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Why to talk about q-polynomials today?

This Conference was organized in honor to Natig Atakishiyev.

Natig was born in Azerbaijan and in 1991 moved to México when he
is living now.

He has 109 papers reviewed in mathscinet and more than 100 in
Journals of the Citation Index.

He is very well known for his mathematical works on SF and OP and
specially for his important contributions to the theory of
q-polynomials but also for his works related with different kind of
harmonic quantum oscillators.
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is living now.

He has 109 papers reviewed in mathscinet and more than 100 in
Journals of the Citation Index.

He is very well known for his mathematical works on SF and OP and
specially for his important contributions to the theory of
q-polynomials but also for his works related with different kind of
harmonic quantum oscillators.

On q-polynomials and some of their applications Renato Álvarez-Nodarse 2/37
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On Special Functions ...

Special Functions (SF) appear in (almost) all context of Mathematics
and other Sciences.

As Alberto Grunbaum one time said: “Special functions are to
mathematics what pipes are to a house: nobody wants to exhibit
them openly but nothing works without them”.
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q-Polynomials are special cases of OP⊂SF

Definition 1 Given a sequence of normal pol. (Pn)n we said
that (Pn)n is an OPS w.r.t. µ if ∀n 6= m ∈ N,∫

R
Pn(x)Pm(x)dµ(x) = δn,mdn, dn 6= 0

If µ is a positive measure ⇒ dn > 0 ∀n, ⇒ we said that SOP is
positive definite.

I If dµ(x) = ρ(x)dx ⇒ ρ is a continuous weight function

I If dµ(x) =
∑

k δ(x − xk)ρ(xk)dx ⇒ ρ is a discrete weight function
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TTRR: A characterization of an OPS

If

∫
R
Pn(x)Pm(x)dµ(x) = δn,m ⇒ ∃ (an)n y (bn)n such that

xPn(x) = an+1Pn+1(x) + bnPn(x) + anPn−1(x), n ≥ 0 ,

¿There exists a converse result?

¿There are any other characterizations?
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TTRR: A characterization of an OPS

If

∫
R
Pn(x)Pm(x)dµ(x) = δn,m ⇒ ∃ (an)n y (bn)n such that

xPn(x) = an+1Pn+1(x) + bnPn(x) + anPn−1(x), n ≥ 0 ,

¿There exists a converse result?

¿There are any other characterizations?

On q-polynomials and some of their applications Renato Álvarez-Nodarse 5/37
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The classical OP.

Sonin (1887): The only OPS (Pn)n such that their derivatives (P ′n)n
also constitute and OPS are the Jacobi, Laguerre, and Hermite
polynomials.

W. Hahn (1935) rediscovered it and found a new family: Bessel pol.

Jacobi, Laguerre y Hermite + Bessel = classical OP

Hahn (1937) also proved and extension of the above characterization:

Given and OPS (Pn)n it is classical iff the sequence (P
(k)
n )n is

orthogonal for some k ∈ N

¿What else we can said about classical families?
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Some characterizations of classical OP

Bochner (1929): They are the only solution of

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, deg σ ≤ 2, deg τ = 1.

This is the hypergeometric equation!

Tricomi (1955): They satisfy the Rodrigues Eq.

Pn(x) =
Bn

ρ(x)

dn

dxn
[ρ(x)σn(x)] , n = 0, 1, 2, · · · ρ(x) ≥ 0 (FR)

Hildebrandt (1931): ρ satisfy the Pearson Eq.:

[ρ(x)σ(x)]′ = τ(x)ρ(x), deg(σ) ≤ 2, deg(τ) = 1

etc.
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The q−polynomials are extensions of the classical ones

The first families: Markov 1884

Stieltjes 1898 in connection with the moment problem:
Stieltjes-Wiegert OP

The Hahn problem (1949): Let be the OPS (Pn)n and define the

operator Θw
q : R 7→ R, Θw

q p(x) =
p(qx + w)− p(x)

