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This paper presents the linear stability analysis of an interface between air and
an insulating liquid subjected to a perpendicular electric field, in the presence of
unipolar injection of charge. Depending on the characteristics of the liquid and the
depth of the liquid layer two different instability thresholds may be found. One of
them is characterized by a wavelength of the order of the liquid layer thickness
and corresponds to the well-known volume instability of a liquid layer subjected to
charge injection. The other one is characterized by a wavelength some ten times the
liquid layer thickness and corresponds to the so-called rose-window instability, an
instability associated to the balance of surface stresses. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4868365]

I. INTRODUCTION

Surface Electrohydrodynamic (EHD) instability of fluid layers under an electric field perpen-
dicular to the interface has been extensively studied in the case of no charge injection. Taylor and
McEwan,1 in a classical work, described theoretical and experimentally the instability of a layer of
perfect conducting liquid placed between two plane electrodes. Above certain electric field, of the
order of some kV/cm, the liquid surface becomes unstable.

Melcher2 generalized the study to the case of an interface between two liquids of different
conductivities and permittivities. The various possibilities are summarized in the book by Melcher.2

The works by Mima et al.3 and Giannetta and Ikezi4 studied the dynamics of a helium liquid surface
negatively charged. They considered that the charge is bounded to the interface, neglecting any
mechanism of charge transport in the liquid bulk.

On the other hand, EHD instabilities may be induced in the liquid bulk by the existence of a
space charge. This is the case when the electric relaxation time of the liquid ε/σ is greater than the
time of transit of ions through the liquid layer, D/(KlE) (ε is the liquid permittivity, σ the liquid
conductivity, Kl the ion mobility in the liquid, D the liquid layer thickness, and E the average
electric field in the liquid). In these circumstances, an ion can traverse the liquid layer before being
neutralized, there is a net electric charge in the bulk and the electric conduction regime is not Ohmic.
The kind of instability that appears in such a highly insulating liquid is referred to as the instability
induced by unipolar injection.

Liquid instability induced by unipolar injection is a classical EHD instability, and it has been the
subject of many experimental as well as theoretical studies.5–8 It is characterized by the emergence
of a hexagonal pattern of cells with a typical size of the order of the liquid layer thickness. The liquid
motion starts above a critical value of the potential difference in the liquid layer.

Atten and Moreau5 conducted an extensive mathematical analysis of the linear stability of
a liquid layer subjected to unipolar injection of charge. They considered a liquid layer confined

a)rchicon@um.es
b)alberto@us.es

1070-6631/2014/26(3)/034103/19/$30.00 C©2014 AIP Publishing LLC26, 034103-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132465895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.4868365
http://dx.doi.org/10.1063/1.4868365
http://dx.doi.org/10.1063/1.4868365
mailto: rchicon@um.es
mailto: alberto@us.es
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4868365&domain=pdf&date_stamp=2014-03-19
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between two plane electrodes and computed the instability threshold for different levels of injection.
However, in the case of non-rigid electrodes they did not take into account the deformation of the
liquid surface, where gravity and surface tension effects may play an important role.

Watson et al.6 studied experimentally the EHD unipolar injection instability using an electron
beam to inject charge into the liquid. The liquid surface was free, but they did not consider the
interfacial stresses in their theoretical analysis,7 which is equivalent to one of the cases studied by
Atten and Moreau.5

Several devices can be envisaged to inject charge in the liquid, one of them being corona
discharge. Corona discharge in air, for example, in a point-to-plate geometry, can induce instabilities
on a liquid-air interface. Some descriptive works on the EHD instabilities due to unipolar charge
injection using corona discharge were made by Herrick,9 Ahmed El-Haddad et al.,10 and Malraison
and Atten.11

The electric forces, acting on the surface or in the liquid volume, are responsible for these
instabilities. Whether the dominant driving forces are surface or volume forces depends on the liquid
conductivity, specifically on the ratio between the charge relaxation time and the time of flight of
ions referred to above.

Rose-window instability appears when a corona discharge is applied on a liquid surface, and
was described by one of the authors.12, 13 The instability appears for liquids of low enough electrical
conductivity, and it is related to the fact that the electric field pushes the charged liquid surface. The
fingerprint of this instability is that, just above the onset, the size of the cells is much larger than the
liquid layer thickness.

A more detailed experimental research was reported in a later paper.14 For very high insulating
liquids, like silicone oil, two convective patterns may coexist. One pattern features small cells with
a typical size of the order of the liquid layer thickness. The appearance of this pattern is associated
with a certain value of the product ID3, which is the relevant parameter in the experiment, where
I is the corona electric current. Since the corona current determines the voltage drop through the
liquid layer thickness, this instability corresponds to the instability induced by unipolar injection. A
second pattern is also observed in silicone oil: the above referred rose-window.

For less insulating liquids than silicone oil, like castor oil or corn oil, the small cell pattern is
not visible. Only the rose-window is observed in these liquids. It is important to note that the electric
conductivity is in the range of 10−11 S/m for castor or corn oil compared to 10−13 S/m for silicone
oil.

Besides the size of the cells, other characteristics distinguish experimentally the rose-window
instability from the EHD volume instability. In particular, the size of the cells neatly decreases when
the electric field increases, whereas in the EHD volume instability this size remains approximately
unchanged for a wide range of the applied voltage.

Rose-window instability sets in above a certain critical voltage. For highly insulating liquids,
like silicone oil, the critical voltage increases as the liquid layer thickness decreases, becoming very
high for very thin layers. On the contrary, for castor or corn oil the critical voltage decreases slowly
as the thickness of the liquid layer decreases.

Actually it is not the conductivity of the liquid alone which determines what patterns is observed,
but the ratio S = D2σ/εKl V . If S � 1, the charge relaxation time is greater than the ionic transit
time, and the ions can traverse the liquid layer without being discharged. There exists a volume
charge and the instability due to volume forces can develop. If S � 1, there cannot exist any volume
charge, and the only instability mechanism is the one associated to surface electrical forces (Table I).

