)

T ,x(i∗ j)(k)
T ]T , [u(i j )(k)

T ,u(i∗ j)(k)
T ]T ,J(i j )(k)

)

to its three closest neighbors in the next column of nodes. Subsequent nodes then relay the
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Algorithm 2 Dynamic Controller Placement

k← 0, x̂(i j )(0)← 0, P(i j )
0 ← P0 , m← 0, i∗ = (i−1) or i∗ = (i +1), the cooperative nodes

for (i j ).

while t ≥ 0 do { t ∈ R≥0 is actual time}

while t ≤ kT+mτ do {wait-loop}

m←m+1

end while

P(i j )(k+1)← A(i j )P
(i j )(k)AT

(i j )+D

if γ((i−1)( j−1))
(i j ) (k) = 0∧γ(i( j−1))

(i j ) (k) = 0∧γ((i+1)( j−1))
(i j ) (k) = 0 then

if δ (i j )(k−1) = 1 then

u(i j )(k),u(i∗ j)(k),J(i j )(k)← Algorithm 1

s(i j )(k) ←
(
[x(i j )(k)

T ,x(i∗ j)(k)
T ]T , [u(i j )(k)

T ,u(i∗ j)(k)
T ]T ,J(i j )(k)

)
{a tentative in-

put}

else

s(i j )(k)←
(

/0, /0, /0
)

end if

end if

if γ((i−1)( j−1))
(i j ) (k) = 1∨γ(i( j−1))

(i j ) (k) = 1∨γ((i+1)( j−1))
(i j ) (k) = 1 then

S← s((i−1)( j−1))(k) and/ors(i( j−1))(k) and/ors((i+1)( j−1))(k) { S is a set containing all
the packets arraived. If all the packets arrive,Swill contains((i−1)( j−1))(k), s(i( j−1))(k) and
s((i+1)( j−1))(k)}

(xS,uS,JS)← argmin
l

Jl ∈ S

if xS 6= /0 then { x(i j )(k) is available}

x̂(i j )(k)← xS
(i j )

P(i j )(k+1)← D

end if

if uS 6= /0 then

u(i j )(k) = uS
(i j )

u(i∗ j)(k) = uS
(i∗ j)
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else

u(i j )(k),u(i∗ j)(k),J(i j )(k)← Algorithm 1

end if

if uS= /0∧δ (i j )(k−1) = 1 then

s(i j )(k)←
(
xS, [u(i j )(k)

T ,u(i∗ j)(k)
T ]T ,J(i j )(k)

)
{a tentative input}

else

s(i j )(k)← (xS,uS,JS)

end if

end if

while t < kT+( j +1)τ do {wait-loop}

m←m+1

end while

transmit s(i j )(k)

while t ≤ kT+(M+3)τ do {wait-loop}

m←m+1

end while

if δ (i j )(k) = 1 then

x̂(i j )(k+1)← A(i j )x̂(i j )(k)+B(i j )u
A
(i j )(k)+W(i j )(i∗ j)u

A
(i∗ j)(k)

else

x̂(i j )(k+1)← A(i j )x̂(i j )(k)+B(i j )u(i j )(k)+W(i j )(i∗ j)u(i∗ j)(k)

end if

k← k+1

end while

arrived packets to the actuator node, choosing the ones withminimumJ(i j )(k).

A new tentative control value has to be calculated only in thefollowing cases:

• No packet has arrived from the previous column,

γ((i−1)( j−1))
(i j ) (k) = γ(i( j−1))

(i j ) (k) = γ((i+1)( j−1))
(i j ) (k) = 0,

but the acknowledgment from the actuator has arrived,δ (i j )(k−1) = 1.

• At least one packet has arrived but all of them have the following structure:

s= (x, /0, /0),
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that means that the state is available but there is no information about the control.

Then u(i j )(k) is calculated and the following packet is transmitted to thenext column:

s(i j )(k) =
(
[x̂(i j )(k)

T , x̂(i∗ j)(k)
T ]T , [u(i j )(k)

T ,u(i∗ j)(k)
T ]T ,J(i j )(k)

)
.

The estimated state ˆx(i j )(k) is sent to take into account the cases in where the nodes

that receive the packet (they do not calculate control valuebecause they have a packet with

u(i j )(k) 6= 0) have some neighbor that is required to calculated a control value, but it cannot

estimate the whole state by itself.

6.1.5 Simulation example

A system with decentralized models is considered

A(1,1)(1,1) =

[

1 1

0 1

]

, A(2,1)(2,1) =

[

1 1

0 1

]

,

B(1,1)(1,1) =

[

0

1

]

, B(2,1)(2,1) =

[

0

1

]

,

and interacting models given by:

A(1,1)(2,1) =

[

0 0

0 0

]

, A(2,1)(1,1) =

[

0 0

0 0

]

,

B(1,1)(2,1) =

[

0

1

]

, B(2,1)(1,1) =

[

0

1

]

,

where no noise is considered and ¯x(0) = 1.

The network is as depicted in Fig. 6.3, with i.i.d. transmission processes and success

probabilitiesProb{γ(i, j−1)
(i, j)) (k) = 1}= 0.4 andProb{δ (i, j)(1) = 1}= 1.

Fig. 6.6 shows the empirical distribution of the controllernodec(k) obtained by running

the algorithm for 100 steps. It is possible to see how 43% of the times, the controller node

is located in the last column of nodes, the one closest to the actuator.
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Figure 6.6: Controller location percentage.

Fig. 6.7 and 6.8 compare the plant state trajectory when the algorithm proposed is used

with the case in which the controller is located at the actuator node. The results suggest that

the proposed algorithm yields a stable system, while when the controller is at the actuator,

the system becomes unstable.
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Figure 6.7: x(1) trajectory.
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Figure 6.8: x(2) trajectory.
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6.2 Estimator Placement for a Single-Loop Networked Control
System

In this section, the network is composed by multiple nodes connected in series. A new

algorithm will be proposed, in which the nodes will send their state estimation, and the last

node (the actuator node) will calculate the control value.

6.2.1 Wireless Sensor-Actuator Network Setup

It will be considered MIMO LTI plant models of the form

x(k+1) = Ax(k)+Bu(k)+w(k) (6.11)

y(k) = Cx(k)+v(k), k∈ N0 (6.12)

wherex(0) ∼ N (x̄(0),P0), P0 > 0. In (6.11),u(k) ∈ R
m1 is the plant input,x(k) ∈ R

n

is the state,y(k) ∈ R
p is the output, andw(k) ∼ N (0,Q), Q > 0 andv(k) ∼ N (0,R),

R> 0, are noise and measurement noise, respectively.1 As explained in the introduction, it

is considered that a suitable feedback and estimator gainsL ∈ R
m1×n andK ∈ R

n×p have

been pre-designed. Consequently, it is assumed that if the control inputs

u(k) = Lx̂nom(k), k∈ N0, (6.13)

with

x̂nom(k) = (A+BL)x̂nom(k−1)K
(
y(k)−C

(
(A+BL)

)
x̂nom(k−1)

)
(6.14)

wherex̂nom(k) denotes an estimate of the statex(k), that provides satisfactory performance

when it is implemented at the plant. The main theme of the present section is to investigate

how to implement the above nominal controller, when using a wireless sensor-actuator

network.

1v(k) can also represent quantization errors, modelled as Gaussian; see, e.g., [Quevedo et al., 2010].
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Sensor and actuator nodes are connected through a wireless network, characterised via

a (directed) line-graph havingM nodes, as it is represented in Fig. 6.9. Transmissions are in

sequential Round-Robin fashion{1,2, . . . ,M,1,2, . . .} as depicted in Fig. 6.10. More pre-

cisely, the packets(k)(i) is transmitted from nodei to nodei +1 at timeskT+ iτ, whereT is

the sampling period of (6.11) andτ≪T/(M+1) refers to the times between transmissions

of packetss(k)k(i). The plant inputu(k) is applied at timekT+(M +1)τ. Thus, it is as-

sumed that the transmissions in the network are much faster than the plant dynamics (6.11)

and, as in, e.g., [C. L. Robinson and P. R. Kumar, 2008], therefore delays introduced by

the network are not considered.

x(k)u(k)
Plant

M M−1 12

Figure 6.9: Control over a single-loop network.

τ

u(k−1)x(k) x(k+1) ts(1)(k) s(2)(k) s(M)(k)

kT
kT+Mτ (k+1)T

Figure 6.10:Transmission schedule.

Although the network is not introducing delays in the communication, it does introduce

stochastic packet dropouts. To study the situation, an erasure channel model is adopted, that

introduces the binary success processes

γ(i)(k) ∈ {0,1}, k∈ N0, i ∈ {1,2, . . . ,M−1},
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whereγ(i)(k) = 1 indicates that transmission of the packets(k)(i) from nodei to nodei +1

at timekT+ iτ, is successful, i.e., no error has occurred;γ(i)(k) = 0 means there is a packet

dropout atk. Throughout this work, it is assumed that transmission outcomes are known

at the corresponding receiver sides ([Ma et al., 2011]). Furthermore, it is also assumed

that the sensor nodei = 1 has direct access to plant output measurements. The notation

γ(0)(k) = 1 is used, for allk∈ N0. To save energy, the wireless nodesi ∈ {1,2, . . . ,M−1}

do not provide acknowledgments of receipt of the packets.

Whilst packet acknowledgments are not provided, in the present scheme the actuator

nodeM provides a feedback mechanism: At time(k+1)T − τ, it broadcasts the control

valueu(k) to nodesi ∈ {1, . . . ,M−1}, see Fig. 6.9. Due to channel fading, thefeedback

linksbetween actuator and sensors are also affected by dropouts.The following notation is

used to denote the associated success processes:

δ (i)(k) ∈ {0,1}, k∈ N0, i ∈ {1,2, . . . ,M−1}.

More precisely, if ˆx(k) is successfully received at nodei, thenδ (k)(i) = 1; see also [E.

Garone, B. Sinopoli and A. Casavola, 2010, O. C. Imer and S. Yüksel and T. Ba̧sar, 2006]

for studies on the importance of acknowledgments in closed loop control. It is assumed that

the actuator node has perfect knowledge of plant inputs, thereforeδ (k)(M) = 1, ∀k ∈ N0.

Since the actuator node will, in general, have less stringent energy constraints than the

other nodes, it is more important to focus on situations where the feedback links are more

reliable than the forward links moving data from the sensor to the actuator.

Due to packet dropouts, plant output measurements are not always available at the actu-

ator node. On the other hand, the sensor node will, in general, not have perfect information

of previous plant inputs. This makes the implementation of the estimate of the state (6.13) a

challenging task. The main purpose of the present section isto present an adaptive state es-

timator placement algorithm, where the computations of thestate estimation are distributed

across the network. This approach will lead to a dynamic assignment of the role played by
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the individual network nodes. The tasks carried out by individual nodes at each time instant

will depend on transmission outcomes.

6.2.2 Flexible Estimator Placement

To keep communications and thereby energy use low, the packets transmitted by each node

i have only three fields, namely, output measurements and tentative plant state estimate and

the acknoledgement success process:

s(i)(k) =
(
y(k), x̂(i)(k),δ (c(i)(k))(k−1)

)
. (6.15)

Plant outputs are transmitted in order to pass on information on the plant state to the nodes

{i +1, i +2, . . . ,M}, see Fig. 6.9. On the other hand, ˆx(i)(k) in (6.15) is the plant state esti-

mate which is used at the actuator to calculate the control input provided the packets(i)(k)

is delivered at the actuator node. Ifs(i)(k) is lost, then following the algorithm described

in Section 6.2.2, the state estimate will be provided by one of the later nodesℓ > i, which

takes the role of the estimator at timek.

State Estimation and Control Calculations

In the sequel, the notationc(k) ∈ {1,2, . . . ,M} will be used to denote the node that calcu-

lates the state estimation that will be used to compute the plant input at timek. Thus, the

plant input is given by

u(k) = Lx̂(c(k))(k), k∈ N0, (6.16)

where x̂(c(k))(k) is the local plant state estimate computed at nodec(k), and the control

input u(k) is always calculated at the actuator node. Intuitively, good control performance

will be achieved if the estimate used in (6.16) is accurate. Clearly, due to the multi-hop

nature of the network, nodes which are closer to the sensor will have access to more output

measurements, see Fig. 6.9. On the other hand, nodes which are physically located closer
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to the actuator node will on average receive more plant inputacknowledgments, thus, have

better knowledge of plant inputs.

