On q-polynomials and some of their applications

Renato Álvarez-Nodarse

IMUS \& Dpto. Análisis Matemático, Universidad de Sevilla

Selected Topics in Mathematical Physics
In honor of Professor Natig Atakishiyev
Instituto de Matemáticas, Cuernavaca, UNAM, 28-30 November 2016

Why to talk about q-polynomials today?

Why to talk about q-polynomials today?

This Conference was organized in honor to Natig Atakishiyev.
Natig was born in Azerbaijan and in 1991 moved to México when he is living now.

He has 109 papers reviewed in mathscinet and more than 100 in Journals of the Citation Index.

Why to talk about q-polynomials today?

This Conference was organized in honor to Natig Atakishiyev.
Natig was born in Azerbaijan and in 1991 moved to México when he is living now.

He has 109 papers reviewed in mathscinet and more than 100 in Journals of the Citation Index.

He is very well known for his mathematical works on SF and OP and specially for his important contributions to the theory of q-polynomials but also for his works related with different kind of harmonic quantum oscillators.

On Special Functions ...

Special Functions (SF) appear in (almost) all context of Mathematics and other Sciences.

As Alberto Grunbaum one time said: "Special functions are to mathematics what pipes are to a house: nobody wants to exhibit them openly but nothing works without them".

q-Polynomials are special cases of $\mathrm{OP} \subset S F$

Definition 1 Given a sequence of normal pol. $\left(P_{n}\right)_{n}$ we said that $\left(P_{n}\right)_{n}$ is an OPS w.r.t. μ if $\forall n \neq m \in \mathbb{N}$,

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m} d_{n}, \quad d_{n} \neq 0
$$

If μ is a positive measure $\Rightarrow d_{n}>0 \forall n, \Rightarrow$ we said that SOP is positive definite.

q-Polynomials are special cases of $\mathrm{OP} \subset$ SF

Definition 1 Given a sequence of normal pol. $\left(P_{n}\right)_{n}$ we said that $\left(P_{n}\right)_{n}$ is an OPS w.r.t. μ if $\forall n \neq m \in \mathbb{N}$,

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m} d_{n}, \quad d_{n} \neq 0
$$

If μ is a positive measure $\Rightarrow d_{n}>0 \forall n, \Rightarrow$ we said that SOP is positive definite.

- If $d \mu(x)=\rho(x) d x \Rightarrow \rho$ is a continuous weight function

q-Polynomials are special cases of $\mathrm{OP} \subset S F$

Definition 1 Given a sequence of normal pol. $\left(P_{n}\right)_{n}$ we said that $\left(P_{n}\right)_{n}$ is an OPS w.r.t. μ if $\forall n \neq m \in \mathbb{N}$,

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m} d_{n}, \quad d_{n} \neq 0
$$

If μ is a positive measure $\Rightarrow d_{n}>0 \forall n, \Rightarrow$ we said that SOP is positive definite.

- If $d \mu(x)=\rho(x) d x \Rightarrow \rho$ is a continuous weight function
- If $d \mu(x)=\sum_{k} \delta\left(x-x_{k}\right) \rho\left(x_{k}\right) d x \Rightarrow \rho$ is a discrete weight function

TTRR: A characterization of an OPS

$$
\begin{aligned}
& \text { If } \int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m} \Rightarrow \exists\left(a_{n}\right)_{n} y\left(b_{n}\right)_{n} \text { such that } \\
& x P_{n}(x)=a_{n+1} P_{n+1}(x)+b_{n} P_{n}(x)+a_{n} P_{n-1}(x), \quad n \geq 0,
\end{aligned}
$$

TTRR: A characterization of an OPS

$$
\begin{aligned}
& \text { If } \int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m} \Rightarrow \exists\left(a_{n}\right)_{n} y\left(b_{n}\right)_{n} \text { such that } \\
& x P_{n}(x)=a_{n+1} P_{n+1}(x)+b_{n} P_{n}(x)+a_{n} P_{n-1}(x), \quad n \geq 0,
\end{aligned}
$$

¿There exists a converse result?