There are some previous theoretical works on the surface instability of a liquid-air interface
subjected to injection from the air. Atten and Koulova-Nenova15 studied the hydrostatic solution and
calculated the electric pressure on the liquid layer for the very insulating liquid case. They found that
the electric pressure as a function of the liquid layer thickness D has a maximum. Their argument is
that the flat surface is potentially unstable only when the electric pressure is a decreasing function
of the layer thickness. This would imply that the instability critical voltage becomes very high for
very thin layers, consistently with the experimental findings.

In a subsequent work, Koulova-Nenova and Atten16 solved numerically the equations for the
linear instability of a layer of very insulating liquid. Their physical model differs from that by Atten
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TABLE I. Typical values of the physical properties of some relevant liquids, ε is the relative electric permittivity and ν is the
kinematic viscosity.

Ion transit
Relaxation time (s) (D = 1 mm,

ε ρ (kg/m3) ν (m2/s) K (m2/V s) σ (�−1 m−1) time (s) V = 100 V)

Air (300 K) 1.0 1.164 1.57 × 10−5 ∼1 × 10−4 ∼1 × 10−15 9 × 103 1 × 10−4

Silicone oil 2.73 960 50 × 10−6 5 × 10−10 6 × 10−13 40 20
Corn oil 3.1 990 55 × 10−6 4.5 × 10−10 1.9 × 10−11 1.44 22
Castor oil 4.69 958 600 × 10−6 4 × 10−11 7 × 10−11 0.6 250
Water (300 K) 76 998 7.99 × 10−7 ∼5.19 × 10−8 (Na+) ∼5.5 × 10−6 1 × 10−4 1

and Moreau,5 or Schneider and Watson,7 in that it includes surface tension, gravity, and electrical
stresses on the surface. Also, the injection is produced from the air. However, their numerical
results amount to just a small correction of the instability threshold found in the previous studies
of the instability induced by unipolar injection. No indication of anything similar to rose-window
instability was found. Later, they presented some partial results that might indicate the presence of
rose-window instability,17 but a systematic analysis was not pursued. Also in these works a simplified
model for the rose-window instability is presented. This model is based on the assumption that this
instability appears at very large wavelengths. In this limit, the authors computed the change of the
electric pressure due to a small perturbation of the surface. From the balance between the electric
and gravity forces, they obtained a value of the critical voltage as a function of the liquid layer
thickness. The most conspicuous feature of the instability threshold so obtained is the existence of a
limit liquid layer thickness below which the instability is no longer possible. As it is shown below,
neither the assumptions nor the predictions of this simplified model are sustained by the numerical
results.

Vega and Pérez18 studied the linear EHD instability of an air-liquid interface subjected to an
injection of charge. The liquid was modeled as an Ohmic one, and the liquid velocity was neglected
under the assumption that the electric pressure on the surface was responsible for the instability
mechanism. A first important observation was that the sign of the surface charge depends on the
parameter S. For small S, the charge on the liquid surface is of the same sign than the injected
charge, whereas for large S it is the opposite. For very large S, the liquid acts like an electrode
and the problem becomes similar to that studied by Taylor and McEwan.1 The wavenumber of the
most unstable mode was found to be zero, indicating very large convective cells. There were also a
range of values of S where instability did not exist, corresponding to an almost discharged interface.
Although interface tension was taken into account in this study, the fact that the wavenumber of the
most unstable mode is zero makes its role negligible, and therefore, changing the surface tension
coefficient, or, correspondingly, the Bond number, does not change the critical value. What mainly
determines the instability threshold is the interplay between the electric pressure and gravity.

Chicón and Pérez19 extended the previous work by considering the role of the liquid velocity.
The main finding of that paper was that the inclusion of the liquid velocity shifts the wavenumber
of the most unstable mode from zero to a finite value. At the instability threshold, the size of the
convective cells is large compared to the liquid layer thickness, as it is found experimentally for
rose-window instability. The critical voltage was found to be an increasing function of the liquid
layer thickness, in agreement with the experiments for moderately insulating liquids. The range
of values of S where instability is forbidden was also found. The critical voltage was studied as a
function of the liquid conductivity (Figure 4 in Ref. 19). For conductivities below 10−10 S/m, and
liquid layer thickness of the order of 1 mm, the critical voltage is below 3 kV. Then the critical
voltage increases very fast as the conductivity increases. This is due to the fact that the surface is less
charged when the conductivity increases. Then, around σ = 10−7 S/m there is a region where very
high voltages, not attainable experimentally, are required for instability. For these conductivities,
the surface is almost discharged. Finally, for conductivities greater than σ = 10−6 S/m the critical
voltage is of the order of some 15 kV. In this regime, the surface is charged with a charge opposite



034103-4 R. Chicón and A. T. Pérez Phys. Fluids 26, 034103 (2014)

to that of the injecting electrode, the liquid acts as an electrode, and the instability is again the one
studied by Taylor and McEwan.1

Since experiments show that rose-window instability is also observed in very insulating liquids,
it was a most natural step to analyze the same theoretical problem for a non-Ohmic model. In this
paper, the linear stability of a non-Ohmic liquid-air interface subjected to an injection of ions from the
air is studied in detail. At first, for a typical layer thickness above 1 mm, no sign of an instability with
convective cells much larger than the liquid thickness was found. The stability curves, which give
the critical voltage as a function of the wavenumber of the perturbation, show only the ever-present
minimum associated to the volume instability, located at a wavenumber around k = 4.