In the present formulation not all nodes compute local stateestimates, ˆx(i)(k), by using

the data received from the preceding node. Situations wherethe feedback links from the

actuator to the intermediate sensors arequite reliableare considered in this section. State

estimators are of the form (6.14) when the plant output is available at nodei; at instants

when the state estimation used to compute the plant input is not available, an open loop

estimate is used, that is:

x̂(i)(k) = (A+BL)x̂(i)(k−1)+K(i)(k)
(
y(k)−C(A+BL)x̂(i)(k−1))

)
, (6.17)

where

K(i)(k), Γ(i)(k)K, (6.18)

and

Γ(i)(k), ∏
j∈{0,1,...,i−1}

γ( j)(k) (6.19)

is equal to 1 if and only ify(k) is available at nodei at time kT + (i − 1)τ. In (6.17),

x̂(i)(k−1) is a local plant state estimate. In particular, ifδ (i)(k−1) = 1, thenLx̂(i)(k−1) =

u(k−1). On the other hand, at instants whenδ (i)(k−1) = 0, nodei uses ˆx(i)(k−1). More

details on the estimator are given in Section 6.2.4.

Remark 6.2.1. Of course, the above transmission and control strategy willin general not
be optimal. In particular, nodes do not transmit local stateestimates and the control law
does not depend upon network parameters, e.g., dropout probabilities ([Chiuso and Schen-
ato, 2011]). The aim of the present section is to develop a simple and practical method,
which uses an existing control and estimation policy for implementation over an unreliable
network and only requires little communication. �

Remark 6.2.2. In the recent work [D. E. Quevedo, K. H. Johansson, A. Ahlén and I.
Jurado, 2012], instead of using (6.18), the gainsK(i)(k) were taken as the Kalman filter
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gains for a system with intermittent observations:

K(i)(k) = Γ(i)(k)P(i)(k)CT(CP(i)(k)CT +R)−1 (6.20)

P(i)(k+1) = A
(
In−K(i)(k)C)P(i)(k)AT +Q, (6.21)

see, e.g., [Sinopoli et al., 2004, Huang and Dey, 2007, Quevedo et al., 2012]. The subse-
quent analysis (up to Equation (6.35)) can be applied to thisstructure as well. However, the
jump-linear model derived in Section 6.2.4 requires a jump-linear estimation model, such
as (6.18). �

Algorithm for Dynamic Estimator Placement

Algorithm 3 is run at every nodei ∈ {1,2, . . . ,M} and describes the adaptive estimator

allocation method explained in the preceding section. As can be appreciated, which cal-

culations are carried out at each node, depends on transmission outcomes involving the

current node and also transmission outcomes at previous nodes. In particular, nodei only

calculates a tentative plant state estimate when no tentative plant state estimate is received

from nodei−1 and nodei has successfully received ˆx(k−1) while c(i)(k) has not. There-

fore, preference is given to simply relay incoming state estimation values rather than to

replace valid tentative ones.

The reason for adopting this decision procedure lies in the assumption that data sent

from the actuator node to intermediate nodes is often available, whereas transmissions of

packetss(i)(k) are less reliable. This suggests that nodes closer to the sensor node can be

expected to have better state estimates than nodes located closer to the actuator node.

In particular, the sensor nodei = 1 uses as input

s(0)(k) = (y(k), /0,δ (1)(k−1)), γ(0)(k) = 1. (6.22)

Then the sensor node calculates a tentative control value and transmits

s(1)(k) = (y(k), x̂(1)(k),δ (1)(k−1))
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Algorithm 3 Adaptive Estimator Placement

k← 0, x̂(i)(0)← 0, j ← 0

while t ≥ 0 do { t ∈ R≥0 is actual time}

while t ≤ kT+(i−1)τ do {wait-loop}

j ← j +1

end while

if γ(i−1)(k) = 0 then { s(i−1)(k) is dropped}

if δ (c(i)(k−1))(k−1) = 1 then

x̂(i)(k) =
(
A+BL

)
x̂(c

(i)(k−1))(k−1)

else

x̂(i)(k) =
(
A+BL

)
x̂(i)(k−1)

end if

s(i)(k)←
(

/0, x̂(i)(k),δ (i)(k−1)
)

c(i)(k) = i

end if

if γ(i−1)(k) = 1 then { s(i−1)(k) is received}

if δ (c(i−1)(k))(k−1) = 1∨
(
δ (i)(k−1) = 0∧δ (c(i−1)(k))(k−1) = 0

)
then

x̂(i)(k)← x̂(i−1)(k)

else

x̂(i)(k)←
(
A+BL

)
x̂(i)(k−1)+K(i)(k)

(
y(k)−C(A+BL)x̂(i)(k−1)

)

c(i)(k) = i

end if

s(i)(k)←
(
y(k), x̂(i)(k),max{δ (c(i−1)(k))(k−1),δ (i)(k−1)}

)

end if
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while t < kT+ iτ do {wait-loop}

j ← j +1

end while

transmit s(i)(k)

while t ≤ (k+1)T− τ do {wait-loop}

j ← j +1

end while

if i = M then { i is the actuator node}

u(k) = Lx̂(c
(i)(k))(k)

end if

k← k+1

end while

to nodei = 2. Subsequent nodes then relay this packet to the actuator node. If the packet is

dropped along the way, orδ (i)(k−1) = 1 while δ (c(i)(k))(k−1) = 0, then the next nodei,

calculates a tentative state estimation ˆx(i)(k) and transmits

s(i)(k) = ( /0, x̂(i)(k),δ (i)(k−1))

to nodei+1, etc. Control calculations are then carried out at the actuator nodeM with the

last state estimate calculated ˆx(c
(i)(k))(k) andx̂(c

(i)(k))(k) is relayed towards all the previous

nodes. The actuator node implementsu(k) = Lx̂(c
(i)(k))(k), using the value contained in the

second field ofs(M)(k).

Remark 6.2.3. An advantage of allowing the state estimate calculations tobe located
arbitrarily and in a time-varying fashion, is that it makes more difficult for someone to
attack the NCS. The latter problem has been studied, for example, in [Gupta et al., 2010,
Smith, 2011]. �

6.2.3 Dynamic Estimator Location

With Algorithm 3, which of the nodes calculates the plant state estimates ˆx(k), depends

upon the transmission outcomes. For further reference, theset of nodes which calculate a
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tentative state estimates will be denoted as

C (k)⊂ {1,2, . . . ,M}.

Preliminary Analysis

To analyze the situation, it is convenient to introduce the process
{

c(i)(k)
}

, wherek∈ N0,

i ∈ {0,1, . . . ,M} and with

c(i)(k) , max(C (k)∩{1,2, . . . , i}). (6.23)

If c(i)(k)> 0, thenc(i)(k) denotes the node where the second field ofs(i)(k) was calculated.

It is easy to see that, with the algorithm proposed and since the packetss(i)(k) are

communicated sequentially, see Fig. 6.10,c(1)(k) = δ (1)(k−1), for all k∈ N0, whereas

c(i)(k) =

{

iδ (i)(k−1) if c(i−1)(k) = 0∨ γ(i−1)(k) = 0,

c(i−1)(k) if c(i−1)(k)> 0∧ γ(i−1)(k) = 1,
(6.24)

for i ∈ {2, . . . ,M}, k∈ N0. The estimator node at timek is given by

c(k), c(M)(k) = max(C (k)), ∀k∈ N0, (6.25)

see (6.16). To derive the results, the aggregated transmission outcome process{β (k)},

k∈ N0, is introduced, where

β (k),
M−1

∑
i=1

(
2M−1γ(i)(k+1)+δ (i)(k)

)
2i−1, k∈ N0. (6.26)

Note thatβ (k−1) ∈ I , {0,1, . . . ,22M−2−1} collects the outcomes of all transmissions

which occur during the time-interval[kT− τ ,kT+Mτ ], see Fig. 6.10. Thus,β (k−1) de-

terminesC (k) andc(k).

Results

As seen in the preceding analysis, with Algorithm 3, the estimator locationc(k) will dy-

namically adapt to the network conditions, as quantified in the aggregated transmission
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outcomesβ (k). To further elucidate the situation, in the sequel it will beadopted a stochas-

tic framework and thereby regard{β (k)}, k ∈ N0 as a stochastic process. It will be as-

sumed that the transmission and acknowledgment processes are Bernoulli distributed. In

Section 6.2.5 it will be adopted a more realistic model, wherein transmission processes are

correlated in time and among each other.

Assumption 6.2.4. The link transmission processes are independent and identically dis-
tributed (i.i.d.) with a common success probability p∈ [0,1]:

Pr
{

γ(i)(k) = 1
}
= p, ∀i ∈ {1,2, . . . ,M−1}. (6.27)

The feedback link success processes are i.i.d., with

Pr
{

δ (i)(k) = 1
}
= qi , ∀i ∈ {1,2, . . . ,M−1}, (6.28)

for given success probabilities q1,q2, . . . ,qM−1 ∈ [0,1]. �

Note that while the above assumption imposes that transmission processes are i.i.d., it

does take into account the fact that radio connectivity fromthe actuator node to the other

nodes will be distance dependent; see, e.g., [Goldsmith, 2005]. It also does not impose

that the processes
{

µ(i)(k)
}

, k∈ N0 for different nodesi are independent. However, the

assumption made does imply stationarity, as apparent from Proposition 6.2.5 given below.

Proposition 6.2.5. Suppose that Assumption 6.2.4 holds. Then

Pr{i ∈ C (k)}=
{

1 if i = 1

1− p
[
1−qi(1−qc(i−1)(k))

]
if i ∈ {2, . . . ,M}

(6.29)

Pr{c(k) = i}= Pr{i ∈ C (k)}pM−i× (6.30)

[
1− (1−qi)[1− (1−qi+1)(1−qi+2) . . .(1−qM−1)]

]
,

for all k ∈ N0 and i∈ {1,2, . . . ,M}, and where qM = 1.

Proof Clearly, if Assumption 6.2.4 holds, then

Pr{µ(1)(k) = 1}= Pr{δ (1)(k−1) = 1}= q1.
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It is easy to see from Algorithm 3 that

i ∈ C (k)⇐⇒ γ(i−1)(k) = 0 (6.31)

∨
(
γ(i−1)(k) = 1∧

(
δ (i)(k−1) = 1∧δ (c(i−1)(k−1))(k−1) = 0

))

⇐⇒ γ(i−1)(k) = 0∨
(
δ (i)(k−1) = 1∧δ (c(i−1)(k−1))(k−1) = 0

)

for all i ∈ {1,2, . . . ,M}. Expression (6.31) gives

Pr{i ∈ C (k)}

= 1−Pr
{

γ(i−1)(k) = 1∧
(
δ (i)(k−1) = 0∨δ (c(i−1)(k−1))(k−1) = 1

)}

= 1− p×Pr
{

δ (i)(k−1) = 0∨δ (c(i−1)(k−1))(k−1) = 1
}

= 1− p
(
1−Pr

{
δ (i)(k−1) = 1∧δ (c(i−1)(k−1))(k−1) = 0

})

= 1− p
[
1−qi(1−qc(i−1)(k−1))

]
,

thus establishing (6.29). By (6.25) the distribution ofc(k) can be determined from

Pr{c(k) = i}= Pr{max(C (k)) = i}

= Pr{i ∈ C (k)∧
[(

γ i(k) = γ i+1(k) = · · ·= γM−1 = 1
)

∧
(
δ (i)(k−1)∨ (δ (i+1)(k−1) = δ (i+2)(k−1) = · · ·= δ (M−1)(k−1) = 0)

)]
}

= pM−1Pr{i ∈ C (k)}×
[
1− (1−qi)

×Pr{δ (i+1)(k−1) = 1∨δ (i+2)(k−1) = 1· · ·∨δ (M−1)(k−1) = 1}
]

= pM−1Pr{i ∈ C (k)}×
[
1− (1−qi)

×Pr{δ (i+1)(k−1) = 0∧δ (i+2)(k−1) = 0· · ·∧δ (M−1)(k−1) = 0}
]

for i ∈ {1, . . . ,M− 1}, whereas for the actuator node:Pr{c(k) = M} = Pr{M ∈ C (k)}.

This proves (6.30). �

The above result characterizes the distributions ofµ(i)(k), of C (k), and of the con-

troller node locationc(k). These distributions depend upon the communication success

probabilities; i.e., the distribution ofβ (k), here modeled as i.i.d.
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Examples

Before showing the closed loop performance with the algorithm proposed, two simple

examples which illustrate how the control location distribution depends upon the dropout

probabilities are included.

Example 6.2.1. Suppose that Assumption 6.2.4 holds and that the feedback links are al-
ways available, that is,qi = 1, for all i ∈ {1, . . . ,M}. Proposition 6.2.5 gives that

Pr
{

i ∈ C (k)
}
=

{

1 if i = 1

1− p if i ∈ {2, . . . ,M}

and the controller location sequence has the following geometric-like distribution

Pr{c(k) = i}=
{

pM−1 if i = 1

(1− p)pM−i if i ∈ {2,3, . . . ,M}.