(q − 1)x + w

Find, if there exist, the OPS such that:

1. (Θw
q Pn(x))n is and OPS

2. σ(x)Θw
q Θw

q−1Pn(x) + τ(x)Θw
q Pn(x) + λPn(x) = 0 (DE)

3. ∃π ∈ P y ρ t.q. ρ(x)Pn(x) = [Θw
q ]n[π(x)ρ(x)] (RF)

If w = 0 and q → 1 ⇒ Θw
q f (x)→ d

dx : Clasical case!
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“Discrete” polynomials and q−polynomials

Case q = 1 and w = 1 ⇒ “discrete” (Lesky, 1962)

Θw
q f (x) = ∆f (x) := f (x + 1)− f (x), ∇f (x) = ∆f (x − 1)

σ(x)∆∇Pn(x) + τ(x)∆Pn(x) + λPn(x) = 0

Case q ∈ (0, 1) y w = 0 ⇒ q’s (Hahn 1949, . . . )

Θw
q f (x) := Θqf (x) =

f (qx)− f (x)

(q − 1)x

σ(x)ΘqΘq−1Pn(x) + τ(x)ΘqPn(x) + λPn(x) = 0

In the next years the q-polynomials appeared in several contexts.
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q−Polynomials: In the 1980’s there were two approaches

q-Polynomials

Askey Nikiforov & Uvarov

4ϕ3 σ∆(2)p + τ∆p = λp

Ismail, Gasper, Rah-
man, Koorwinder,
Koekoek, Swarttouw
...

Atakishiyev, Suslov,
Smirnov, . . .

rφp

(
a1, ..., ar
b1, ..., bp

∣∣∣q ; z

)
=
∞∑
k=0

(a1; q)k · · · (ar ; q)k
(b1; q)k · · · (bp; q)k

zk

(q; q)k

[
(−1)kq

k
2 (k−1)

]p−r+1

σ(s)
∆

∆x(s − 1
2 )

∇y(s)

∇x(s)
+ τ(s)

∆y(s)

∆x(s)
+ λny(s) = 0
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The Askey-Tableu

In 1998 Koekoek and Swarttouw compiled in a report all known
families of q-polynomials that was called the q-Askey Tableu.

All q-classical polynomials can be obtained from the Askey-Wilson:

pn(x , a, b, c , d) = 4φ3

(
q−n, qn−1abcd , ae−iθ, ae iθ

ab, ac , ad

∣∣∣∣q, q) , x = cos θ

q-Askey Tableau

Askey-Wilson 4ϕ3 q-Racah 4ϕ3

Continuous q-Hahn 3ϕ2 q-Hahn 3ϕ2

q-Hahn tableau

3ϕ2, 2ϕ1, 2ϕ0, 1ϕ1
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The q-Hahn Tableau (Koornwinder, 1993)

Big q− Jacobi polynomials (if c = q−N−1 → q-Hahn)

pn(x ; a, b, c ; q) =
(aq; q)n(cq; q)n

(abqn+1; q)n
3ϕ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣∣q; q

)
.

-

S
S
S
Sw

�
�
�
�/

Big q-Jacobi q-Hahn

Big q-Laguerre
Little q-Jacobi
Wall, q-Charlier

q-Meixner, q-Kravchuk
Al-Salam & Chihara

Stieltjes-Wigert, etc.
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The 1983 Nikiforov & Uvarov approach

Discretize σ̃y ′′(x) + τ̃y ′(x) + λy(x) = 0 in a nonuniform lattice

u u uu u u u
� o6

x(s-h) x(s+h)x(s)

y ′(x) ∼ 1

2

[
y(x(s + h))− y(x(s))

x(s + h)− x(s)
+

y(x(s))− y(x(s − h))

x(s)− x(s − h)

]
a b

� o

��� ��

6

x(s-h/2) x(s+h/2)

x(s-h) x(s+h)x(s)

y ′′(x) ∼ 1

x(s+ h
2 )−x(s− h

2 )