A few years ago, working on Bénard convection, Schatz20 et al. and VanHook et al.21 showed
that a long-wavelength instability supplants hexagonal convection cells in very thin liquid layers.
Bénard convection and EHD instabilities of a dielectric liquid layer are different problems, but
they have in common that surface tension and gravity are relevant terms in the stress balance at
the surface. And it is the balance of the different driving and restoring terms which determines the
wavenumber selection in several instability problems. This suggests the idea of studying the effect
of significantly decreasing the liquid layer thickness. And it is under these conditions that a new
minimum is found for very insulating liquids.

In Sec. II, the basic equations are written, the unperturbed solution obtained, linear perturbations
added, and normal mode analysis is carried out.

The most important feature of the non-Ohmic model that is not taken into account in the Ohmic
analysis is the possible appearance of volume charge, which has its own instability mechanism. The
surface charge that is attributed to the surface of an Ohmic conductor is a limit case of a volume
charge extended over a very thin liquid depth. In order to study this transition between volume and
surface charge, a mixed model is introduced. Section III is devoted to the analysis of this model,
where the residual conductivity of the liquid is taken into account. Finally, Sec. IV presents the
numerical method employed to solve the equations and the results obtained.

II. POSITION OF THE PROBLEM

A. Basic equations

The configuration to be studied is that of two horizontal electrodes kept a distance h apart, the
lower one grounded and the upper one at potential V . The space between the electrodes is filled with
an insulating liquid layer disposed on the lower electrode and an air gap (Fig. 1). The thickness of the
liquid layer is D and that of the air gap L = h − D. Charge is injected from the upper electrode, and a
space charge distribution builds up in the air gap and in the liquid bulk. The relevant properties of the
liquid are its permittivity εl, density ρ, viscosity η, and surface tension γ . A system of coordinates is
chosen such that the z-axis is vertical, with the unit vector ez pointing downwards. The unperturbed
liquid surface is located at z = 0, the upper electrode at z = −L, and the lower one at z = D.

The space charge distribution in the air is governed by the equations

∇2φ = − q

ε0
, (1)

∂q

∂t
+ ∇ · J = 0, (2)

with J = KaqE. Here, q means charge density, Ka ion mobility, E electric field, and φ electric potential.
An average mobility Ka is assumed for the ions. As the drift velocity of ions in air is usually much
greater than the fluid velocity, a convection term (qu) can be neglected in the expression for the
current density J. A term that would correspond to charge diffusion is also neglected, as it is usual
in this type of problems.8

It is assumed that the mechanical equation in the air gap is that of hydrostatic equilibrium

− ∇ p + ρagez + qE = 0, (3)

where p is the pressure, ρa the air mass density, and g the acceleration of gravity.
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FIG. 1. Geometrical configuration of the system.

This equation is only an approximation when the liquid surface is perturbed. This is so because
any wavy perturbation of the liquid surface will produce a gradient of the charge density with a
non-zero horizontal component. Then, the last term in the left-hand side of the equation will have
a curl ∇q × E different from zero, so that it cannot be balanced by any pressure term. However,
due to the large difference in the values of viscosity for both fluids, the influence of air movement
above the interface upon the liquid below would be small, and the problem can be formulated in a
first approximation without solving for the velocity field in the air.

The equations governing the space charge distribution in the liquid bulk are

∇2φ = − q

εl
, (4)

∂q

∂t
+ ∇ · J = 0, (5)

with J = q(KlE + u). Here, Kl denotes the mobility of ions in the liquid and u the liquid velocity.
Finally, the equations that govern the motion of the liquid are

∇ · u = 0, (6)

ρ(
∂u
∂t

+ u · ∇u) = −∇ p + ρgez + η∇2u + qE. (7)

The main difference, from a mathematical point of view, between the problem analyzed in this
paper for an insulating liquid and the analogous problem for an Ohmic liquid,19 is that the existence
of a space charge density q inside the liquid couples the electrical and mechanical equations, as it is
evident from Eqs. (5) and (7).

A number of boundary conditions are to be added to the system of partial differential equations
above. At the electrodes, which are rigid in the experimental setup, these are

φ = V, q = q0 at z = −L ,

φ = 0, u = 0 at z = D. (8)

It is assumed in Eq. (8) that the charge density at the injecting electrode remains constant,
and independent of any changes in the electric field. This is known as the autonomous injection
hypothesis. It has been discussed at length elsewhere8 that the hypothesis is fully justified when the
injection strength is large enough, the so called space-charge-limited-current (SCLC) regime. This
is the regime often met in experiments.
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The remaining boundary conditions correspond to the liquid-air interface. Let [A] = Al − Aa

denote the jump of any quantity A across the interface.
The discontinuity of the electric field across the interface is ruled by the equations

[E] × n = 0, (9)

[εE] · n = 0, (10)

where ε denotes the permittivity of the corresponding medium, and n the unit vector normal to the
surface and pointing towards the liquid. The right-hand side of Eq. (10) is zero due to the absence
of a surface charge for insulating liquids. This in fact simplifies the equation corresponding to
conservation of charge across the interface,22 which now takes the form

[J] · n − [qu] · n = 0. (11)

The fact that the liquid surface is a material one is expressed by the kinematic equation

− ∂ f

∂t
+ uz − ux

∂ f

∂x
− uy

∂ f

∂y
= 0, (12)

where the interface is defined by a function z = f (x, y, t).
Finally, the balance of tangential and normal total stresses at the interface is given by

η t · (∇u + ∇uT
) · n = 0, (13)

− [p] + η n · (∇u + ∇uT
) · n + [

ε(E · n)2] − [
1
2εE2

] − γ (∇s · n) = 0, (14)

respectively, where t is any unit vector tangent to the surface and ∇s is the surface gradient
operator.22, 23

The last equation plays a key role in the problem. Some essential features of the rose-window
instability are consequences of the balance of normal stresses.

B. Non-dimensional equations

The non-dimensional parameters relevant to the problem arise in a natural way when suitable
units adapted to the system are chosen. Thus, D is taken as unit of distance, ρD2/η of time, η2/(ρD2)
of pressure, V/D of electric field, εl V/D2 of charge, and εl Kl V 2/D3 of electric current density. If
the same symbols are used for the non-dimensional quantities as for their dimensional counterparts,
the non-dimensional equations read as follows.