�

Example 6.2.2. Consider an NCS as in Fig. 6.9 withM = 3 nodes and suppose that As-
sumption 6.2.4 holds. In this case, Proposition 6.2.5 establishes that

Pr
{

i ∈ C (k)
}
=







1 if i = 1

1− p
[
1−q2(1−q1)

]
if i = 2

{

1− p
[
1−q3(1−q1)

]
if c(i−1)(k) = 1

1− p
[
1−q3(1−q2)

]
if c(i−1)(k) = 2

if i = 3

and the controller location distribution

Pr{c(k) = i}=







p3
[
1−q2(1−q1)

]
if i = 1,

p
(
1− p

[
1−q2(1−q1)

])[
1− (1−q2)

2
]

if i = 2
{

q2
(
1− p

[
1−q3(1−q1)

])
if c(i−1)(k) = 1

q2
(
1− p

[
1−q3(1−q2)

])
if c(i−1)(k) = 2

if i = 3

6.2.4 Closed Loop Model

The algorithm proposed in the present work embodies a network driven distributed state

estimation and control architecture. Closed loop dynamicsdepend upon transmission out-

comes, the plant model (6.11) and nominal controller/estimator dynamics, see (6.13)–

(6.14).
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To derive a compact model for the wireless sensor-actuator control system of interest,

it is convenient to introduce the aggregated state estimation vector

x̂(k),









x̂(k)(1)

x̂(k)(2)

...

x̂(M)(k)









∈ R
Mn.

Thebackup valuefor u(k) used at nodei is denoted as

ν(i)(k) =

{

x̂(i)(k) if µ(i)(k) = 0,

x̂( j)(k), j = c(i)(k) if µ(i)(k) = 1,

see (6.23) and note thatν(1)(k) = Lx̂(1)(k), for all k∈ N0. In view of (6.24),

ν(i)(k) = b(i)(k)x̂(k), (6.32)

whereb(1)(k), e1 ∈ R
Mn for all k∈ N0, whereas fori ≥ 2,

b(i)(k), eℓ⊗L ∈ R
m×Mn (6.33)

ℓ=







i −→ if c(i−1)(k) = 0∨ γ(i−1)(k) = 0

∨(γ(i−1)(k) = 1∧ (δ (i)(k−1) = 1∧δ (c(i)(k))(k−1) = 0)),

c(i−1)(k)−→ if c(i−1)(k)> 0∧ γ(i−1)(k) = 1

∧δ (c(i)(k))(k−1) = 1∨ (δ (i)(k−1) = 0∧δ (c(i)(k))(k−1) = 0),

depends on the realization ofβ (k−1), see (6.26).

Since the algorithm givesu(k) = Lν(M)(k), the plant input estimates used in the state

estimators satisfy:

û(i)(k) =

{

Lν(M)(k) if δ (i)(k) = 1,

Lν(i)(k) if δ (i)(k) = 0
(6.34)

=
(
δ (i)(k)(eM⊗ Im)+

(
1−δ (i)(k)

)
(ei⊗ Im)

)
Lν(k),

where

ν(k),









ν(1)(k)

ν(2)(k)
...

ν(M)(k)









∈ R
Mm
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forms part of the internal variables used by theM state estimators.

Now, the plant model can be written as

x(k+1) = Ax(k)+BLν(M)(k)+w(k). (6.35)

Expressions (6.35), (6.17) and (6.34) then give that the state estimator at node

i ∈ {1,2, . . . ,M},

obeys the recursion:

x̂(i)(k+1) =
(
In−K(i)(k+1)C

)(
Ax̂(i)(k)+Bû(i)(k)

)
(6.36)

+K(i)(k+1)
(
CAx(k)+CBLν(M)(k)+Cw(k)+v(k+1)

)

= K(i)(k+1)CAx(k)+
(
In−K(i)(k+1)C

)
(ei⊗A)x̂(k)

+d(i)(k)Lν(k)+K(i)(k+1)
(
Cw(k)+v(k+1)

)
,

where

d(i)(k),
(
1−δ (i)(k)

)(
In−K(i)(k+1)C

)
(ei⊗B)

+
((

1−δ (i)(k)
)
K(i)(k+1)C+δ (i)(k)In

)
(eM⊗B).

Now, introducing the following

Θ(k),






x(k)

x̂(k)

ν(k)




 , n(k),

[

w(k)

v(k+1)

]

, (6.37)

and use (6.18), then (6.36) becomes

x̂(i)(k+1) = D
(i)(β (k))Θ(k)+E

(i)(β (k))n(k),

with

D
(i)(β (k)),

[

Γ(i)(k+1)KCA
(
In−Γ(i)(k+1)KC

)
(ei⊗A) d(i)(k)

]
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E
(i)(β (k)), Γ(i)(k+1)K

[

C Ip
]

.

State estimators, thus, follow the dynamic relation

x̂(k+1) = D(β (k))Θ(k)+E (β (k))n(k) (6.38)

where

D(β (k)),







D (1)(β (k))
...

D (M)(β (k))






, E (β (k)),







E (1)(β (k))
...

E (M)(β (k))






.

On the other hand, (6.32) provides the following dynamic relationship:

ν(k+1) = F (β (k))Θ(k)+G (β (k))n(k), (6.39)

where

F (β (k)),







b(1)(k+1)D(β (k))
...

b(M)(k+1)D(β (k))






, G (β (k)),







b(1)(k+1)E (β (k))
...

b(M)(k+1)E (β (k))






.

Expressions (6.35), (6.38) and (6.39) lead to the jump-linear model

Θ(k+1) = A (β (k))Θ(k)+B(β (k))n(k), (6.40)

where

A (β (k)),







[

A 0Mn eM⊗BL
]

D(β (k))
F (β (k))






, B(β (k)),







[

In 0
]

E (β (k))
G (β (k))







and where the jump variable{β (k)}, k ∈ N0 is given by the aggregated transmission out-

come process defined in (6.26).

Example 6.2.3.Consider a simple NCS with only two nodes,M = 2, in which caseβ (k) =
2γ(1)(k+1)+δ (1)(k) andI= {0,1,2,3}, see (6.26). Sincec(1)(k) = δ (1)(k−1), δ (2)(k−
1) = 1 andb(1)(k+1) = e1⊗L for all k∈ N0, (6.33) yields:

b(2)(k+1) =

{

e2⊗L if β (k)< 3,

e1⊗L if β (k) = 3.
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Direct calculations give that, in this case, the matrices in(6.38) are given by

D(β (k)) =

[

KCA
(
In−KC

)
(e1⊗A) d(1)(k)

γ(1)(k+1)KCA
(
In− γ(1)(k+1)KC

)
(e2⊗A) e2⊗B

]

E (β (k)) =

[

KC K

γ(1)(k+1)KC γ(1)(k+1)K

]

,

where

d(1)(k) =







[
(
In−KC

)
B KCB

]

if β (k) ∈ {0,2},
e2⊗B if β (k) ∈ {1,3}

thus, characterizing the model (6.40). �

6.2.5 Performance Analysis

The jump-linear system model derived in the previous section can be used to carry out

performance analysis of the flexible NCS architecture of interest, provided the aggregated

transmission outcome process{β (k)} is suitably described. In the remainder of this section,

the stochastic modeling framework recently introduced in [Quevedo et al., 2011, D. E.

Quevedo, A. Ahlén and K. H. Johansson, n.d.] will be adopted.

The underlying idea of the network model in [Quevedo et al., 2011, D. E. Quevedo, A.

Ahlén and K. H. Johansson, n.d.] is that transmission outcome distributions depend upon

the fading radio environment. To allow for temporal and spatial correlations of the radio

environment (and possibly also for power and bit-rate control), in [Quevedo et al., 2011]

a Markoviannetwork state, {Ξ(k)}, k ∈ N0, which takes values in a finite set, sayB is

used. Each element ofB corresponds to a possible configuration of the physical environ-

ment, e.g., position of mobile objects. Dropout probabilities of individual channels, when

conditioned on the network state, are considered independent and fixed. In the particular

instance whereB has only one element, the model describes a situation with independent

i.i.d. Bernoulli channels, as considered in previous workssuch as [Chiuso and Schenato,

2011]. Further details of the model can be found in [Quevedo et al., 2011, D. E. Quevedo, A.
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Ahlén and K. H. Johansson, n.d.]. For the present purposes, the model can be summarized

as follows:

Assumption 6.2.6.The network state process{Ξ(k)}, k∈N0 is an aperiodic homogeneous
Markov Chain with transition probabilities

pi j = Pr{Ξ(k+1) = j |Ξ(k) = i}, i, j ∈ B.

and stationary distribution

πi = lim
k→∞

Pr{Ξ(k) = i}.

The aggregated transmission outcome process{β (k)}, k ∈ N0 in (6.26) is conditionally
independent given the network state{Ξ(k)}, k∈ N0,

φi j , Pr{β (k) = i |Ξ(k) = j},

for all (i, j) ∈ I×B. �

It is worth noting that, with the above model, the processβ (k) is correlated, but not

necessarily Markovian. However, the augmented jump process (β (k),Ξ(k)), k∈ N0 forms

a finite Markov Chain. Thus, under Assumption 6.2.6, (6.40) belongs to the class of Markov

jump-linear systems, as studied for example in [O. L. V. Costa, M. D. Fragoso, and R.

P. Marques, 2005, Lee and Dullerud, 2007]. In particular, Theorems 3.9 and 3.33 of [O.

L. V. Costa, M. D. Fragoso, and R. P. Marques, 2005] establishnecessary and sufficient

conditions for mean-square stability (MSS) which can be stated in terms of feasibility of a

linear-matrix inequality. The following result characterizes closed loop performance of the

flexible networked control systems architecture of interest in the present work. It is tailored

directly to the model in Assumption 6.2.6 without needing toresort to the augmented jump

process(β (k),Ξ(k)).

Theorem 6.2.7. Suppose that Assumption 6.2.6 holds, that the system (6.40)is MSS and
define

A j , E
{
A (β (k))

∣
∣Ξ(k) = j

}
= ∑

i∈I
φi j A (i), j ∈ B,

B j , E
{
B(β (k))

∣
∣Ξ(k) = j

}
= ∑

i∈I
φi j B(i), j ∈ B.



6.2. Estimator Placement for a Single-Loop Networked Control System 159

Then

lim
k→∞

E{Θ(k)Θ(k)T}= ∑
i∈B

Hi , (6.41)

where

Hi = ∑
j∈B

p jiA iH j(A i)
T +πiBiW(Bi)

T (6.42)

with W, diag(Q,R). �

Proof.By the law of total expectation:

E{Θ(k+1)Θ(k+1)T}= ∑
i∈B

Hk+1,i , (6.43)

where

Hk+1,i , E{Θ(k+1)Θ(k+1)T |Ξ(k) = i}Pr{Ξ(k) = i}. (6.44)

Now, the system equation (6.40) together with the network fading model in Assump-

tion 6.2.6 allow one to write

E{Θ(k+1)Θ(k+1)T |Ξ(k) = i}= E
{(

A (β (k))Θ(k)+B(β (k))n(k)
)

(6.45)

×
(
A (β (k))Θ(k)+B(β (k))n(k)

)T ∣∣Ξ(k) = i
}

= E
{
A (β (k))Θ(k)Θ(k)T

A (β (k))T
∣
∣Ξ(k) = i

}

+E
{
B(β (k))n(k)n(k)T

B(β (k))T
∣
∣Ξ(k) = i

}

= E
{
A (β (k))Θ(k)Θ(k)T

A (β (k))T
∣
∣Ξ(k) = i

}
+BiW(Bi)

T

since{n(k)} is zero-mean i.i.d.

Now, the rule of total expectation, Bayes’ rule and the Markovian property of the

model (6.40) give that

E
{
A (β (k))Θ(k)Θ(k)T

A (β (k))T
∣
∣Ξ(k) = i

}
(6.46)
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= ∑
j∈B

E
{
A (β (k))Θ(k)Θ(k)T

A (β (k))T
∣
∣Ξ(k) = i,Ξ(k−1) = j

}

×Pr{Ξ(k−1) = j |Ξ(k) = i}

= ∑
j∈B

E
{
A (β (k))Θ(k)Θ(k)T

A (β (k))T
∣
∣Ξ(k) = i,Ξ(k−1) = j

}

×Pr{Ξ(k) = i |Ξ(k−1) = j}Pr{Ξ(k−1) = j}/Pr{Ξ(k) = i}

= ∑
j∈B

p jiA iE
{

Θ(k)Θ(k)T
∣
∣Ξ(k−1) = j

}
(A i)

T Pr{Ξ(k−1) = j}
Pr{Ξ(k) = i} .

Substitution of (6.46) into (6.45) and then into (6.44) provides the recursion

Hk+1,i = ∑
j∈B

p jiA iE
{

Θ(k)Θ(k)T
∣
∣Ξ(k−1) = j

}
(A i)

T (6.47)

×Pr{Ξ(k−1) = j}+BiW(Bi)
TPr{Ξ(k) = i}

= ∑
j∈B

p jiA iHk, j(A i)
T +BiW(Bi)

TPr{Ξ(k) = i}

Since by assumption the system is MSS, it is also asymptotically wide-sense stationary [O.