[
y(x(s+h))− y(x(s))

x(s + h)− x(s)
− y(x(s))−y(x(s−h))

x(s)− x(s − h)

]
u u ut t
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The q-hypergemetric Eq. of NU

σ̃y ′′(x) + τ̃y ′(x) + λy(x) = 0
⇓

σ(s)
∆

∆x(s − 1
2 )

∇y(s)

∇x(s)
+ τ(s)

∆y(s)

∆x(s)
+ λny(s) = 0

∇f (s) = f (s)− f (s − 1), ∆f (s) = f (s + 1)− f (s)

σ(s) = σ̃(x(s))− 1
2 τ̃(x(s))∆x(s − 1

2 ), τ(s) = τ̃(x(s)).

There are nice polynomial solution for any function x(s)?

x(s) = c1(q)qs + c2(q)q−s + c3(q) = c1(q)[qs + q−s−µ] + c3(q)

Sufficient cond. NU (1983).
Necessary cond. Atakishiyev, Rahman y Suslov Const. Appr. (1993).
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Some basic properties

I The q-analogue of the Rodrigues formula

Pn(s) =
Bn

ρ(s)

∇
∇x(s + 1

2 )
· · · ∇
∇x(s + n

2 )︸ ︷︷ ︸
∇(n)

[
ρ(s + n)

n∏
m=1

σ(s + m)

]
︸ ︷︷ ︸

ρn(s)

where ρ(s) if the sol. of ∆ [σ(x)ρ(s)] = τ(s)ρ(s)∆x(s − 1
2 ),

I Differentiation or ladder-type formulas

σ(s)
∇Pn(x(s))q
∇x(s)

=
λn

[n]q

τn(s)

τ ′n
Pn(x(s))q −

αnλ2n

[2n]q
Pn+1(x(s))q

For linear-type lattices x(s + α) = A(α)x(s) + B(α) (q-Hahn
Tableau) there is a complete study in Medem, et. al. JCAM (2001)
and RAN, JCAM (2006). For the general case see Foupouagnigni et
al. Integral Transforms Spec. Funct. (2011).
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A corollary of the NU Eq. Let x(s) = c1(q)[qs + q−s−µ] + c3(q)

The most general case of the NU Eq. corresponds to the choice:

σ(s) = q−2s(qs − qs1)(qs − qs2)(qs − qs3)(qs − qs4).

and the corresponding general polynomial solution can be expressed in
term of basic hypergeometric series

Pn(s) = 4φ3

(
q−n, q2µ+n−1+s1+s2+s3+s4 , qs1−s , qs1+s+µ

qs1+s2+µ, qs1+s3+µ, qs1+s4+µ

∣∣∣∣q, q)
From the above solution we can obtain Askey-Wilson, q-Racah,
q-duales de Hahn, q-Hahn, . . . NU Integral Transforms Spec. Funct.
(1993); Atakishiyev, Rahman y Suslov Const. Appr. (1993).

On q-polynomials and some of their applications Renato Álvarez-Nodarse 16/37



The q-hypergemetric Eq. of NU: A final remark

There are a series of interesting papers by Natig (some of then with
other people) that further developed the theory initiated by NU:

The study of the orthogonality of Askey-Wilson polynomials

The moments of the weight functions of q-polynomials

The study of the continuous orthogonality of the solutions of the
NU Eq. including the discrete case.

etc.

In 1998 Koekoek and Swarttouw compiled in a report all known
families of q-polynomials that was called the q-Askey Tableu.

q-Askey ⊂ Nikiforov-Uvarov Tableau

All q-OP are in the q-Askey tableau? NO

In RAN, Medem JCAM (2001) we found two new families within the
q-Hahn tableau. One of then is a positive definite case that has been
recently studied by Area et. al. (2016).
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Some applications

Discrete oscillators

There is no branch of mathematics, however abstract, which may not
some day be applied to phenomena of the real world.