In the air,

∇2φ = −εr q, (15)

M

U 1/2

∂q

∂t
+ ∇ · J = 0, with J = Ka

Kl
qE, (16)

− ∇ p + ρa

ρ
g∗ez + UqE = 0. (17)

In the liquid,

∇2φ = −q, (18)

M

U 1/2

∂q

∂t
+ ∇ · J = 0, with J = q(E + M

U 1/2
u), (19)

∇ · u = 0, (20)

∂u
∂t

+ u · ∇u = −∇ p + g∗ez + ∇2u + UqE. (21)
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The seemingly strange factor M/U1/2 in the equations for charge conservation comes from the
fact that the unit of electric current density has been defined in terms of the drift velocity of the ions
in the liquid, instead of the velocity of the liquid.

The boundary conditions at the electrodes are

φ = 1, q = C at z = −L ,

φ = 0, u = 0 at z = 1, (22)

and the boundary conditions at the interface are

[E] × n = 0, (23)

[εE] · n = 0, (24)

[J] · n − M

U 1/2
[qu] · n = 0, (25)

− ∂ f

∂t
+ uz − ux

∂ f

∂x
− uy

∂ f

∂y
= 0, (26)

t · (∇u + ∇uT
) · n = 0, (27)

− [p] + n · (∇u + ∇uT
) · n + U

εr

( [
ε

ε0
(E · n)2

]
−

[
1

2

ε

ε0
E2

] )
− g∗

Bo
(∇s · n) = 0. (28)

The nondimensional parameters relevant to the problem are

U = εlρV 2

η2
, M = 1

Kl

√
εl

ρ
, C = q0 D2

εl V
,

g∗ = ρ2 D3

η2
g, Bo = ρgD2

γ
. (29)

The parameter U represents the ratio of the destabilizing electric force to the stabilizing viscous
force, M is the ratio of the so-called hydrodynamic mobility to the ionic mobility in the liquid, and
C is a measure of the injection strength. Finally, g∗ is a nondimensional measure of the acceleration
of gravity, εr is the relative permittivity of the liquid, and Bo is the usual Bond number, representing
the ratio between the gravity and capillary forces.

C. Static solution

The equations admit a steady hydrostatic solution with a flat interface. The electric field, charge
density, and pressure in the air are given by

E0z(z) = a(z + b)1/2, (30)

Q0(z) = a/(2εr )

(z + b)1/2
, (31)

p0(z) = P0a + (
ρa

ρ
g∗ + U J0

Kl

Ka
)(z + L), (32)

and in the liquid by

E0z(z) = c(z + d)1/2, (33)

Q0 = c/2

(z + d)1/2
, (34)

p0(z) = P0l + (g∗ + U J0)z, (35)
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where J0 is the uniform current density. The constants a, b, c, and d appearing in the solution are
functions of the nondimensional parameters, and are obtained from the boundary conditions as the
solution of the algebraic equations

4

3
εr C(b − L)1/2

[
b3/2 − (b − L)3/2 +

√
Ka

εr Kl

((
1 + Kl

εr Ka
b

)3/2

−
(

Kl

εr Ka
b

)3/2
)]

= 1,

(36)

a = 2εr C(b − L)1/2,

c = a

√
Ka

εr Kl
,

d = b
Kl

εr Ka
. (37)

The values of the mechanical pressure at both sides of the interface are related through
Eq. (28), and they ultimately depend on the a priori given value P0a of air pressure near the
injecting electrode.

It is well known that a space charge in the bulk of the liquid which decreases with the distance
from the injecting electrode is a potentially unstable configuration. This is the origin of the well
studied classical EHD instability, with convective hexagonal cells with a size of the order of the
liquid layer thickness.5

The possibility of deformation of the initially flat free interface between liquid and air is
another source of potential instability. In the Ohmic case, Vega and Pérez18 showed that the electric
pressure is a decreasing function of the liquid layer thickness. This is a potentially unstable situation,
since any fluctuation leading to the decrease of the layer thickness would be amplified. Although in
the non-Ohmic case there is not a surface charge, the volume space charge is greater near the surface,
and can be imagined as an effective surface charge. Therefore, a similar instability mechanism may
be expected.

D. Linear stability

The mathematical treatment of the instability of the steady state is carried out following a
well-known procedure.24 First, it is assumed that the physical quantities which define the state of the
system suffer small perturbations, and the equations governing the perturbations are obtained. Then,
all terms of order higher than the first in the perturbations are neglected, arriving at a set of linear
equations. Specifically, any variable ψ(x, y, z, t) in the system is written as ψ = 0(z) + ψ ′(x, y, z,
t), where 0 corresponds to its value in the steady state and ψ ′ to the perturbation. After substitution
into the general equations and linearization, the equations governing the perturbations in the air are

∇2φ′ = −εr q ′, (38)

Kl

Ka

M

U 1/2

∂q ′

∂t
+ d Q0

dz
E ′

z + 2εr Q0q ′ + E0z
∂q ′

∂z
= 0, (39)

− ∇ p′ + U
(
Q0E′ + q ′E0

) = 0, (40)

and in the liquid

∇2φ′ = −q ′, (41)

M

U 1/2

∂q ′

∂t
+ d Q0

dz
E ′

z + 2Q0q ′ + E0z
∂q ′

∂z
+ M

U 1/2

d Q0

dz
uz = 0, (42)

∇ · u = 0, (43)
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∂u
∂t

= −∇ p′ + ∇2u + U (Q0E′ + q ′E0). (44)

The mechanical pressure p′ can be eliminated in Eq. (44) by taking the curl on both sides.
In fact, it is convenient to apply the curl operator twice, for this permits to take full advantage of
Eq. (43) and leads to three independent equations for the components of the liquid velocity u, namely,

(∇2 − ∂

∂t
)∇2u = U∇ × ∇ × (Q0E′ + q ′E0). (45)

Only the z-component of Eq. (45) is needed to solve the stability problem. This is so because
uz is the only component of the liquid velocity u appearing in the equation corresponding to charge
conservation in the liquid, Eq. (42), and the same is true for the boundary conditions at the interface
and at the lower electrode.