L. V. Costa, M. D. Fragoso, and R. P. Marques, 2005, Thm. 3.33]. Defining

Hi , lim
k→∞

Hk,i , i ∈ B,

and recall that{Ξ(k)}, k ∈ N is aperiodic, then, (6.47) becomes (6.42), and (6.43) estab-

lishes (6.41). The above result quantifies the stationary covariance of the system stateΘ(k).

In view of (6.37) and the fact thatu(k) = ν(k)(M), Equation (6.41) can be directly used to

evaluate the plant state and input covariances.

Remark 6.2.8. By using results in [Lancaster, 1970, Sec.5], the matricesHi in (6.42) can
be expressed in terms of the solution to a system of linear equations. To be more specific,
if hi is defined as the vectorized version ofHi andbi as the vectorized version of the terms
πiBiW(Bi)

T , i ∈ B, then (6.42) leads to

hi = bi +
(
A i⊗A i

)

∑
j∈B

p ji h j , i, j ∈ B,

from wherehi and thusHi can be readily obtained. �
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6.2.6 Simulation Study

In this example, the network under consideration will haveM = 10 nodes. This simulation

study is comparing the performance obtained by the implementations of the controller via

Algorithm 3 with other two NCS architectures. In the first one, the controller and estimator

are fixed at the actuator node. This system is described via:

x(k+1) = Ax(k)+BLx̂a(k)+w(k),

x̂a(k) = Ax̂a(k−1)+Bu(k−1)

+Γ(10)(k)K
(
y(k)−C(Ax̂a(k−1)+Bu(k−1))

)
,

(6.48)

whereΓ(10)(k) is as in (6.19). In the second configuration, the estimator isimplemented at

the sensor node, the controller is still at the actuator node. If the controller output is lost,

then the previous plant input is held ([?]):

x(k+1) = Ax(k)+Γ(10)(k)BLx̂s(k)+(1−Γ(10)(k))Bu(k−1)+w(k),

x̂s(k) = Ax̂s(k−1)+Bûs(k−1)

+K
(
y(k)−C(Ax̂s(k−1)+Bûs(k−1))

)
,

(6.49)

whereΓ(10)(k) is as in (6.19) and

ûs(k−1) =

{

u(k−1) if δ (1)(k−1) = 1,Lx̂s(k−1)

if δ (1)(k−1) = 0.

6.2.7 Independent and identically distributed dropouts

First of all, it is considered i.i.d. transmission processes as per Assumption 6.2.4. Fig-

ures 6.11 to 6.13 illustrate histograms ofc(k), obtained by running the algorithm for 1000

steps with dropout probabilities as indicated. Note the different scales used on the y-axes,

and recall Proposition 6.2.5. Fig. 6.11 shows that, with thealgorithm proposed, for smaller

link transmission success probabilitiesp, control calculations are at most times, carried out
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Figure 6.11:Histogram of the controller locationc(k) for an i.i.d. network with success probabilities
p= 0.6 andq1 = · · ·= q9 = 1.
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Figure 6.12:Histogram of the controller locationc(k) for an i.i.d. network with success probabilities
p= 0.8, q1 = · · ·= q4 = 0.88, andq5 = · · ·= q9 = 0.9.
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Figure 6.13:Histogram of the controller locationc(k) for an i.i.d. network with success probabilities
p= 0.9, q1 = · · ·= q4 = 0.88, andq5 = · · ·= q9 = 0.9.

at the actuator node. On the other hand, if links are more reliable, then the controller will

be placed at the sensor node at most time steps, see Fig. 6.13.In intermediate cases,c(k)

is more uniformly distributed, see Fig. 6.12.

To illustrate performance of the algorithms, it is considered first a plant model with an

integrator, described by (6.11), where

A=

[

1.8 −0.8

1 0

]

, B=

[

1

0

]

, C=
[

0.047 0.044
]

, (6.50)

The noise covariances are given byQ = 0.01× I2 andR= 0.01, and with Gaussian ini-

tial state having mean ¯x(0) = [5 5]T and covarianceP0 = 0.1× I2. Controller and esti-

mator gainsL andK correspond to the steady state LQG/LQR controller with stage cost

‖x(k)‖2 + ‖u(k)‖2/10; see, [Bertsekas, 2005, Ch.5.2]. All nodes use as initialstate esti-

mates, ˆx(i)(0) = [0 0]T . The network has i.i.d. dropouts as per Assumption 6.2.4 with

success probabilitiesp= 0.9 andq1 = · · ·= q9 = 1.
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Figure 6.14:Output trajectory of the plant model (6.50) for an i.i.d. network with success probabili-
ties p= 0.9, q1 = · · ·= q9 = 1 and the system in (6.50).

The baseline NCS with estimator placed at the sensor as in (6.49) failed to stabilize

the system in the present case. Fig. 6.14 compares the plant output trajectory obtained by

using the proposed algorithm with that provided by the baseline NCS configuration (6.48),

and also with the algorithm presented in the previous work [D. Quevedo and Jurado, n.d.].

As can be appreciated in that figure, the adaptive estimator allocation algorithm presented

reacts more quickly to plant outputs. It thereby recovers more quickly from the very bad

local initial state estimates and provides control actionsleading to faster convergence to

the origin. If the empirical performance measure is adopted

J ,
1000

∑
k=1

y(k)2, (6.51)

then, with the dynamic architecture,J ≈ 1.4, whereas for the baseline NCS described

by (6.48),J ≈ 3.3, for the baseline NCS in (6.49),J ≈ 1.2×10114, and for the dynamic

controller placement presented in [D. Quevedo and Jurado, n.d.], J≈ 2.6.

Table 6.1 illustrates how the performance gained by using the proposed method de-
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pends upon the network reliability. For the situation examined, larger performance gains

are obtained with smallerp. For largerp, the performance gains become less relevant. This

finding is intuitive, since forp≈ 1 the network becomes transparent and overall perfor-

mance is dominated by the nominal design (6.11)–(6.14).

Table 6.1: Performance indicesJ when controlling the system (6.50) over an i.i.d. network with
q1 = · · ·= q4 = 0.99,q5 = · · ·= q9 = 0.995.

p
NCS

(6.16)–(6.17)

NCS

(6.48)

NCS

(6.49)

Algorithm in

[D. Quevedo and Jurado, n.d.]

0.8 6.81 16.15 (unstable) 10.21

0.85 1.51 4.15 (unstable) 2.65

0.9 1.23 2.99 (unstable) 1.86

6.2.8 Network with moving obstacle

This section is focused on a sensor-actuator network where there is an obstacle (e.g., a

robot or crane) moving between four different positions, see Fig. 6.15. This situation is

modeled in terms of the network model used in Section 6.2.5, using the network state

processΞ(k) ∈ B= {1,2,3,4}. The transition probabilities forΞ(k) are given by:

[pi j ] =








0.99 0.01 0 0

0.003 0.99 0.007 0

0 0.003 0.99 0.007

0.007 0 0.003 0.99







.

The individual link reliabilities depend on the position ofthe obstacle in the network.

Nodes which are not blocked benefit from high success probabilities, namely 99%. How-

ever, due to the obstacle, some of the success probabilitieswill, at times, be lowered to
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60%:

Pr{γ(i)(k) = 1|Ξ(k) = j}=
{

0.6 if i ∈ {2 j−1,2 j,2 j +1}
0.99 in all other cases

Pr{δ (i)(k−1) = 1|Ξ(k) = j}=
{

0.6 if i ∈ {2 j,2 j +1}
0.99 in all other cases.

Figs. 6.16 and 6.17 illustrate how using Algorithm 3 the controller location depends

upon the network stateΞ(k). It turns out that, in the present case, the plant input is always

provided by one of the nodes located between the sensor node and the node immediately

following the blocked ones. This behaviour can be explainedby noting that, in absence of

the obstacle, the network is very reliable. In fact, if none of the nodes were blocked, then

the algorithm would (almost) always locate the controller at the sensor node. Fig. 6.18 doc-

uments the associated histogram.

Figure 6.15:Sensor-actuator network with moving obstacle.

For the plant model (6.50), using the dynamic architecture proposed in the present

work, gave a performance index ofJ = 1.8, see (6.51). In contrast, with the controller
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Figure 6.16:Network State trajectory,Ξ(k).

at the actuator node, see (6.48),J = 4.7 is obtained, and with the architecture presented

in [D. Quevedo and Jurado, n.d.],J = 2.9. In the situations examined, positioning the

controller at the sensor node, see (6.49), failed to stabilize the plant model.

6.3 Conclusions

In the first section, a flexible cooperative MPC formulation for NCSs subject to data

dropouts has been presented. Also, an algorithm that decides which nodes are in charge of

the calculation of the the control input, and which ones justrelay the received information,

has been provided. This decision depends on tranmission outcomes. Once the controller

node has been chosen, it interacts with its neighbors solving a cooperative MPC, which

is also subject to data dropouts. Future works may include some stability analysis of the

proposed architecture, as well as an extension to more than two cooperative nodes.

The second section has presented a flexible architecture forthe implementation of an

estimated state feedback control law over a wireless sensor-actuator network with analog
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Figure 6.17:Controller locationc(k) for the network in Fig. 6.15.

erasure channels without acknowledgments. As with the previous one, with the algorithm

provided, the role played by individual nodes depends on transmission outcomes. In par-

ticular, the estimator location depends upon the availability of past plant input values and

transmission outcomes. By deriving a Markovian jump-linear system model, a closed form

expression for the stationary covariance of the system state in the presence of correlated

dropout processes has been established. Future work may include extending the ideas pre-

sented to the control of multiple-loops, to general networktopologies, and to controller

design.

6.4 Related publications

• Isabel Jurado, Daniel E. Quevedo, Karl H. Johansson and Anders Ahlén.Coopera-

tive Dynamic MPC for Networked Control Systems.

Book: Distributed MPC Made Easy

Editors: Dr. José M. Maestre and Dr. Rudy R. Negenborn.
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Figure 6.18:Histogram ofc(k) for the network in Fig. 6.15.
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Architecture for Control using Erasure Channels. Submitted to Automatica.





Chapter 7

Distributed estimation in networked
systems under periodic and

event-based communication policies

T
his chapter’s aim is to present a novel design technique for distributed estima-

tion in networked systems. The problem assumes a network of interconnected

agents each one having partial access to measurements from alinear plant and

broadcasting their estimations to their neighbors. The objective is to reach a reliable esti-

mation of the plant state from every agent location. The observers structure implemented

in each agent is based on local Luenberger-like observers incombination with consen-

sus strategies. The chapter focuses on the following network related issues: delays, packet

dropouts, and communication policy (time and event-driven). The design problem is solved

via linear matrix inequalities and stability proofs are provided. The problem is of applica-

tion for sensor networks and large scale systems where centralized estimation schemes are

not advisable and energy-aware implementations are of interest.

The design of the observers contemplates the possibility ofsharing only a part of the

estimated state between neighbors, instead of communicating the whole estimated vector

state. This economy in the use of network resources is, by itsown nature, further improved

with the event-driven communication approach.

171
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Distributed estimation in networked systems under periodic and event-based

communication policies

Simulation examples are provided to show the performance ofthe proposed method-

ologies.

7.1 Problem description and motivation

Consider a sensor network intended to estimate the state of alinear plant in a distributed

way, where the sensors measure some variables (outputs), compute a local estimation of the

overall state of the system, and broadcast to a set of neighbors some information related

with their own estimations. As Figure 7.1 illustrates, the set of nodes are connected by

means of a communication network, which may introduce delays and packet dropouts.

When the local information received for each of the differentobservers is not sufficient to

estimate the complete state of the plant, then the proposed type of distributed observation

makes sense.

observerj

observeri

y j

yi

PLANT
... communication

network

Figure 7.1: Distributed observation problem

The concepts oflocal observabilityandcollective observabilityrefer, respectively, to

a situation in which the measurement performed by any sensoris sufficient to guarantee

observability of the process state; and to a situation in which all the sensors, if put together,

guarantee this property. See [Olfati-Saber, 2007] for a complete explanation. In this chapter

it is assumed that all the sensors must estimate the overall state of the system even when
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local observability does not hold.

To motivate the problem, consider a possible application where the state of a plant is

monitored from different geographically distributed locations, provided that only some lo-

cal information of the plant can be directly measured from each location. This scenario

might consist of a number of observers having access to some,generally different, plant

outputs. The plant is not necessarily fully observable fromany of the observers. The dif-

ferent observers are able to communicate themselves by sharing information with a set of

neighbors in order to estimate the complete state of the plant. The communication among

the different observers is assumed to be implemented through a communication network,

in which time-delays and possible packet dropouts have to betaken into consideration. A

different situation in which the framework considered in this work might be of applica-

tion could be that in which the observers are connected usinga shared medium, managing

traffic information in a urban environment.

Taking into account the aforementioned ideas, the present chapter focuses on network-

related issues, specifically communication efficiency and robustness against problems in-

duced by the network. The chapter provides an observer design method to operate with

time-driven communication between the agents, being the objective to reach a common

reliable estimate of the system state, despite of the presence of delays and dropouts. It is

also proposed to include an event-based communication strategy between agents, aiming

at reducing the traffic over the network and the energy consumption.