N.I. Lobachevsky
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Factorization method of Schrödinger 1940, Infeld and Hull 1951

Given a Hamiltonian, that is a 2o order diff. operator

Hϕn = λnϕn, H de orden 2

To find 1o order diff operators a and a+ such that

H = a+a, a+ϕn = αnϕn+1, aϕn = βnϕn−1, (a+)∗ = a, a∗ = a+.

Interest: Solving aϕ0 = 0, one gets ϕ0, and a+ϕn generate the others
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The typical example is the quantum harmonic oscillator

HΨn(x) := −Ψ′′n(x) + x2Ψn(x) = (H−H+ + I )Ψn(x) = λnΨn(x).

a := H+ = x +
d

dx
, a+ := H− = x − d

dx
m

H+Ψ0 = 0, H+Ψn =
√

2nΨn−1, H−Ψn =
√

2n + 2 Ψn+1.

How it works?

xΨ0(x) + Ψ′0(x) = 0 ⇒ Ψ0(x) =
1

4
√
π
e−x

2/2,

and [H−]nΨ0(x) =
√

(2n)!!Ψn(x), thus

Ψn(x) =
1

π
1
4

√
(2n)!!

[H−]ne−x
2/2 =

1

π
1
4

√
(2n)!!

[
xI −

d

dx

]n
e−x

2/2.

This the classical algebraic realization of the quantum oscillator.
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Factorization of the NU equation

Bankerezako (Askey-Wilson Case, JCAM 1999)

Lorente (Continuous and discrete classical pols., JPA 2001)

RAN, Costas Santos (NU Eq. JPA 2001):

ϕn(s) =

√
ρ(s)

d2
n

Pn(x(s))q, H(s, n)ϕn(s) = 0

H(s, n) ≡
√
σ(−s−µ+1)σ(s)

∇x(s) e−∂s +

√
σ(−s−µ)σ(s+1)

∆x(s) e∂s−(
σ(−s−µ)

∆x(s) + σ(s)
∇x(s) − λn∆x(s − 1/2)

)
I .

Main properties:

1 The orthonormal functions ϕn satisfy a 2o diff Eq. & TTRR

2 There exist tow ladder oerators: L+(s, n)ϕn(s) = Anϕn+1(s) and
L−(s, n)ϕn(s) = Bnϕn−1(s)
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Factorization of the NU equation

H(s, n) ≡
√
σ(−s − µ+ 1)σ(s) 1

∇x(s)e
−∂s +

√
Θ(s)σ(s + 1) 1

∆x(s)e
∂s−(

σ(−s−µ)
∆x(s) + σ(s)

∇x(s) − λn∆x(s − 1/2)
)
I .

Theorem: The operator H(s, n) admits the following factorization

u(s + 1, n)H(s, n) = L−(s, n + 1)L+(s, n)− h∓(n)I ,

u(s, n)H(s, n + 1) = L+(s, n)L−(s, n + 1)− h∓(n)I ,

respectively, where

h±(n) = λ2n−2

[2n−2]q
λ2n

[2n]q
αn−1γn, u(s, n) = λn

[n]q

τn(s)
τ ′n
− σ(s)
∇x(s)

where α and γ are the coeff. of the TTRR.

This is not a good solution to the problem. Why?
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Motivation

Going further [a, a+] := aa+ − a+a = I

In fact we have: [a,H] = a, [a+,H] = −a+

Thus a, a+, H and I form a closed Lie algebra: ⇒

THE DYNAMICAL ALGEBRA of the HO and the SODE
The problem of build such dynamical algebra from the NU Eq. was
proposed by Atakishiyev in 2002 motivated by the previous works of
MacFarlane 1989, Biedenharn 1989, Atakishiyev et at 1991, 1994,
1996, ...