The boundary equations for the perturbations at the electrodes are simple

φ′ = 0, q ′ = 0 at z = −L ,

φ′ = 0, u = 0 at z = 1. (46)

However, the treatment of boundary conditions at the perturbed interface requires special
attention. They involve terms of the form [ψ]zs = ψl(x, y, zs, t) − ψa(x, y, zs, t), with zs = f (x,
y, t) and ψ some physical quantity. The equations are complicated by the fact that the shape zs of
the interface is not known in advance. A procedure to overcome this difficulty can be outlined as
follows.25 Given a function ψ(x, y, z, t) whose domain is the liquid bulk or the air gap, the limit
value at the perturbed interface can be written as

ψ(x, y, zs, t) = ψ(x, y, z = 0, t) +
(

∂ψ

∂z

)
z=0

zs + · · · .

Putting ψ = 0 + ψ ′ and retaining terms up to the first order leads to

ψ(x, y, zs, t) = 0(z = 0) + ψ ′(x, y, z = 0, t) +
(

d0

dz

)
z=0

zs + · · · .

By doing this on both sides of the interface, the jump [ψ]zs across the perturbed interface in the
linear approximation can be expressed in terms of jumps across the unperturbed interface z = 0

[ψ]zs = [0]z=0 + [ψ ′]z=0 +
[

d0

dz

]
z=0

f (x, y, t).

Therefore, the boundary conditions for the perturbations at the interface become

[φ′]0 = −
[

d�0

dz

]
0

f = [E0z]0 f, (47)

[
ε

ε0

∂φ′

∂z

]
0

=
[

ε

ε0

d E0z

dz

]
0

f, (48)

[
K

Kl

(
ε

εl
E0z∇2φ′ + Q0

∂φ′

∂z

)]
0

= 0, (49)

− ∂ f

∂t
+ uz(0+) = 0, (50)

∇2
s uz(0+) − ∂2uz

∂z2
(0+) = 0, (51)

− [p′]0 − (1 − ρa

ρ
)g∗ f + 2

∂uz

∂z
(0+) − U

εr

[
ε

ε0
E0z

∂φ′

∂z

]
0

+ g∗

Bo
∇2

s f = 0. (52)



034103-10 R. Chicón and A. T. Pérez Phys. Fluids 26, 034103 (2014)

Wherever K and ε appear, they refer to the ionic mobility and permittivity of the corresponding
medium, respectively. Equation (51) represents the equilibrium of tangential stresses. It is derived
from Eq. (27) by considering two mutually perpendicular unit vectors t on the tangent plane to the
interface, combining the results and taking into account the incompressibility of the liquid.

The pressure term [p′]0 in Eq. (52) can be eliminated, as it was previously done in the differential
equations. In the air gap, differentiating the x- and y-components of Eq. (40) with respect to x and
y, respectively, leads to

− ∇2
s p′ = U Q0∇2

s φ′. (53)

Proceeding analogously and taking into account the incompressibility of the liquid, Eq. (44) gives

− ∇2
s p′ = ∂3uz

∂z3
+ ∇2

s

∂uz

∂z
− ∂

∂t

∂uz

∂z
+ U Q0∇2

s φ′. (54)

Then, the jump [∇2
s p′]0 is obtained by taking the limit as z → 0 + in Eq. (54), z → 0 − in

Eq. (53) and subtracting. Upon applying the operator ∇2
s to Eq. (52) and substituting [∇2

s p′]0 into
the ensuing equation, the equilibrium of normal stresses at the interface is finally expressed as(

3∇2
s − ∂

∂t

)
∂uz

∂z
(0+) + ∂3uz

∂z3
(0+) + U

([
Q0∇2

s φ′]
0 − 1

εr

[
ε

ε0
E0z∇2

s

∂φ′

∂z

]
0

)

−
(

1 − ρa

ρ

)
g�∇2

s f + g�

Bo
(∇2

s )
2

f = 0. (55)

E. Normal mode analysis

Since the perturbation equations are linear, an arbitrary disturbance can be expanded in terms
of a suitable complete set of normal modes and the stability of each mode examined individually.
The planar geometry of the system, the fact that all physical quantities in the stationary state are
functions only of the z-coordinate, and Fourier analysis suggest a set of normal modes where the
perturbations have the form

f (x, y, t) = f0 eωt ei(kx x+ky y),

φ′(x, y, z, t) = g(z) eωt ei(kx x+ky y),

uz(x, y, z, t) = u(z) eωt ei(kx x+ky y), (56)

where k = (kx, ky) is the two-dimensional wave vector of the disturbance and ω the growth rate.
The perturbation equations for a given mode are, in the air gap (− L < z < 0)(

Kl

Ka

1

εr

M

U 1/2
ω + 2Q0 + 1

εr
E0z

d

dz

)(
d2

dz2
− k2

)
g + d Q0

dz

dg

dz
= 0, (57)

and in the liquid layer (0 < z < 1)(
M

U 1/2
ω + 2Q0 + E0z

d

dz

) (
d2

dz2
− k2

)
g + d Q0

dz

dg

dz
− M

U 1/2

d Q0

dz
u(z) = 0, (58)

(
d2

dz2
− k2 − ω

) (
d2

dz2
− k2

)
u − Uk2

(
d Q0

dz
− E0z

(
d2

dz2
− k2

))
g = 0. (59)