TTRR: A characterization of an OPS

$$
\begin{aligned}
& \text { If } \int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m} \Rightarrow \exists\left(a_{n}\right)_{n} y\left(b_{n}\right)_{n} \text { such that } \\
& x P_{n}(x)=a_{n+1} P_{n+1}(x)+b_{n} P_{n}(x)+a_{n} P_{n-1}(x), \quad n \geq 0
\end{aligned}
$$

¿There exists a converse result?
¿There are any other characterizations?

The classical OP.

Sonin (1887): The only OPS $\left(P_{n}\right)_{n}$ such that their derivatives $\left(P_{n}^{\prime}\right)_{n}$ also constitute and OPS are the Jacobi, Laguerre, and Hermite polynomials.
W. Hahn (1935) rediscovered it and found a new family: Bessel pol.

$$
\text { Jacobi, Laguerre y Hermite }+ \text { Bessel = classical OP }
$$

The classical OP.

Sonin (1887): The only OPS $\left(P_{n}\right)_{n}$ such that their derivatives $\left(P_{n}^{\prime}\right)_{n}$ also constitute and OPS are the Jacobi, Laguerre, and Hermite polynomials.
W. Hahn (1935) rediscovered it and found a new family: Bessel pol.

$$
\text { Jacobi, Laguerre y Hermite }+ \text { Bessel = classical OP }
$$

Hahn (1937) also proved and extension of the above characterization: Given and OPS $\left(P_{n}\right)_{n}$ it is classical iff the sequence $\left(P_{n}^{(k)}\right)_{n}$ is orthogonal for some $k \in \mathbb{N}$
¿What else we can said about classical families?

Some characterizations of classical OP

Bochner (1929): They are the only solution of

$$
\sigma(\mathbf{x}) \mathbf{y}^{\prime \prime}(\mathbf{x})+\tau(\mathbf{x}) \mathbf{y}^{\prime}(\mathbf{x})+\lambda_{\mathbf{n}} \mathbf{y}(\mathbf{x})=\mathbf{0}, \quad \operatorname{deg} \sigma \leq 2, \operatorname{deg} \tau=1 .
$$

This is the hypergeometric equation!

Some characterizations of classical OP

Bochner (1929): They are the only solution of

$$
\sigma(\mathbf{x}) \mathbf{y}^{\prime \prime}(\mathbf{x})+\tau(\mathbf{x}) \mathbf{y}^{\prime}(\mathbf{x})+\lambda_{\mathbf{n}} \mathbf{y}(\mathbf{x})=\mathbf{0}, \quad \operatorname{deg} \sigma \leq 2, \operatorname{deg} \tau=1
$$

This is the hypergeometric equation!
Tricomi (1955): They satisfy the Rodrigues Eq.

$$
\begin{equation*}
P_{n}(x)=\frac{B_{n}}{\rho(x)} \frac{d^{n}}{d x^{n}}\left[\rho(x) \sigma^{n}(x)\right], \quad n=0,1,2, \cdots \quad \rho(x) \geq 0 \tag{FR}
\end{equation*}
$$

Some characterizations of classical OP

Bochner (1929): They are the only solution of

$$
\sigma(\mathbf{x}) \mathbf{y}^{\prime \prime}(\mathbf{x})+\tau(\mathbf{x}) \mathbf{y}^{\prime}(\mathbf{x})+\lambda_{\mathbf{n}} \mathbf{y}(\mathbf{x})=\mathbf{0}, \quad \operatorname{deg} \sigma \leq 2, \operatorname{deg} \tau=1
$$

This is the hypergeometric equation!
Tricomi (1955): They satisfy the Rodrigues Eq.