In the latter case, the estimation error will eventually enter into an arbitrary small region

around the equilibrium point. The size of that region depends on a free parameter that

sets the threshold triggering the communication events, which allows to trade off between

communication savings and estimation performance.
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7.1.1 Network topology

The communication network is represented using a directed graphG = (V ,E ), with V =

{1,2, ..., p}, being the set of nodes (observers) of the graph (network), and E ⊂ V ×V ,

being the set of links. Assuming the cardinality ofE equall , and definingL = {1,2, ..., l},

it is obvious that a bijective functiong : E →L can be built so that a given link can be

either referenced by the pair of nodes that connects(i, j) ∈ E or the link indexr ∈L , so

that r = g(i, j). The set of nodes connected to nodei is termed the neighborhood ofi, and

denoted asNi , { j ∈ V |(i, j) ∈ E }. Directed communications are considered, so that link

(i, j) implies that nodei receives information from nodej.

7.1.2 System description

In this work, the system to be observed is assumed to be an autonomous linear time-

invariant plant given by the following equations:

x(k+1) = Ax(k), (7.1)

yi(k) = Cix(k), ∀i ∈ V , (7.2)

wherex(k) ∈R
n is the state of the plant andyi(k) ∈R

mi are the system outputs. In general,

each of the differentp observers has access to a distinct output of the plant. Collective

observability is assumed, i.e. the pair(A,C) is observable, whereC is a matrix stacking the

output matricesCi of all the agents.

Furthermore, the observers can communicate with each otherby means of a communi-

cation network that can be represented by the graphG . More precisely, each neighborj of

the observeri communicate some estimated outputs ˆyi j = Ci j x̂ j . It is assumed that nodei

knows the matrixCi j corresponding to the output ˆyi j . Exchanging estimates instead of the

measurements from the plant provides some freedom and flexibility to choose the informa-

tion sent through the network. That way, taking into accountthe plant dynamics and the

output measured by a particular node, it is possible to collect only the information from its
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neighbors that allows estimation, leading to a policy in which only relevant information for

each agent is transmitted.

Let us defineC̄i as a matrix stacking the matrixCi and matricesCi j for all j ∈Ni . It is

assumed that each pair(A,C̄i) is observable. This is a necessary condition that impose some

restrictions on the network topology and the information that is sent via each connection.

7.2 Periodic time-driven communication between agents

This section is devoted to the observer design method under periodic communication be-

tween agents. Next, a description of the node dynamics is explained in detail.

7.2.1 Node dynamics

The communication between agents may be affected by delays and packet dropouts. There-

fore, it is convenient that the observer to be proposed takesboth effects under considera-

tion. Figure 7.2 illustrates a possible time scheduling in which both effects appears. Let

τi j (k) ∈ N represent the time difference between the current time instantk and the instant

in which the last packet received by nodei was sent from its neighborj. This constant

includes the effect of delays and packet dropouts. Note thatpacket dropouts have the effect

of enlargingτi j (k).

observerj

observeri

k

dropouts

delay

k− τi j (k)

τi j (k)
Figure 7.2: Time scheduling
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Assuming that the number of consecutive data dropouts is bounded bynp and that the

effective network-induced delays are also bounded bydmin and dmax, it is obvious that

τi j (k) belongs to the interval[τm,τM], where

τm = dmin, (7.3)

τM = np+dmax. (7.4)

Figure 7.3 illustrates a characteristic shape forτi j (k). For the sake of simplicity in the

technical developments to come, it is assumed that the minimum delay bound is exactly

zero,τm= 0, and the maximum delay will be denoted byτM. In other works as [Millán et al.,

2012] or [Orihuela et al., 2011], this assumption is relaxed, leading to a more cumbersome,

but still solvable, design problems.

τi j (k)

τM

τm

k
Figure 7.3: Qualitative evolution ofτi j (k)

Also note that eachτi j is directly associated to a link(i, j) ∈ E . Then, it is possible

to establish a relation between each connection and the correspondingτi j . Numbering the

links from 1 tol the following equivalent notation can be used:

τr(k) = τi j (k), r = 1, ..., l , (7.5)

wherer = g(i, j). That is,τ can refer either to a pair of nodes (τi j ) or to a link (τr ).

Once the considerations about delays and packet dropouts have been done, structure

for the observers given by the following equation is proposed:

x̂i(k+1) = Ax̂i(k)+Mi(Ci x̂i(k)−yi(k))+ (7.6)
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∑
j∈Ni

Ni j (Ci j x̂ j(k− τi j (k))−Ci j x̂i(k− τi j (k))),

for i ∈ V . The structure of the observers comprises two main parts, namely

• A local Luenberger-like observer, weighted with matricesMi , that corrects the es-

timated state of the plant based on the measured outputyi(k) accessible for each

observeri.

• A consensus-based observer, weighted with matricesNi j , which takes into account

the information received from neighboring observers.

The name consensus comes from the fact that all the nodes willeventually achieve

the same value of the estimated state. Note that the nodei must known the exact value of

the actual artificial delayτi j (k), as it needs to compare the received informationCi j x̂ j(k−

τi j (k)) with past values of its own estimated stateCi j x̂i(k− τi j (k)). To do that, the nodes

must be synchronized. Assuming that some kind of synchronization algorithm is running,

the delayτi j (k) can be known by adding a timestamp to every data packet. Furthermore,

each node must buffer all its past estimates until instantk− τM.

Let us consider now the observation error of a generic observer i defined asei(k) =

x̂i(k)−x(k), i.e. the difference between the estimation of nodei and the state of the plant.

Taking into account equations (7.1) and (7.6), the dynamicsof the observation error can be

written as:

ei(k+1) = (A+MiCi)ei(k)+ ∑
j∈Ni

Ni jCi j (ej(k− τi j (k))−ei(k− τi j (k))) (7.7)

Considering that the number of observers is given byp, the dynamic equations of the

observation errors can be written in a compact form defining astacked error vector as

eT(k) = [eT
1 (k) eT

2 (k) ... eT
p(k)]:

e(k+1) = Φ(M )e(k)+Λ(N )d(k) (7.8)
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whered(k) is a delayed version of the stacked error vector taking into account the de-

lays of the different links (see equation (7.5))dT(k) = [eT(k− τ1(k)) ... e(k− τl (k))T ], or

equivalently the delays of the communications between neighborsi and j. The matrices

Φ(M ) andΛ(N ) depend on the sets of observers to be designed:M = {Mi , i ∈ V } and

N = {Ni j , i ∈ V , j ∈Ni}. It is not difficult to see that the structure of such matricesare

given by:

Φ(M ) =









A+M1C1 0 · · · 0

0 A+M2C2 · · · 0
...

...
.. .

...

0 0 · · · A+MpCp









(7.9)

Λ(N ) = [Λ1 Λ2 · · · Λl ] (7.10)

whereΛr , r = g(i, j) ∈ {1, ..., l}, are block matrices in correspondence with each of the

links r communicating the observeri with j, in which the only blocks different from zero

are−Ni jCi j andNi jCi j in the(i, i) and(i, j) positions respectively:

Λr =

column i j











0 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · −Ni jCi j · · · Ni jCi j · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 0












row i

7.2.2 Observers design

In the following the main result of this section is introduced. For periodic communication

between agents, next theorem states a sufficient condition for the asymptotic convergence

of the estimates of each observer to the plant state.

Theorem 7.2.1. GivenτM according to equation(7.4), if the nonlinear matrix inequality
(7.11) has a feasible solution for positive definite matrices Z1,Z2,Pi , i ∈ V , and observers
matrices Mi ,Ni j , i ∈ V , j ∈Ni , then the estimations of all the observers asymptotically
converge to the plant state.
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










Ξ Θ 0 ΦT(M )P (ΦT(M )− I)PτM

∗ Ψ ΘT ΛT(N )P ΛT(N )PτM

∗ ∗ Ω 0 0

∗ ∗ ∗ −P 0

∗ ∗ ∗ ∗ −1
l PZ−1

2 P












< 0, (7.11)

where:

P= diag(P1,P2, ...,Pp),

Ξ =−P+Z1− lZ2,

Θ =

l times
︷ ︸︸ ︷

[Z2 Z2 · · · Z2],

Ψ = diag

l times
︷ ︸︸ ︷

(−2Z2, · · · ,−2Z2),

Ω =−Z1− lZ2.

Proof: Choose the following Lyapunov-Krasovskii functional:

V(k) = eT(k)Pe(k)+
k−1

∑
i=k−τM

eT(i)Z1e(i)+ l × τM

0

∑
j=−τM+1

k−1

∑
i=k+ j−1

∆eT(i)Z2∆e(i), (7.12)

where∆e(k) = e(k+1)−e(k). Note that the third term is includedl times, one for each

communication link. The forward difference can be calculated as

∆V(k) = eT(k+1)Pe(k+1)−eT(k)Pe(k)+eT(k)Z1e(k)−eT(k− τM)Z1e(k− τM)

+l × τ2
M∆eT(k)Z2∆e(k)− l × τM

k−1

∑
j=k−τM

∆eT( j)Z2∆e( j)

=
[

eT(k) dT(k)
]
[

ΦT(M )

ΛT(N )

]

P
[

Φ(M ) Λ(N )
]
[

e(k)

d(k)

]

+
[

eT(k) eT(k− τM)
]
[

Z1−P 0

0 −Z1

][

e(k)

e(k− τM)

]

+l × τ2
M∆eT(k)Z2∆e(k)− l × τM

k−1

∑
j=k−τM

∆eT( j)Z2∆e( j).
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Defining the augmented state vector

ξ (k) =














e(k)

e(k− τ1(k))

e(k− τ2(k))
...

e(k− τl (k))

e(k− τM)














=






e(k)

d(k)

e(k− τM)




 ,

the forward difference of the Lyapunov-Krasovskii functional can be written using the

following quadratic form:

∆V(k) = ξ T(k)











Z1−P 0 0

∗ 0 0

∗ ∗ −Z1




+






ΦT(M )

ΛT(N )

0




P
[

Φ(M ) Λ(N ) 0
]

+ l × τ2
M






ΦT(M )− I

ΛT(M )

0




Z2

[

(Φ(M )− I) Λ(M ) 0
]




ξ (k)

−l × τM

k−1

∑
j=k−τM

∆eT( j)Z2∆e( j).

In order to take into account the delay of each different communication link (τr(k),∀r =

1, ..., l ), the last term in the above equation (which appearsl times) in 2 terms is split,

considering the delay in each specific link:

−τM

k−1

∑
j=k−τM

∆eT( j)Z2∆e( j) =−τM

k−τr (k)−1

∑
j=k−τM

∆eT( j)Z2∆e( j)− τM

k−1

∑
j=k−τr (k)

∆eT( j)Z2∆e( j).

The resulting terms can be bounded using the Jensen inequality:

−τM

k−τr (k)−1

∑
j=k−τM

∆eT( j)Z2∆e( j)≤−
[

k−τr (k)−1

∑
j=k−τM

∆e( j)

]T

Z2

[
k−τr (k)−1

∑
j=k−τM

∆e( j)

]

,

−τM

k−1

∑
j=k−τr (k)

∆eT( j)Z2∆e( j)≤−
[

k−1

∑
j=k−τr (k)

∆e( j)

]T

Z2

[
k−1

∑
j=k−τr (k)

∆e( j)

]

.
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The terms in brackets can be cancelled in pairs, except the first and the last one in the

summatory, yielding:

−τM

k−τr (k)−1

∑
j=k−τM

∆eT( j)Z2∆e( j)≤

− [e(k− τr(k))−e(k− τM)]T Z2 [e(k− τr(k))−e(k− τM)] ,

−τM

k−1

∑
j=k−τr (k)

∆eT( j)Z2∆e( j)≤− [e(k)−e(k− τr(k))]
T Z2 [e(k)−e(k− τr(k))] .

The above terms are also written in the same quadratic manner:

−τM

k−τr (k)−1

∑
j=k−τM

∆eT( j)Z2∆e( j)≤

[

eT(k− τr(k)) eT(k− τM)
]
[

−Z2 Z2

∗ −Z2

][

e(k− τr(k))

e(k− τM)

]

,

−τM

k−1

∑
j=k−τr (k)

∆eT( j)Z2∆e( j)≤

[

eT(k) eT(k− τr(k))
]
[

−Z2 Z2

∗ −Z2

][

e(k)

e(k− τr(k))

]

.