J+ = α
√
a+a a+ J− = β a

√
a+a J0 = γH

On q-polynomials and some of their applications Renato Álvarez-Nodarse 23/37
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The problem of build such dynamical algebra from the NU Eq. was
proposed by Atakishiyev in 2002 motivated by the previous works of
MacFarlane 1989, Biedenharn 1989, Atakishiyev et at 1991, 1994,
1996, ...

J+ = α
√
a+a a+ J− = β a

√
a+a J0 = γH

α = 1 β = 1 γ = 1

[J0, J±] = ±J± [J+, J−] = −2J0 SU(1,1)
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The q-wave functions ϕn and the q-Hamiltonian Hq

Hq(s)ϕn(s) = λnϕn(s),

Hq(s) :=
1

∇x1(s)
A(s)Hq(s)

1

A(s)
, ϕn(s) =

A(s)
√
ρ(s)

dn
Pn(s; q),

where

Hq(s) := −
√
σ(−s−µ+1)σ(s)

∇x(s)
e−∂s −

√
σ(−s−µ)σ(s + 1)

∆x(s)
e∂s

+

(
σ(−s−µ)

∆x(s)
+

σ(s)

∇x(s)

)
I ,

The next step is to find two operators a(s) and b(s) such that

Hq(s) = b(s)a(s)

We will follow an original idea by Atakishiyev:
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The α-operators

In order to factorize an arbitrary difference equation, one should
express it explicitly in terms of the shift operators exp(a d

ds ), defined

as exp(a d
ds ) f (s) = f (s + a), a ∈ C.

Let α ∈ R and A(s) and B(s) are continuous functions. We define a
family of α-down and α-up operators by

a↓α(s) :=
B(s)√
∇x1(s)

e−α∂s

(
e∂s

√
σ(s)

∇x(s)
−

√
σ(−s − µ)

∆x(s)

)
1

A(s)
,

a↑α(s) :=
A(s)

∇x1(s)

(√
σ(s)

∇x(s)
e−∂s −

√
σ(−s − µ)

∆x(s)

)
eα∂s

√
∇x1(s)

B(s)
.

Hq(s) = a↑α(s)a↓α(s), ∀α ∈ R, and B(s).
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The Dynamical Algebra

Definition: Let ς be a complex number, and let a(s) and b(s) be two
operators. We define the ς-commutator of a and b as

[a(s), b(s)]ς = a(s)b(s)− ςb(s)a(s), ς = qγ 6= 0.

Why we are interested in this?

Proposition: Let Hq(s) be an operator, such that ∃a(s), b(s) and
ς, Λ ∈ C, that Hq(s) = b(s)a(s), and [a(s), b(s)]ς = Λ.

Then, if Hq(s)Φ(s) = λΦ(s) ⇒

Hq(s){a(s)Φ(s)} = ς−1(λ−Λ) {a(s)Φ(s)}, a(s) lowering op.

Hq(s){b(s)Φ(s)} = (Λ + ςλ){b(s)Φ(s)}. b(s) raising op.
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The Dynamical Algebra

Definition: Let ς be a complex number, and let a(s) and b(s) be two
operators. We define the ς-commutator of a and b as

[a(s), b(s)]ς = a(s)b(s)− ςb(s)a(s), ς = qγ 6= 0.

Why we are interested in this?

Proposition: Let Hq(s) be an operator, such that ∃a(s), b(s) and
ς, Λ ∈ C, that Hq(s) = b(s)a(s), and [a(s), b(s)]ς = Λ.

Then, if Hq(s)Φ(s) = λΦ(s) ⇒

Hq(s){a(s)Φ(s)} = ς−1(λ−Λ) {a(s)Φ(s)}, a(s) lowering op.

Hq(s){b(s)Φ(s)} = (Λ + ςλ){b(s)Φ(s)}. b(s) raising op.

On q-polynomials and some of their applications Renato Álvarez-Nodarse 26/37
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The Dynamical Algebra

Let us assume that [a(s), b(s)]ς = I , ς = q2, and b(s) = a+(s).