The boundary conditions at the electrodes are simply

g = 0,
d2g

dz2
= 0 at z = −L ,

g = 0, u = 0,
du

dz
= 0 at z = 1. (60)
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Finally, the boundary conditions at the interface are written as

[g]0 = [E0z]0 f0 , (61)

[
ε

ε0

dg

dz

]
0

=
[

ε

ε0

d E0z

dz

]
0

f0 , (62)

[
K

Kl

(
ε

εl
E0z

(
d2

dz2
− k2

)
g + Q0

dg

dz

)]
0

= 0, (63)

− ω f0 + u(0+) = 0, (64)

d2u

dz2
(0+) + k2u(0+) = 0, (65)

d3u

dz3
(0+) − (3k2 + ω)

du

dz
(0+) + Uk2

(
− [Q0g]0 + 1

εr

[
ε

ε0
E0z

dg

dz

]
0

)

+k2

(
1 − ρa

ρ
+ k2

Bo

)
g∗ f0 = 0. (66)

The principle of the exchange of stabilities is assumed to be valid for this problem, so that
marginal stability is characterized by ω = 0.24 Thus, as regards the onset of instability, the problem
consists in finding the critical value U(k) above which the mode with wavenumber k becomes
unstable.

In order to solve the problem numerically, it is convenient that all the equations be defined on
a common domain. This can be achieved by expressing the electric potential in the air gap in terms
of a new function h(z), defined on the interval 0 < z < 1 as h(z) = g( − Lz). Thus, the differential
equations are finally written as[

d3

dz3
− L

b − Lz

d2

dz2
− L2

(
k2 + 1

4

1

(b − zL)2

)
d

dz
+ L3 k2

b − Lz

]
h(z) = 0, (67)

[
d3

dz3
+ 1

d + z

d2

dz2
−

(
k2 + 1

4

1

(d + z)2

)
d

dz
− k2

d + z

]
g(z) + 1

4

M

U 1/2
u(z) = 0, (68)

(
d2

dz2
− k2

)2

u(z) + Uk2c

[
(d + z)1/2

(
d2

dz2
− k2

)
+ 1

4
(d + z)−3/2

]
g(z) = 0, (69)

on the domain 0 < z < 1, and the corresponding boundary conditions

h(1) = 0, (70)

d2h

dz2
(1) = 0, (71)

g(1) = 0, (72)

u(1) = 0, (73)

du

dz
(1) = 0, (74)

g(0) − h(0) =
(

1

εr
− 1

)
ab1/2 f0, (75)

εr
dg

dz
(0) + 1

L

dh

dz
(0) = 1

2

(
1

d
− 1

b

)
ab1/2 f0, (76)
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d2g

dz2
(0) + 1

2d

dg

dz
(0) − k2g(0) − Ka

Kl

(
1

L2

d2h

dz2
(0) − 1

2bL

dh

dz
(0) − k2h(0)

)
= 0, (77)

u(0) = 0, (78)

d2u

dz2
(0) = 0, (79)

d3u

dz3
(0) − 3k2 du

dz
(0) + k2U

ab1/2

εr

(
dg

dz
(0) + 1

L

dh

dz
(0) − 1

2

(
1

d
g(0) − 1

b
h(0)

))

+k2

(
1 − ρa

ρ
+ k2

Bo

)
g∗ f0 = 0. (80)

It should be noted that the amplitude f0 of the surface disturbance does not enter into the
equations as an unknown, but rather plays the role of a normalizing constant, and therefore it can be
given any convenient value.

III. MODEL OF A DIELECTRIC LIQUID WITH RESIDUAL CONDUCTIVITY

An heuristic way of going from a fully insulating liquid to an Ohmic one is considered in this
section. As mentioned before, the Ohmic case was studied in a previous paper19 where a surface
instability was found. A mixed model is proposed where the current density is assumed to be J =
q(KlE + u) + σE, with σ standing for the residual Ohmic conductivity. When units are chosen as
in Subsection II B, the nondimensional current density is written as

J = q(E + M

U 1/2
u) + SE, (81)

where the dimensionless parameter S = σ D2/(Klεl V ) measures the relative strength of Ohmic to
non-Ohmic conduction in the liquid. Equations (15)–(21) remain the basic equations of the problem
when this new expression is substituted for the current density in the liquid bulk.

The steady hydrostatic solution with a flat air-liquid interface shows charge and electric field
distributions in air still given by Eqs. (30)–(32).

However, the solution in the liquid is less simple and Eqs. (33)–(35) do not hold true. Upon
integration of the charge conservation equation in the liquid, the electric field is given by the implicit
equation

E0z + J0

S
ln(J0 − SE0z) = −Sz + α, (82)

where α is an integration constant and J0 = (Ka/Kl)a2/(2εr) represents the uniform electric current
density. The three constants a, b, and α are to be obtained from the boundary conditions, which in
this case are most conveniently expressed in the form

a = 2εr C(b − L)1/2, (83)

4

3
εr C(b − L)1/2

[
b3/2 − (b − L)3/2

] + J0

S
− 1

2S

(
E2

0z(1) − E2
0z(0+)

) = 1, (84)

E0z(1) + J0

S
ln(J0 − SE0z(1)) = −S + E0z(0+) + J0

S
ln(J0 − SE0z(0+)), (85)

where E0z(0 + ) and E0z(1) are the values of the electric field at the interface (z = 0) and the collecting
electrode (z = 1), respectively. Taking into account the jump of the electric field across the interface
gives E0z(0+) = 2Cb1/2(b − L)1/2. The unknown E0z(1) can be eliminated from the second equation
in Eq. (84), and substitution into the last equation in Eq. (85) finally leads to a single equation in the
unknown b which is solved numerically.
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For large values of the parameter S, the volume becomes discharged and J0 = SE0z, except very
close to the interface. The term SEoz

J0
can be neglected compared to ln(1 − SEoz

J0
) in Eq. (82), and the

electric field is approximated by

E0z = J0

S
(1 − B)e−S2z/J0 , (86)

with B some constant. The corresponding density of electric charge is then

q = SBe−S2z/J0 . (87)

Therefore, the charge is essentially confined to a very thin layer of thickness J0/S2 close to the
interface. In the limit S → ∞, it becomes a surface charge of value

σs =
∫ ∞

0+
q dz = J0

S
− E0z(0+). (88)

Thus, the parameter S serves to control the transition between a regime of a completely insulating
liquid (S = 0), characterized by a space charge distribution, to a regime corresponding to a very
conducting liquid (S → ∞), characterized by a surface charge density.