Including all the terms, the forward difference is:

∆V(k) = ξ T(k)L1ξ (k)

where

L1 = ξ T(k)











Ξ Θ 0

∗ Ψ ΘT

∗ ∗ Ω




+






ΦT(M )

ΛT(N )

0




P
[

Φ(M ) Λ(N ) 0
]

(7.13)

+ l × τ2
M






ΦT(M )− I

ΛT(M )

0




Z2

[

(Φ(M )− I) Λ(M ) 0
]




ξ (k)

In order to show the error convergence to zero, it will be demonstrated that∆V(k)< 0

for all ξ (k) 6= 0 through the negative definiteness ofL1. Applying Schur complements, one
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can obtain that previous matrix is negative definite if and only if the following holds:











Ξ Θ 0 ΦT(M ) (ΦT(M )− I)τM

∗ Ψ ΘT ΛT(N ) ΛT(N )τM

∗ ∗ Ω 0 0

∗ ∗ ∗ −P−1 0

∗ ∗ ∗ ∗ −1
l Z−1

2











< 0

And the negative definiteness of this matrix is equivalent tothat of the matrix in

Theorem 7.2.1, which can be obtained by pre- and post- multiplying previous matrix by

diag(I , I , I ,P,P) and its transpose. �

As it is clearly seen from (7.11), the matrix inequality to besolved in order to design

the observers is not linear because of the presence of the terms ΦT(M )P, ΛT(N )P and

PZ−1
2 P.

The two first nonlinearities, related toΦT(M )P, ΛT(N )P, can be trivially settled by

definingMiPi = Wi andNi j Pi = Xi j . That way, those terms are now a function of the new

matrices in the change of variables, i.e,ΦT(M )P→Φ(W ) andΛT(N )P→Λ(X ), where

the sets are defined asW = {Wi , i ∈ V } andX = {Xi j , i ∈ V , j ∈Ni}.

In the following subsections, two solutions in order to dealwith the nonlinearityPZ−1
2 P

are presented. The first one introduces an additional constraint which let us address the

problem by means of a set of linear matrix inequalities. The second solution employs the

cone complementary algorithm to transform the nonlinear inequality into an iterative opti-

mization problem with linear constraints. Comparing both solutions, the former could be

more conservative, but it is computationally more efficient, as the number of constraints

and variables is lower.
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Constraint on PZ−1
2 P

A method to deal with this nonlinearity consists in introducing the following additional

constraint:

−PZ−1
2 P<− 1

µ
P,

being µ a positive design scalar. Note that previous condition is equivalent toZ2 < µP.

Then, the nonlinear constraint in Theorem 7.2.1 can be replaced by:
{

ϒ < 0,

Z2 < µP
(7.14)

whereϒ is the matrix required to be negative definite in (7.11), but substituting the terms

ΦT(M )P, ΛT(N )P andPZ−1
2 P by ΦT(W ), ΛT(X ) and 1

µ P respectively.

It is worth comparing the proposed method with the one introduced in [D. Yue, Q. H.

and J. Lam, 2005] and used in other works to handle the same nonlinearity. While in [D.

Yue, Q. H. and J. Lam, 2005] it is directly imposedZ2 to beP times a given scalar, our

method just restrictsZ2 < µP, which covers a much wider range of possible solutions in

the space of positive definite matrices.

Cone complementary algorithm

As it has been done in other works, an extended procedure (see[El Ghaoui et al., 1997])

can be also adapted, which let us address the nonlinearityPZ−1
2 P by introducing some

new matrix variables and constraints. Following the same steps than [Moon et al., 2001],

the original inequality (7.11) can be replaced by the following nonlinear minimization

problem involving LMI conditions:

MinimizeTr
(
P̂P+ Ẑ2Z2+ T̂2T2

)
(7.15)

subject to






ϒ < 0,
[

−T̂2 P̂

∗ −Ẑ2

]

≤ 0,

[

P I

∗ P̂

]

≥ 0,

[

Ẑ2 I

∗ Z2

]

≥ 0,

[

T2 I

∗ T̂2

]

≥ 0,
(7.16)



184
Distributed estimation in networked systems under periodic and event-based

communication policies

whereϒ is as before the matrix required to be definite negative in (7.11), but substituting

PZ−1
2 P by T2. The set of additional linear constraints and variables needs to be introduced

to ensure the convergence of the solution.

In order to solve the aforementioned minimization problem (7.15) the algorithm intro-

duced in [El Ghaoui et al., 1997] can be implemented. It has been omitted here.

Remark. The computational burden required to solve the LMIs (7.14) and (7.16) di-

rectly depends on the dimension of the system, the number of agents, and the number of

links between them. Although the implementation of the distributed estimation scheme is

completely distributed, the design procedure is centralized, as all the weighting matrices

are designed together. With respect to centralized schemes, the number of links is now the

bottleneck of all the proposed solutions in the literature.It would be of undeniable interest

to distribute the mathematical calculus, in such a way that each node does not need infor-

mation of the rest of the nodes, but only of its neighbours, todesign its observer. This is

matter of future research.

7.3 Event-based communication between agents

This section analyzes an asynchronous event-based communication policy between agents

to reduce the energy consumption and make an efficient use of the network resources. The

event-based communication is a means to reduce the information exchange rates between

the components in the network by triggering the communication only after an event has

indicated that a certain relevant variable exceeds a tolerable pre-defined threshold. Next,

the event-based implementation of the observer designed previously is studied in detail.

From a modeling point of view, the main difference between the time-driven scheme

in Section 7.2 and the event-driven paradigm described hereis the non-uniform pattern of

transmission of information.
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replacements

CASE 1 CASE 2

l i j (k)l i j (k)

k− τMk− τM kk

jj

ii

Figure 7.4: Different cases regarding the transmission of information from nodej to i

Transmissions are now assumed to be triggered at specific time instants, when a trig-

gering condition is satisfied. Letl i j (k) denote the time instant when nodej sent the more

recent packet available for the nodei at current time instantk. Then,{l i j (k)} ⊂ N, as node

j only sends packets when an event is triggered.

Triggering condition: Given a thresholdδ , at instantk node j broadcasts its estimates

to every agenti such thatj ∈Ni if

‖x̂ j(l i j (k))− x̂ j(k)‖∞ ≥ δ , for k> l i j (k). (7.17)

In this section, packet dropouts are not considered, so onlydelays affect the communi-

cation between agents.

7.3.1 Remodelling of node dynamics

This section introduces the modifications needed to remodelthe system dynamic equations

according to the approach introduced above. Consider a generic agenti at time instantk.

As Figure 7.4 suggests, there are two possible situations with respect to the information

received from each of its neighboursj ∈Ni :

• Case 1:The last packet received in nodei was sent beforek− τM. It is obvious that

l i j (k)< k−τM. In this case, nodei does not have in memory1 the estimate ˆxi(l i j (k)).

1Recall that each node stores only a finite amount of past estimates, as was explained in Section 7.2.
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Then, it compares its older buffered state, that is ˆxi(k− τM), with the available state

of its neighbour ˆx j(l i j (k)) to correct its estimation.

• Case 2:The last packet received in nodei was sent afterk− τM, so l i j (k) ≥ k− τM.

Given that the estimate ˆxi(l i j (k)) is still in the buffer of the nodei, it compares it with

the received information ˆx j(l i j (k)).

Taking into account these cases, the dynamics of a generic node i can be rewritten as

x̂i(k+1) = Ax̂i(k)+Mi(ŷi(k)−yi(k)) (7.18)

+ ∑
j∈Ni

Ni jCi j (x̂ j(l i j (k))− x̂i(k−µi j (k))) ,

where

µi j (k) =

{

τM, l i j (k)< k− τM,

k− l i j (k), l i j (k)≥ k− τM.

Considering the addition of the term±x̂ j(k−µi j (k)) and defining

wi j (k) = x̂ j(l i j (k))− x̂ j(k−µi j (k)), (7.19)

equation (7.18) can be rewritten as:

x̂i(k+1) = Ax̂i(k)+Mi(ŷi(k)−yi(k))

+ ∑
j∈Ni

Ni jCi j (x̂ j(k−µi j (k))− x̂i(k−µi j (k)))+ ∑
j∈Ni

Ni jCi j wi j (k).

This way, the observer have a dynamics equivalent to that of the periodic communica-

tion case, difference being in the terms that depends onwi j (k), which can be interpreted as

an external perturbation due to the discontinuous flow of information between neighbors

that is reset to zero at every transmission time. In this caseµi j (k) plays the role ofτi j (k) in

equation (7.7). It is straightforward to check that 0≤ µi j (k)≤ τM for cases 1 and 2.
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Moreover, it is easy to see that

‖wi j (k)‖∞ < δ ,

in both cases. In the case 2,wi j (k) = 0. In the case 1, it holdswi j (k) = x̂ j(l i j (k))− x̂ j(k−

τM), with l i j (k)< k− τM. Since no packet has been transmitted betweenl i j (k) andk− τM

(because, otherwise, this packet had been available in nodei at current instantk), it implies

that‖x̂ j(l i j (k))− x̂ j(k−τM)‖∞ < δ (see the triggering condition defined above). Therefore,

‖wi j (k)‖∞ < δ holds for both cases.

The dynamics of the augmented observation vectore(k) is similar to that of the time-

driven case, but including an additional term related with these disturbances:

e(k+1) = Φ(M )e(k)+Λ(N )d(k)+Γ(N )w(k), (7.20)

wherewT(k) = [wT
1 (k), · · · ,wT

r (k), · · · ,wT
l (k)], with r = g(i, j). As before, it is not difficult

to see that matrixΓ(N ) has the following structure:

Γ(N ) =
[

Γ1(N ) · · · Γr(N ) · · · Γl (N )
]

,

whereΓr(N ), r = g(i, j) ∈ {1, ..., l}, are vectors of matrices, in which the only block

different from zero isNi jCi j in the i row:

Γr(N ) =












0
...

Ni jCi j
...

0












row i

As it has been mentioned, in this section it is considered that the observers are designed

according to Theorem 7.2.1, so in the following, notationΦ,Λ,Γ will be used instead of

Φ(M ),Λ(N ),Γ(N ).
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7.3.2 Practical stability for delayed asynchronous systems

Next, the main result of this section is introduced. Given the distributed observer synthe-

sized by Theorem 7.2.1, the following result proves that, byimplementing the event-based

sampling policy described above, the observation errore(k) can be ultimately bounded into

an arbitrary small region that depends on the triggering thresholdδ . The proof of the the-

orem makes use of the Lyapunov-Krasovskii functional (7.12) and the fact that it can be

written in the following quadratic way

V(k) = ζ T(k)L4ζ (k), (7.21)

where

ζ (k) =











e(k)

e(k−1)

e(k−2)
...

e(k− τM)











,

andL4 is a positive definite matrix that can easily found, for all the terms in the functional

are quadratic.

Theorem 7.3.1. Consider a set of distributed observers designed by Theorem7.2.1. Then,
using an event-based communication with triggering condition (7.17), the estimation error
e(k) ∈ R

n whose dynamics is given in equation (7.20) is ultimately bounded by

‖e(k)‖∞ ≤
√

λ L4
max

λ P
min

[(‖Φ‖∞ +‖Λ‖∞)D1+‖Γ‖∞δ ] ,

where matrices P,Φ,Λ andΓ are given in Theorem 7.2.1 and

D1=
‖L2‖∞ +

√

‖L2‖2∞ +λ Q
min‖L3‖∞

λ Q
min

δ ,L2=ΓTP
[

Φ Λ 0
]

+ΓTZ2

[

(Φ− I) Λ 0
]

,

L3 = ΓTPΓ+ΓTZ2Γ,

being Q any positive definite matrix such that−Q> L1, with L1 given in equation(7.13).
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Proof: Consider the Lyapunov-Krasovskii functional (7.12). Including the disturbances

due to the asynchronous flow of information, the forward difference takes the form:

∆V(k)≤ ξ T(k)L1ξ (k)+2wT(k)L2ξ (k)+wT(k)L3w(k).

From Theorem 7.2.1 the matrixL1 is negative definite, so there exists a positive matrix

Q such thatL1 <−Q. Taking norms

∆V(k)≤−λ Q
min‖ξ (k)‖

2
∞ +2‖L2‖∞ ‖w(k)‖∞ ‖ξ (k)‖∞ +‖L3‖∞ ‖w(k)‖2∞ ,

so taking into account the triggering condition (7.17), it yields

∆V(k)≤−λ Q
min‖ξ (k)‖

2
∞ +2‖L2‖∞ δ ‖ξ (k)‖∞ +‖L3‖∞δ 2.

Therefore, solving the second order equation it can be ensured that∆V(k) ≤ 0 for

‖ξ (k)‖∞ > D1, with D1 =
‖L2‖∞+

√

‖L2‖2∞+λ Q
min‖L3‖∞

λ Q
min

δ .

For a generic vectorx and a positive scalarD, let Bx
D denote the region of the space

defined by{x : ‖x‖∞ ≤D}. Given thatV(k) is positive and decreasing forξ (k) /∈Bξ
D1

, there

exists a time instantk∗ whenξ (k∗) enters into the regionBξ
D1

. Since it is considered infinite

norms ande(k) is included in the augmented vectorξ (k), it turns out thate(k∗) ∈ Be
D1

.

As ξ (k∗) ∈ Bξ
D1

for any realization ofµr(k) ∈ [0,τM], r ∈L , it also holds thatζ (k∗) ∈

Bζ
D1

.