$$
\begin{equation*}
P_{n}(x)=\frac{B_{n}}{\rho(x)} \frac{d^{n}}{d x^{n}}\left[\rho(x) \sigma^{n}(x)\right], \quad n=0,1,2, \cdots \quad \rho(x) \geq 0 \tag{FR}
\end{equation*}
$$

Hildebrandt (1931): ρ satisfy the Pearson Eq.:

$$
[\rho(x) \sigma(x)]^{\prime}=\tau(x) \rho(x), \quad \operatorname{deg}(\sigma) \leq 2, \quad \operatorname{deg}(\tau)=1
$$

Some characterizations of classical OP

Bochner (1929): They are the only solution of

$$
\sigma(\mathbf{x}) \mathbf{y}^{\prime \prime}(\mathbf{x})+\tau(\mathbf{x}) \mathbf{y}^{\prime}(\mathbf{x})+\lambda_{\mathbf{n}} \mathbf{y}(\mathbf{x})=\mathbf{0}, \quad \operatorname{deg} \sigma \leq 2, \operatorname{deg} \tau=1
$$

This is the hypergeometric equation!
Tricomi (1955): They satisfy the Rodrigues Eq.

$$
\begin{equation*}
P_{n}(x)=\frac{B_{n}}{\rho(x)} \frac{d^{n}}{d x^{n}}\left[\rho(x) \sigma^{n}(x)\right], \quad n=0,1,2, \cdots \quad \rho(x) \geq 0 \tag{FR}
\end{equation*}
$$

Hildebrandt (1931): ρ satisfy the Pearson Eq.:

$$
[\rho(x) \sigma(x)]^{\prime}=\tau(x) \rho(x), \quad \operatorname{deg}(\sigma) \leq 2, \quad \operatorname{deg}(\tau)=1
$$

etc.

The q-polynomials are extensions of the classical ones

- The first families: Markov 1884

The q-polynomials are extensions of the classical ones

- The first families: Markov 1884
- Stieltjes 1898 in connection with the moment problem: Stieltjes-Wiegert OP

The q-polynomials are extensions of the classical ones

- The first families: Markov 1884
- Stieltjes 1898 in connection with the moment problem: Stieltjes-Wiegert OP
- The Hahn problem (1949): Let be the OPS $\left(P_{n}\right)_{n}$ and define the operator $\Theta_{q}^{w}: \mathbb{R} \mapsto \mathbb{R}, \Theta_{q}^{w} p(x)=\frac{p(q x+w)-p(x)}{(q-1) x+w}$

The q-polynomials are extensions of the classical ones

- The first families: Markov 1884
- Stieltjes 1898 in connection with the moment problem: Stieltjes-Wiegert OP
- The Hahn problem (1949): Let be the OPS $\left(P_{n}\right)_{n}$ and define the operator $\Theta_{q}^{w}: \mathbb{R} \mapsto \mathbb{R}, \Theta_{q}^{w} p(x)=\frac{p(q x+w)-p(x)}{(q-1) x+w}$
Find, if there exist, the OPS such that:
(1. $\left(\Theta_{q}^{w} P_{n}(x)\right)_{n}$ is and OPS

2. $\sigma(x) \Theta_{q}^{w} \Theta_{q^{-1}}^{w} P_{n}(x)+\tau(x) \Theta_{q}^{w} P_{n}(x)+\lambda P_{n}(x)=0$
3. $\exists \pi \in \mathbb{P}$ y ρ t.q. $\quad \rho(x) P_{n}(x)=\left[\Theta_{q}^{w}\right]^{n}[\pi(x) \rho(x)]$

The q-polynomials are extensions of the classical ones

- The first families: Markov 1884
- Stieltjes 1898 in connection with the moment problem: Stieltjes-Wiegert OP
- The Hahn problem (1949): Let be the OPS $\left(P_{n}\right)_{n}$ and define the operator $\Theta_{q}^{w}: \mathbb{R} \mapsto \mathbb{R}, \Theta_{q}^{w} p(x)=\frac{p(q x+w)-p(x)}{(q-1) x+w}$
Find, if there exist, the OPS such that:
(1. $\left(\Theta_{q}^{w} P_{n}(x)\right)_{n}$ is and OPS