Once the steady solution has been obtained, the analysis of its linear stability proceeds along
exactly the same lines as described in Secs. II D and II E for the purely insulating liquid. Only some
of the equations have to be modified to include the effect of the residual conductivity. By denoting
them with the same number plus a prime, they are sequentially:

� the linearized equation corresponding to charge conservation in the liquid

M

U 1/2

∂q ′

∂t
+ d Q0

dz
E ′

z + 2Q0q ′ + E0z
∂q ′

∂z
+ M

U 1/2

d Q0

dz
uz + Sq ′ = 0, (42′)

� the linearized boundary condition corresponding to conservation of electrical current across
the interface [

K

Kl

(
ε

εl
E0z∇2φ′ + Q0

∂φ′

∂z

)]
0

+ S
∂φ′

∂z
= 0, (49′)

� the normal mode equation arising from charge conservation in the liquid(
M

U 1/2
ω + 2Q0 + E0z

d

dz
+ S

) (
d2

dz2
− k2

)
g + d Q0

dz

dg

dz
− M

U 1/2

d Q0

dz
u(z) = 0, (58′)

� the boundary condition for the normal modes corresponding to conservation of electrical current
across the interface[

K

Kl

(
ε

εl
E0z

(
d2

dz2
− k2

)
g + Q0

dg

dz

)]
0

+ S
dg

dz
= 0, (63′)

� the final form of the normal mode equation arising from charge conservation in the liquid[
E0z

d3

dz3
+ (2Q0 + S)

d2

dz2
+

(
d Q0

dz
− k2 E0z

)
d

dz
− k2(2Q0 + S)

]
g(z) − M

U 1/2

d Q0

dz
u(z) = 0,

(68′)

� the normal mode equation arising from the equation of motion of the liquid(
d2

dz2
− k2

)2

u(z) + Uk2

[
E0z

d2

dz2
−

(
d Q0

dz
+ k2 E0z

)]
g(z) = 0, (69′)
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� the boundary condition corresponding to the jump of the electric field across the interface

εr
dg

dz
(0) + 1

L

dh

dz
(0) =

(
εr

d E0

dz
(0+) − d E0

dz
(0−)

)
f0, (76′)

� the final form of the boundary condition expressing conservation of electrical current across
the interface

E0z(0+)
d2g

dz2
(0) + (Q0(0+) + S)

dg

dz
(0) − k2 E0z(0+)g(0) −

Ka

Kl

(
E0z(0−)

εr L2

d2h

dz2
(0) − Q0(0−)

L

dh

dz
(0) − k2 E0z(0−)

εr
h(0)

)
= 0, (77′)

� the boundary condition arising from the balance of normal electrical and mechanical stresses
at the interface

d3u

dz3
(0) − 3k2 du

dz
(0) + k2U

(
E0z(0+)

dg

dz
(0) + E0z(0−)

εr L

dh

dz
(0) − Q0(0+)g(0) + Q0(0−)h(0)

)

+k2

(
1 − ρa

ρ
+ k2

Bo

)
g∗ f0 = 0.

(80′)

IV. NUMERICAL SOLUTION AND RESULTS

The boundary value problem formulated above is approached by utilizing a boundary value
problem solver available from MATLAB, namely bvp4c.26 This MATLAB function implements a
collocation method which uses cubic splines to approximate the solution.

The algorithm is particularly well suited for the computation of the dispersion relation U(k),
due to the possibility of taking advantage of a continuation technique. The method consists in using
the solution obtained for a given value of k as an initial guess for the solution corresponding to the
next value of k. The continuation technique is also most useful when checking the robustness of the
solution. The solution computed with a given error tolerance (a parameter that is chosen by the user)
is used as the initial guess for a new computation with a more stringent error tolerance. If the results
keep stable, one can be confident about the solution thus obtained.

For all the results presented in this section, the non-dimensional parameters correspond to a
liquid layer of silicone oil with the following physical properties: ε/ε0 = 2.73, kinematic viscosity ν

= 50 × 10−6 m2/s, ρ l = 960 kg/m3, and Kl/Ka = 5 × 10−6. Figure 2 is a plot of the critical value of
the stability parameter U as a function of the wavenumber k in the case of no residual conductivity
(S = 0). The liquid layer thickness is 1.2 mm. The curve has only one minimum at k = 4.4. This
value of k corresponds to a half-wavelength π /k = 0.714, in non-dimensional units. Therefore, the
size of the expected convective cells is of the order of the liquid layer thickness and corresponds to
the experimentally observed instability due to the volume force. For the strong injection limit, Atten
and Moreau5 found k = 4.35 for the critical wavenumber in the case in which the injector was a free
surface, and εl Vl/(Klη) = 95.15 for the critical voltage, where Vl is the voltage drop across the liquid
layer. The instability threshold in Figure 2 corresponds to Uc = 0.1155. Since the non-dimensional
groups are formed taking as unit for voltage the total voltage drop across the extent of both layers,
air and liquid, it is necessary to evaluate the corresponding voltage drop across the liquid layer. In
doing so, using the hydrostatic solution of the electric potential, one obtains εl Vl/(Klη) = 94.25,
which compares favorably with the value given by Atten and Moreau.5

The model solved by Atten and Moreau5 neglected surface tension and gravity. Neither did they
consider an air layer above the liquid, the injection taking place directly onto the liquid surface.
Therefore, the results shown in Figure 2 indicate that surface tension and gravity do not influence
the instability due to the volume force.