Onceξ (k∗) belongs to this region, the Lyapunov function is not necessarily decreasing

and the augmented state may jump outside, that is,ξ (k∗+1) /∈ Bξ . Using the dynamics of

the observation error given in equation (7.20), it is possible to bound the error at instant

k∗+1 by

‖e(k∗+1)‖∞ < ‖Φ‖∞‖e(k∗)‖∞ +‖Λ‖∞‖d(k∗)‖∞ +‖Γ‖∞‖w(k∗)‖∞

< (‖Φ‖∞ +‖Λ‖∞)D1+‖Γ‖∞δ .
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trajectory final region

max(L4−norm)2

Be
D1

Be
D2

Figure 7.5: Trajectory of the error in a two-dimensional space

Thene(k∗+1) ∈ Be
D2

, whereD2 = (‖Φ‖∞ +‖Λ‖∞)D1+‖Γ‖∞δ . Figure 7.5 illustrates

a possible evolution of the observation error and the different regions.

This way,ξ (k∗+ 1) andζ (k∗+ 1) may leave the regionsBξ
D1

andBζ
D1

, respectively.

Then, the Lyapunov-Krasovskii functional must be decreasing again, implying that

∀k> k∗+1, V(k)< max{V(k∗+1)}= max{ζ T(k∗+1)L4ζ (k∗+1)}

< λ L4
maxmax{‖ζ (k∗+1)‖2∞}

< λ L4
maxD

2
2.

Finally, to get the final bound one(k) for k > k∗+ 1, note that all the terms of the

Lyapunov functional involve positive definite matrices, so

e(k)TPe(k)<V(k),∀k,

V(k)< λ L4
maxD

2
2,∀k> k∗+1.

And using fairy extended properties, it yields

λ P
min‖e(k)‖2∞ < e(k)TPe(k)< λ L4

maxD
2
2

⇒‖e(k)‖∞ <

√

λ L4
max

λ P
min

D2.
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This ends the proof. �

Note that the final bound ofe(k) depends on the thresholdδ that triggers the sam-

pling. With δ = 0, the event-based sampling becomes a periodic one and the asymptotic

convergence will be accomplished. Furthermore, it is possible to use the theorem to find

the suitableδ in order to achieve a prescribed final bound on the estimationerror and a

trade-off between estimation performance and traffic reduction.

7.4 Numerical example

Consider a plant whose dynamics is given by:

x(k+1) =













0.99 0 0 0 0 0

0 1.005 0 0 0 0

0 0 0.9945 −0.08757 0 0

0 0 0.1248 0.9945 0 0

0 0 0 0 0.9 0.09

0 0 0 0 0 1













x(k).

Observer 1 measures the outputy1 = x1 while observers 2, 3, and 4 receivesy2 = x2,

y3 = x4, andy4 = x6 respectively. The observers are connected according to an incomplete

communication graph, depicted in Figure 7.6. The outputs measured from every node and

the received estimates are summarized in Table 7.1.

1
3

4

2x1

x2

x4

x6

Figure 7.6: Graph representing the network connectivity
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Measurements Received outputs

Node 1 y1 =C1x= [1 0 0 0 0 0]x C12 = [C2;C3;C4]

Node 2 y2 =C2x= [0 1 0 0 0 0]x C23 =C3, C24 = [C1;C4]

Node 3 y3 =C3x= [0 0 0 1 0 0]x C32 = [C1;C2;C4]

Node 4 y3 =C3x= [0 0 0 0 0 1]x C41 = [C1;C4]

Table 7.1:Outputs and information shared with neighbours
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Figure 7.7: Evolution of the estimates for observer 1

Note that local observability is not achieved from any of theobservers. The design of

the observation matrices and the simulation have been performed for a maximum delay of

τM = 3 in all links.

Figures 7.7 and 7.8 represent the evolution of the plant states (continuous lines) and

the estimated states (dashed lines) for observers 1 and 4 respectively. The initial states for

all the observers are set to zero. The plant’s initial state is

x(0) =
[

−4 1.2 0.5 −1 3.5 5
]T

.

It is worth pointing out that all the observers converge faster to the states that can be

locally estimated, given that they are not affected by communication effects (delays and

asynchronicity).
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Figure 7.8: Evolution of the estimates for observer 4

For both observers, the simulations on the left correspond to periodic communication

policy (δ = 0). As expected, when the threshold to communicate is enlarged, the observers

broadcast less information to their neighbors and the estimation performance progressively

diminishes. Nonetheless, it is possible to find an adequate trade-off between estimation per-

formance and communication savings, achieving remarkablereduction on the network traf-

fic load while maintaining an estimation performance close to the periodic communication

case.

Finally, Figure 7.9 shows the percentage of packets transmitted with respect to periodic

communication policy for observer 1 and different communication thresholds.

7.5 Conclusions

In this chapter, the problem of distributed estimation considering network-induced delays

and dropouts is solved. Two schemes are analyzed, namely, periodic time-driven and event-

based approaches, the latter being specially beneficial in terms of economy of use of net-

work resources. For both scenarios, the observers employ a local Luenberger-like structure

and consensus matrices to weight the information received from neighbors. The informa-
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Figure 7.9: Normalized percentage of transmitted packets for different thresholds

tion shared between neighbors does not need to be necessarily the complete estimated state,

but can be selected to reduce communication requirements. Stability proofs are provided

and performance of the design methods is showed by a simulation example.

Future research may include the consideration of differentdelay bounds for each link as

well as the robustification of the method to deal with parametric uncertainties in the system

model and exogenous perturbations or noise. Other important line of research consists in

reducing the computational requirements of the proposed algorithms, by distributing the

design algorithms.

7.6 Related publications

• Pablo Millán, Luis Orihuela, Isabel Jurado Carlos Vivas and Francisco R. Rubio.

Distributed Estimation in Networked Systems Under Periodic and Event-Based Com-

munication Policies. International Journal of System Science.



Chapter 8

Conclusions and future work

I
n this chapter a summary of the main contributions included in this thesis is pre-

sented. It also provides some possible directions to followin order to continue with

the research lines that have been started in this thesis.

8.1 Conclusions

This thesis has been focused in the field of Networked ControlSystems (NCSs), in partic-

ular in those that the network introduces packet losses. It have been also considered other

problems such as delays and uncertainties in the model of theplant. Different techniques

have been studied in order to deal with these problems.

The main contributions can be included in three different areas. The first three chap-

ters (Chapters 2, 3 and 4), have been focused onH∞ techniques, dealing with plant with

uncertainties in their models. Chapter 5 has presented contributions in the area of Model

Predictive Control. Chapter 6 has also used MPC strategies in order to solve a distributed

control problem. That chapter has presented contributionsalso in the last area under con-

sideration in this thesis, the distributed controlled systems. This area is exclusively treated

in Chapter 7, which has been centered in distributed estimation.

• Firstly, Chapter 2 has focused on control loops for SISO LTIplants, where the feed-

195
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back path comprises a communication channel affected by Bernoulli data losses.

These systems have been studied as equivalent ones wherein the unreliable channel

has been replaced by an additive i.i.d. noise channel, plus again. The objective of

the chapter has been the synthesis of controllers that compensate model uncertain-

ties and failed transmissions. To perform this task, anH∞ control problem has been

proposed.

• In Chapter 3 NCSs subject to data dropouts constraints havebeen considered. The

unreliable channel has been replaced by an additive i.i.d. noise channel, plus a gain.

A controller that avoid the model uncertainties has been synthesized. Also, a lower

bound of the success probability in the transmission has been found. To perform this

task, a mixedH2/H∞ control problem has been proposed. Moreover, the minimal

successful transmission probability that guarantees MSS and robustness properties

for the closed-loop system has been obtained.

Also, some numerical results that illustrate the closed-loop system performance have

been presented. These simulation results showed that robust performance is achieved

if the successful probability transmission is higher than the minimum computed,

while the differents systems performances get worse, untilthe robust stability is lost,

as the successful probability transmission decreases.

Furthermore, an application of this technique to the problem of the glucose control

for diabetic patients subject to sensor errors constraintshas been presented. Different

patient characteristics have been considered, representing the uncertainties to take

into account for the synthesis of the controller.

• Chapter 4 has focused also on control loops for SISO LTI plants, where the feedback

path comprises a communication channel that produces data losses.

Firstly, it is considered that only one consecutive packet can be lost.
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One of the objective of this chapter has been the synthesis ofa controller and a filter

that avoid the model uncertainties and compensate failed transmissions. When a data

dropout occurs, the control system uses an estimated outputgiven by the filter to do

the feedback. To perform this task, aH∞ control problem has been proposed in order

to calculate the controller. To obtain a robust controller,some functions have been

chosen to weight some sensitivity functions. The filter is calculated with a technique

based on the location of the unstable poles of the model of theplant.

An example has been exposed to obtain some numerical resultsthat illustrates the

closed-loop system performance. These simulation resultscorroborated that robust

performance is achieved.

The other objective of the chapter has been the synthesis of acontroller and a filter

that avoid the model uncertainties and compensate failed transmissions considering

that the maximum number of consecutive dropouts is known.

The NCS has been modelled as a Markov Jump Linear System, withmodes depend-

ing on the network situation.

When a data dropout occurs, the system uses an estimated output given by the filter

as feedback. To perform this task, aH∞ control problem has been proposed in order

to calculated the controller. The filter is calculated with an H∞ technique together

with the controller.

Finally, some simulations have been showed to illustrate the closed-loop system per-

formance. These results corroborated that robust performance is achieved.

• The first part of Chapter 5 has presented a methodology to compensate data dropouts

and delays in networked control systems, using model predictive control. The method-

ology takes advantage of the intrinsic computation of future control signals in pre-

dictive control, to cope with eventual data dropouts. A key aspect is the inclusion of
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a buffering strategy together with a model-based plant estimator that, under certain

conditions, ensure stability of the controlled system.

Simulation results show that remarkable data dropout ratesup to 40% can be achieved

without significant performance degradation, as well as traffic load alleviation up to

85% with respect to conventional buffered predictive control systems.

Secondly, Chapter 5 has shown how statistical information on packet delays and

dropouts can be used in the design of a networked control system.

Also, an experimental plant has been chosen to obtain some numerical results.

• Chapter 6 has presented a cooperative MPC formulation for NCSs subject to data

dropouts. An algorithm that decides which nodes are in charge of the calculation of

the the control input and which ones just relay the received information is provided.

This decision depends on transmission outcomes. Once the controller node has been

chosen, it interacts with its neighbors over unreliable links solving a cooperative

MPC.

Also, Chapter 6 has presented a flexible architecture for theimplementation of an

estimated state feedback control law over a wireless sensor-actuator network with

analog unreliable channels without acknowledgments. Withthe algorithm provided,

the role played by individual nodes depends on transmissionoutcomes. In partic-

ular, the state estimator location depends upon the availability of past plant input

values and transmission outcomes, while the controller is always located at actuator

node. By deriving a Markovian jump-linear system model, it is established a closed

form expression for the stationary covariance of the systemstate in the presence of

correlated dropout processes.

• Finally, in this Chapter 7 the problem of distributed estimation considering network-

induced delays and dropouts is solved. Two schemes are analyzed, namely, periodic
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time-driven and event-based approaches, the latter being specially beneficial in terms

of economy of use of network resources. For both scenarios, the observers employ

a local Luenberger-like structure and consensus matrices to weight the information

received from neighbors. The information shared between neighbors does not need

to be necessarily the complete estimated state, but can be selected to reduce commu-

nication requirements. Stability proofs are provided and performance of the design

methods is showed by a simulation example.

8.2 Future work

Future works that could be considered for further study are the following:

• Different structures for the parameterQ(z) in Chapter 2, non-linear systems and also

to include delays in the communication channel.

• Studying closed loop stability and performance issues forthe contributions on Chap-

ter 5 and Chapter 6.

• Study a practical application of the method proposed in Chapter 6 for systems con-

trolled over unreliable networks with time-varying reliability, for example, if there

are moving obstacles blocking the nodes. Also, future worksmay include extending

the ideas presented to the control of multiple-loops, to general network topologies,

and to controller design.

• In Chapter 7, future researches may include the consideration of different delay

bounds for each link as well as the robustification of the method to deal with para-

metric uncertainties in the system model and exogenous perturbations or noise. Other

important line of research consists in reducing the computational requirements of the

proposed algorithms, by distributing the design algorithms.





Capítulo A

Resumen en Castellano

L
os sistemas de control a través de redes se han convertido en un área importante

dentro de la comunidad de control, lo cual es debido a su bajo coste y a la flex-

ibilidad de sus aplicaciones. Los sistemas de control a través de redes (NCSs)

se componen de sensores, actuadores y controladores; las operaciones entre ellos se coordi-

nan a través de una red de comunicación. Típicamente, estos sistemas están espacialmente

distribuidos, y pueden funcionar de manera asíncrona, perosus operaciones han de estar

coordinadas para conseguir los objetivos deseados.