Then one can rewrite the q2-commutator as follows

[a(s), a+(s)] = I − (1− q2)a+(s) a(s) ≡ q2N(s),

where, N(s) = ln[I − (1− q2) a+(s) a(s)]/ ln q2. ⇒

[N(s), a(s)] = −a(s), [N(s), a+(s)] = a+(s),

i.e., N(s) is the “number” operator. Next we introduce

b̃(s) := q−N(s)/2 a(s), b̃+(s) := a+(s) q−N(s)/2,

which satisfy b̃(s) b̃+(s)− q b̃+(s) b̃(s) = q−N(s).
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The Dynamical Algebra

The operators b̃(s), b̃+(s), and N(s) lead to the dynamical algebra
suq(1, 1) with the generators (β−1 = q + q−1.)

K0(s) =
1

2
(N(s) + 1/2) , K+(s) = β (b̃+(s))2, K−(s) = β b̃2(s),

[K0(s),K±(s)] = ±K±(s), [K−(s),K+(s)] = [2K0(s)]q2 ,

of the algebra suq(1, 1).

Similarly we can derive the dynamical algebra suq(2).
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Dynamical Algebra: Problem 1

Let us now pose the problem 1: Given the operator Hq(s)

To find two operators a(s) and b(s) and ς ∈ C such that:

1) the Hamiltonian Hq(s) = b(s)a(s) and 2) [a(s), b(s)]ς = I .

For the first question we already have the answer: the operators
b(s) = a↑α(s) and a(s) = a↓α(s) factorize the Hamiltonian

Hq(s) = a↑α(s)a↓α(s).

The question is under which conditions they also satisfy the
commutation relation.

In the following we assume that A(s) = B(s). ⇒
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The Dynamical Algebra: Problem 1

Theorem 1: NECESSARY CONDITION

Let (ϕn)n the eigenfunctions of Hq(s) corresponding to the
eigenvalues (λn)n and suppose that the problem 1 has a solution for
Λ 6= 0. Then, the eigenvalues λn of the NU q-equation are q-linear or
q−1-linear functions of n, i.e.,

λn = C1q
n + C3 or λn = C2q

−n + C3,

respectively.

λn =−[n]q

(
q
n−1

2 +q−
n−1

2

2 τ̃ ′ + [n−1]q
σ̃′′

2

)
= C1q

n + C2q
−n + C3

Impossible to solve: general Askey-Wilson, q-Racah, big and little
q-Jacobi polynomials.
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The Dynamical Algebra: Problem 1

Theorem 2: NECESSARY and SUFFICIENT CONDITION

Let be Hq(s) the q-Hamiltonian defined from the NU Eq. The

operators a↑α(s) and a↓α(s) factorize the Hamiltonian Hq(s) and

satisfy the relation [a↓α(s), a↑α(s)]ς = Λ for ς ∈ C iff the following two
conditions hold:

∇x(s)
∇x1(s−α)

√
∇x1(s−1)∇x1(s)
∇x(s−α)∆x(s−α)

√
σ(s−α)σ(−s−µ+α)
σ(s)σ(−s−µ+1) = ς, and

1
∆x(s−α)

(
σ(s−α+1)
∇x1(s−α+1) + σ(−s−µ+α)

∇x1(s−α)

)
−ς 1
∇x1(s)

(
σ(s)
∇x(s) + σ(−s−µ)

∆x(s)

)
= Λ.

The values ς and Λ are uniquely determined!
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The Dynamical Algebra: Problem 2

To find two operators a(s) and b(s) and a constant ς such that the
Hamiltonian Hq(s) = b(s)a(s) and [a(s), b(s)]ς = I and such that
a(s) and b(s) are the lowering and raising operators, i.e.,

a(s)ϕn(s) = DnΦn−1(s) and b(s)ϕn(s) = UnΦn+1(s).

Answer: λn should be a ς-linear function, i.e., λn has the form
λn = Aςn + D and this is again a necessary condition

When the α-operators are mutually adjoint?