However, a novel feature is revealed when the liquid layer is decreased. A new minimum appears
closer to k = 0. This is shown in Figures 3–5. In Figure 3, the minimum is not yet visible, whereas
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FIG. 2. Critical value of
√

U versus k for S = 0. Other parameters are: C = 10, L = 11.5, Bo = 0.678, g∗ = 6.78, εr = 2.73,
ρa/ρ = 1.25 × 10−3, M = 317.36 and correspond to a layer of silicone oil of thickness 1.2 mm and kinematic viscosity
ν = 50 × 10−6 m2/s.

in the other two figures it is clearly noticeable. The new critical wavenumber is in the interval 0.5
≤ k ≤ 0.6, which corresponds to a convective cell size almost an order of magnitude larger than the
liquid layer thickness. Therefore, this new minimum must represent the rose-window instability.

Very remarkable is the behavior of the instability threshold for this new minimum, as a function
of the liquid layer thickness. As it is observed in the figures, the instability parameter U increases
when D decreases. This is shown in Figure 6, which is a plot of the predicted critical voltage as a
function of the liquid layer thickness for silicone oil (for the liquid layer thickness D = 0.6 mm,
where a real minimum is not yet visible, the value of the voltage at the inflexion point has been
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FIG. 3. Critical value of
√

U versus k for S = 0. The non-dimensional parameters correspond to the same liquid as in
Figure 2, but for a liquid layer thickness of 0.6 mm.
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FIG. 4. Critical value of
√

U versus k for S = 0. The non-dimensional parameters correspond to the same liquid as in
Figure 2, but for a liquid layer thickness of 0.24 mm.

taken). This plot is consistent with the experimental observations for non-Ohmic liquids,14 and in
contrast with the experimental behavior14 as well as numerical results19 for Ohmic liquids.

On the other hand, these results question the validity of the simplified model, based on an infinite
critical wavelength, presented in Refs. 16 and 17. This simplified model predicted a finite value of
the critical voltage for zero wave-number, whereas the results presented here show that the critical
voltage tends to infinity for k → 0. Also the simplified model predicts that the instability threshold
tends to infinity for a finite value of the liquid layer thickness, something that is not encountered here.

Figures 7–9 show the stability diagrams for a case of weak residual conductivity, S = 1.
The minimum in the curve U(k) associated to the volume instability keeps occurring at a critical
wavenumber k in the interval 4.4 ≤ k ≤ 5. However, the values of the critical parameter Uc, and
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FIG. 5. Critical value of
√

U versus k for S = 0. The non-dimensional parameters correspond to the same liquid than in
Figure 2, but for a liquid layer thickness of 0.168 mm.



034103-17 R. Chicón and A. T. Pérez Phys. Fluids 26, 034103 (2014)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

D(mm)

V
(k

V
)

FIG. 6. Critical voltage as a function of the liquid layer thickness for silicone oil.

correspondingly of the critical voltage, are higher than for S = 0. This is due to the fact that the
conductivity contributes to the relaxation of the volume charge, thus decreasing the destabilizing
volume force. This is also consistent with the experimental observations, where an increase in the
conductivity of the sample leads to an increase of the voltage threshold and, eventually, to the
disappearance of the instability.

Concerning the new minimum that appears at a low wavenumber, it becomes more noticeable
for S = 1. This may be attributed to the change in the charge distribution, which becomes more
concentrated near the surface. In the analysis of the motionless state for the case of weak residual
conductivity (Sec. III), it was shown that the charge distribution becomes a surface charge density
for large values of S. And it was demonstrated in a previous work19 that in the Ohmic case, where
the charge density is purely a surface one, the only minimum in the curve U(k) has to be undoubtedly
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FIG. 7. Critical value of
√

U versus k for S = 1 (model with residual conductivity). The other non-dimensional parameters
and the liquid layer thickness are the same as in Figure 2.
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FIG. 8. Critical value of
√

U versus k for S = 1. The non-dimensional parameters correspond to the same liquid as in
Figure 7, but for a liquid layer thickness of 0.6 mm.

associated to the surface charge instability. It is therefore reasonable to conclude that, when a residual
conductivity is considered, the minimum becomes more noticeable due to the fact that the electrical
forces act mainly upon the surface, and the situation is more similar to that of an Ohmic liquid.

The existence of two minima in the stability curves U(k) opens the possibility of interchanging
the order of appearance of the instabilities, depending on the liquid properties or the geometrical
parameters. In all the curves presented here, the instability due to volume forces will appear first
when the voltage is increased. Rose-window instability will follow. For Ohmic liquids, Rose-window
instability may be present, if the conductivity is low enough. In these liquids, the volume instability
is absent because there is no volume charge. Therefore, it is reasonable to think that an increase in
the conductivity of the liquid will produce a situation where the Rose-window instability precedes
the volume instability.

The perturbation of the charge density is a very rapidly varying function of the coordinate z near
the surface for the values of the parameters corresponding to Figures 7–9. These sharp gradients
prevent us to obtain reproducible results for higher values of S or smaller values of D with the present
numerical algorithm.
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FIG. 9. Critical value of
√

U versus k for S = 1. The non-dimensional parameters correspond to the same liquid as in
Figure 7, but for a liquid layer thickness of 0.24 mm.
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There are some experimental hints which suggest that the order of appearance of the instabilities
might be reversed for an adequate choice of the geometrical parameters. Further experimental work
would be needed to elucidate this point.

Figures 3–5 demonstrate that the same physical model of an insulating liquid that explains the
volume instability may account for Rose-window instability. This is the most important finding of
the present work.
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13 A. T. Pérez, “Rose-window instability in low conducting liquids,” J. Electrostat. 40–41, 141 (1997).
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