En este resumen se presenta una perspectiva general de los NCSs, y en particular, los

casos específicos en los que se ha basado esta tesis, abordando los temas principales rela-

cionados con NCS, con todos los problemas y ventajas asociados, se describen en este

resumen. Por último, se presenta un índice de la tesis con suscontribuciones más rele-

vantes.

A.1 Introducción a los Sistemas de Control a través de Red

Los Sistemas de Control a través de Red (NCSs) son sistemas espacialmente distribuidos

donde la comunicación entre plantas, sensores, actuadoresy controladores se realiza a

través de una red de comunicación. Este tipo de sistemas y suscaracterísticas son descritos

201
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ampliamente en [J. P. Hespanha, P. Naghshtabrizi and Y. Xu, 2007], [W. Zhang, M. S.

Branicky and S. M. Phillips, 2001], [R. A. Gupta, 2010] and [J. Chen, K. H. Johansson, S.

Olariu, I. Ch. Paschalidis and I. Stojmenovic, 2011].

La complejidad en el diseño y la realización, el coste del cableado, la instalación y el

mantenimiento pueden ser reducidos drásticamente incluyendo una red de comunicación.

Sin embargo, las redes de comunicación en los sistemas también traen algunos incove-

nientes como los retrasos y la pérdida de datos, los errores de codificación, etc. Estos

incovenientes pueden ser la causa de la de la degradación delcomportamiento del sistema

e incluso causar su desestabilización.

Hoy en día, hay un gran número de situaciones prácticas en lasque el uso de redes

de comunicación para el control son necesarias para aplicaciones o procesos de control en

ingeniería. Algunos ejemplos son:

• Situaciones en las que el espacio y el peso están limitados.

• Situaciones en las que las distancias a considerar son grandes.

• Aplicaciones de control donde el cableado no es posible.

El uso de redes de comunicación digitales proporciona también algunas ventajas:

1. La complejidad en el cableado en conexiones punto a punto se reduce mucho, así

como el coste. Además, los costes de instalación pueden reducirse también drástica-

mente.

2. La reducción en la complejidad del cableado hace mucho másfácil el diagnóstico y

el mantenimiento del sistema, dando lugar a un ahorro en el coste debido a que la

instalación y el funcionamiento tienen una eficiencia mayor.

3. Los NCSs son flexibles y reconfigurables.

4. Fiabilidad, redundancia y robustez ante los fallos.



A.2. Objetivos de la tesis 203

5. Los NCSs proporcionan modularidad, control descentralizado y diagnósticos inte-

grados.

Todas estas ventajas sugieren que los NCSs jugarán un papel principal en un futuro cercano,

siendo un área de investigación muy prometedora.

A.2 Objetivos de la tesis

La idea general de esta tesis es proponer algunas solucionesnovedosas a diferentes pro-

blemas relacionados con NCSs. Todos los problemas considerados son típicos dentro del

marco del control a través de redes, considerándose principalmente el de las pérdidas de

paquetes en la transmisión de datos.

Dentro del contexto de sistemas con pérdida de paquetes, se han estudiado diferentes

problemas. Para obtener soluciones diferentes para este tipo de sistemas, se han considera-

do los siguientes objetivos:

• Diseño de controladores.

ControladoresH∞, que consigan la robustificación de sistemas con incertidum-

bres.

ControladoresMPC, combinados con estrategias de buffer.

• Diseño de filtros.

Filtros H∞ para sistemas con incertidumbres, usando técnicas frecuenciales y

cadenas de Markov.

• Diseño de algoritmos.

Localización dinámica de un control distribuido en una red formada por una

estructura matricial de nodos.
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Localización dinámica del estimador de la salida del sistema, en una red for-

mada por una estructura lineal de nodos.

• Estimación distribuida cooperativa.

Basada en observadores locales de Luenberger.

Uno de los objetivos de esta tesis ha sido el análisis de la estabilidad y comportamiento

de sistemas bajo control. En algunos casos, el diseño se ha realizado imponiendo restric-

ciones en cuanto a la estabilidad.

La robustificación de sistemas, en particular la de aquelloscon incertidumbres, ha sido

también tenida en cuenta. Las técnicas de controlH∞ se han usado en los casos de análisis

y diseño de sistemas de control.

Otro objetivo importante de esta tesis ha sido el diseño de algoritmos para una red

dinámica, la cual está compuesta por cierta estructura de nodos. El algoritmo es capaz de

decidir qué nodo será el controlador o el estimador de la salida del sistema en la red. La

estabilidad y el comportamiento del sistema de control ha sido analizado.

También se ha abordado el diseño de estimación y esquemas distribuidos. Se han con-

siderado redes que introducen retrasos temporales, junto con pérdidas aleatorias. La reduc-

ción en el consumo de energía ha sido un objetivo importante en esta parte de la tesis. En

este caso, se ha examinado una política de comunicación entre agentes basada en eventos,

la cual da lugar a un compromiso entre el comportamiento del sistema y los ahorros en la

comunicación.

A.3 Contribuciones de la tesis

En esta sección, se presenta un breve resumen con las contribuciones de cada capítulo.

En todos los capítulos, se considera un NCS en el que un canal de comunicación intro-

duce pérdida de datos.
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En el Capítulo 2, se considera que el modelo de la planta tieneincertidumbres estruc-

turales. Así pues, el principal objetivo de este capítulo esencontrar un controlador robusto

para la planta con incertidumbres y con pérdida de datos en latransmisión; a la vez que

se minimiza la varianza de la señal de error. LaEstabilidad Media Cuadrática (MSS)y

propiedades de robustez tienen que estar garantizadas también. Se propone una técnica de

controlH∞ de manera se puedan tolerar las incertidumbres estructurales y las pérdidas al

mismo tiempo, a la vez que se optimiza el comportamiento del sistema. Para tratar con las

incertidumbres de la planta, se ha calculado un controladorcentral LTI. Este controlador

central se combina con una función de transferencia,Q(z), que es la que está a cargo de

la minimización de la varianza del error. Con el fin de encontrar Q(z), se propone un algo-

ritmo que proporciona una solución que satisface las restricciones. La unión de estas dos

funciones de trasferencia proporciona el controlador propuesto.

En el Capítulo 3 se ha usado la misma estructura para el NCS queen el Capítulo 2. La

diferencia aquí ha sido el uso de la técnica de controlH2/H∞ (mientras que el Capítulo

2 sólo se ha usado la técnicaH∞). La parteH2 se ha diseñado de manera que estabilice

el NCS, teniendo en cuenta la probabilidad de pérdida de datos, mientras que la parte

H∞ se ha usado para hacer el sistema en lazo cerrado suficientemente robusto frente a las

incertidumbres estructurales del sistema.

Además, se ha presentado una aplicación de esta técnica parael control de la glucosa

en pacientes diabéticos, teniendo en cuenta que los posibles errores producidos por los

sensores. Se han considerado diferentes características de pacientes, lo cual representa las

incertidumbres a tener en cuenta en la síntesis del controlador.

En el Capítulo 4, también se consideran incertidumbres estructurales en el modelo de

la planta. Uno de los objetivos de este capítulo es encontrarun controlador robusto para

la planta con incertidumbres, lo cual se ha realizado mediante la técnica de controlH∞.

Otro objetivo importante es el diseño de un filtro que calculeuna estimación de la salida
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de la planta. Esta estimación se usa cuando se produce se pierda un paquete, de manera

que sustituya a la realimentación cuando ésta no esté disponible. LaEstabilidad Cuadráti-

ca Media (MSS)y las propiedades de robustez tienen que estar garantizadastambién. El

diseño del filtro ha sido realizado mediante una técnica basada en la localización de los

polos inestables del modelo de la planta. Se puede encontrarmás información sobre este

tema en [J. E. Normey-Rico and E. F. Camacho, 2009].

En este mismo capítulo, se ha modelado el sistema como unMarkov Jump Linear

System (MJLS)y se ha derivado un LMI para encontrar un filtro y un controlador robustos

mediante técnicasH∞ (ver [S. Skogestad, and I. Postlethwaite, 2005]). El filtro diseñado

calcula una estimación del estado de la planta. Al igual que antes, esta estimación se usa

cuando haya una pérdida y se anule la realimentación.

El Capítulo 5 propone un esquema con control predictivo que se basa en una política

de intercambio de información del sensor/actuador vs. el controlador. El problema aquí es

el diseño de una estrategia para sistemas lineales con red y con ruido, con pérdida de datos

grande, de manera que se conserve un buen comportamiento. Adicionalmente, también ha

sido un aspecto de interés el limitar la cantidad de información transmitida en el sistema

de control a través de red. En este capítulo, se ha explorado también el efecto de reducir el

intercambio de paquetes entre controlador y actuador, mientras que se conserva un umbral

para el error de las señales de control del actuador. Este umbral permite limitar la cantidad

de información a través de la red, de manera que se transmite sólo cuando sea necesaria

información relevante para el control.

El modelo de la red considera pérdida de paquetes tanto en la conexión controlador-

actuador como en la de sensor-actuador. Esto motiva que se incluya un buffer para la de-

tección y compensación de paquetes perdidos y un estimador del estado, respectivamente.

Para mostrar el comportamiento de la estrategia propuesta de compensación, se han inclu-

ido resultados de simulación para el problema del control denivel de agua en un sistema
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de tres tanques.

Se ha propuesto también el envío desde el controlador de una secuencia de señales de

control que, tratadas apropiadamente en el buffer y en el actuador, actúan como salvaguarda

en el caso de retrasos o pérdidas de paquetes eventuales. Este concepto encaja de forma

natural en el modelo de control predictivo (MPC).

También en el Capítulo 5, se supone que se pueden medir con suficiente precisión las

propiedades estadísticas de los retrasos y las pérdidas. Esto se puede explotar para el diseño

de un MPC estocástico basado en paquetes para mejorar el comportamiento del control.

El Capítulo 6 estudia NCSs en los que la red está compuesta poruna cierto número de

nodos que forman una estructura matricial. Estos nodos siguen un algoritmo que decide

cuál será el que calcule la señal de control. Este nodo resuelve un MPC cooperativo comu-

nicándose con sus vecinos. Este nodo conoce parte del modelodel sistema y comparte su

información con un grupo de nodos vecinos, de manera que cooperan para intercambiar su

información sobre el sistema. En cada instante de muestreo se elige un grupo diferente de

nodos para calcular la señal de control. Este grupo de nodos es elegido dependiendo del

particular estado de la red en ese tiempo de muestreo.

El Capítulo 6 extiende también el reciente trabajo [D. E. Quevedo, K. H. Johansson, A.

Ahlén and I. Jurado, 2012] para incluir NCSs con enlaces paralelos entre nodos y el uso de

MPC cooperativo. La idea está motivada por el hecho de que el estado de las conexiones

pueden cambiar en cada instante de muestreo, de manera que unnodo en particular no será

siempre la mejor opción para el cálculo de la señal de control.

En el Capítulo 6 también se estudia un NCS con un lazo simple que usa conexiones

en serie a través de un canal con pérdidas. Así pues, las transmisiones están afectadas por

pérdidas aleatorias de paquetes. En este capítulo, se tratan situaciones en las que los nodos

tienen limitados la energía y la potencia de procesado. El único nodo que proprociona real-

imentación es el actuador, que transmite el valor de la entrada aplicada a la planta a través
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de enlaces paralelos no fiables a los nodos intermedios. En vez de afrontar formulaciones

de control óptimo (que dependen de los parámetros de la red y pueden ser difíciles de

implementar en la práctica), el controlador ha sido prediseñado. Más específicamente, se

asume que la política de control consiste en una ganancia prediseñada en la realimentación

del estado combinada con un observador del mismo, el cual, enausencia de los efectos de

la red, daría lugar al comportamiento deseado. Dentro de este contexto, se ha presentado

una arquitectura flexible para NCSs donde el papel que desempeña cada nodo en particular

depende del resultado de las transmisiones. Con el algoritmo propuesto, los resultados de

las transmisiones determinan, en cada instante, si la estimación del estado se calcula en el

nodo actuador, en el sensor o en algunos de los intermedios.

En el Capítulo 7 se ha discutido el caso de estimación distribuida cooperativa, basada

en observadores locales de Luenberger, en combinación con estrategias de consenso. Se

considera que la red induce retrasos y pérdidas de paquetes.La eficiencia en el uso de los

recursos de la red recibe mucha importancia, tanto en el casode comunicación periódica

entre agentes como en el de comunicación basada en eventos. Se trata de reducir la cantidad

de información que se transmite a través de la red recurriendo a dos ideas diferentes: por

un lado, sólo nodos vecinos pueden comunicarse entre sí, reduciendo las transmisiones

con respecto a esquemas en los que todos comunican con todos.Por otro lado, el diseño

de los observadores contempla la posibilidad de compartir parte del estado estimado entre

vecinos, en vez de comunicar el vector de estado estimado completo. Esta economía en el

uso de los recursos de la red es, por su propia naturaleza, notablemente mejorada con la

estrategia de comunicación basada en eventos.
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