Answer: It depends of the “scalar product”. E.g. Discrete case:
α = 0 is a sufficient condition
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Example 1: The Al-Salam & Carlitz I

The q-Hamiltonian is, in this case, (x = qs).

Hq(s)=− q2
√

a(x−1)(x−a)

(q−1)2x2 e−∂s−
√
a(1−qx)(a−qx)

x2 e∂s +
(√

q(q(x−1)x+a(1+q−qx))

(q−1)2x2

)
I

Then, Hq(s)ϕn(s) = q
3
2

1−q−n

(1−q)2ϕn(s) and the operators

a↓(s) ≡ a↓0(s) =
q

1
4 x−1

q
1
2 − q−

1
2

(√
(x − 1/q) (x − a/q) e∂s −

√
a I
)
,

a↑(s) ≡ a↑0(s) =
q

1
4 x−1

q
1
2 − q−

1
2

(√
(x − 1) (x − a) e−∂s −

√
a/q I

)
,

are such that
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Example 1: The Al-Salam & Carlitz I

a↑(s)a↓(s) = Hq(s), and [a↓(s), a↑(s)]q−1 =
1

kq
.

Notice that since this is a discrete case when α = 0 the operators
a↑(s) and a↓(s) are mutually adjoint.

Other related cases:

the Al-Salam & Carlitz I polynomials with a = −1 are the
discrete q-Hermite I hn(x ; q)

Changing q by q−1, we obtain the factorization and the
dynamical algebra for the Al-Salam & Carlitz functions II

from where putting a = −1 and x → ix follows the solution for
the discrete Hermite q-polynomials h̃n(x ; q)
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Other examples in the q-Askey Tableau

x(s) Pn(s)q σ(s) + τ(s)∇x1(s) σ(s) λn

qs U
(a)
n (x ; q) a (x − 1)(x − a) q

3
2

1−q−n

(1−q)2

q−s V
(a)
n (x ; q) (1− x)(a− x) a q

1
2

1−qn

(1−q)2

qs hn(x ; q) −1 x2 − 1 q
3
2

1−q−n

(1−q)2

qs h̃n(x ; q) 1 + x2 1 q
1
2

1−qn

(1−q)2

q−s vµ
n (x ; q) µ (1− 1/q)(µ− q/qs) q

3
2

1−qn

(1−q)2

qs Sn(x ; q) x2 q−1x q
1
2

1−qn

(1−q)2

qs pn(x ; a|q) −ax q−1x(x − 1) q
1
2

1−q−n

(1−q)2

qs Lαn (x ; q) ax(x + 1) q−1x q
1
2 a 1−qn

(1−q)2

q−s Cn(x ; a; q) x(x − 1) q−1ax q
1
2

1−qn

(1−q)2

Al-Salam & Carlitz I, II, discrete q-Hermite I, II, q-Charlier-type, Stieltjes-Wigert,

Wall polynomials, discrete q-Laguerre, q-Charlier.

The Askey-Wilson case: Only for some special cases. continuous
q-Laguerre and continuous q-Hermite polynomials.
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Open problems

What about the lowering and raising properties of the α-down
and α-up operators?

What happen for the general Askey-Wilson case and for the
general big q-Jacobi?

There exists a more general dynamical algebra? Of which kind?

Last but not least ...

Some other relevant results related with the q-polynomials by Natig:
Classical-type integral transform formulas: Mellin transforms,
Fourier-Gauss transforms, etc.
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That’s all folks ... thanks for your attention!

Leganés, June 1996 München, July 2005

Natig Atakishiyev’s secret: “Los problemas matemáticos hacen que
canalicemos nuestros esfuerzos y nos ayudan a sobrevivir. Solucionar
un enigma es lo más gratificante que hay. Si no tuviéramos este tipo
de incógnitas esperándonos al d́ıa siguiente, los matemáticos no
viviŕıamos tanto”
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