2. $\sigma(x) \Theta_{q}^{w} \Theta_{q^{-1}}^{w} P_{n}(x)+\tau(x) \Theta_{q}^{w} P_{n}(x)+\lambda P_{n}(x)=0$
3. $\exists \pi \in \mathbb{P}$ y ρ t.q. $\quad \rho(x) P_{n}(x)=\left[\Theta_{q}^{w}\right]^{n}[\pi(x) \rho(x)]$

- If $w=0$ and $q \rightarrow 1 \Rightarrow \Theta_{q}^{w} f(x) \rightarrow \frac{d}{d x}$: Clasical case!

"Discrete" polynomials and q-polynomials

- Case $q=1$ and $w=1 \Rightarrow$ "discrete" (Lesky, 1962)

$$
\begin{gathered}
\Theta_{q}^{w} f(x)=\Delta f(x):=f(x+1)-f(x), \quad \nabla f(x)=\Delta f(x-1) \\
\sigma(\mathbf{x}) \Delta \nabla \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\tau(\mathbf{x}) \Delta \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\lambda \mathbf{P}_{\mathbf{n}}(\mathbf{x})=\mathbf{0}
\end{gathered}
$$

"Discrete" polynomials and q-polynomials

- Case $q=1$ and $w=1 \Rightarrow$ "discrete" (Lesky, 1962)

$$
\begin{gathered}
\Theta_{q}^{w} f(x)=\Delta f(x):=f(x+1)-f(x), \quad \nabla f(x)=\Delta f(x-1) \\
\sigma(\mathbf{x}) \Delta \nabla \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\tau(\mathbf{x}) \Delta \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\lambda \mathbf{P}_{\mathbf{n}}(\mathbf{x})=\mathbf{0}
\end{gathered}
$$

- Case $q \in(0,1)$ y $w=0 \Rightarrow q$'s (Hahn $1949, \ldots$)

$$
\begin{gathered}
\Theta_{q}^{w} f(x):=\Theta_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x} \\
\sigma(\mathbf{x}) \boldsymbol{\Theta}_{\mathbf{q}} \boldsymbol{\Theta}_{\mathbf{q}^{-1}} \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\tau(\mathbf{x}) \boldsymbol{\Theta}_{\mathbf{q}} \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\lambda \mathbf{P}_{\mathbf{n}}(\mathbf{x})=\mathbf{0}
\end{gathered}
$$

"Discrete" polynomials and q-polynomials

- Case $q=1$ and $w=1 \Rightarrow$ "discrete" (Lesky, 1962)

$$
\begin{gathered}
\Theta_{q}^{w} f(x)=\Delta f(x):=f(x+1)-f(x), \quad \nabla f(x)=\Delta f(x-1) \\
\sigma(\mathbf{x}) \Delta \nabla \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\tau(\mathbf{x}) \Delta \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\lambda \mathbf{P}_{\mathbf{n}}(\mathbf{x})=\mathbf{0}
\end{gathered}
$$

- Case $q \in(0,1)$ y $w=0 \Rightarrow q$'s (Hahn $1949, \ldots$)

$$
\begin{gathered}
\Theta_{q}^{w} f(x):=\Theta_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x} \\
\sigma(\mathbf{x}) \boldsymbol{\Theta}_{\mathbf{q}} \boldsymbol{\Theta}_{\mathbf{q}^{-1}} \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\tau(\mathbf{x}) \boldsymbol{\Theta}_{\mathbf{q}} \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\lambda \mathbf{P}_{\mathbf{n}}(\mathbf{x})=\mathbf{0}
\end{gathered}
$$

In the next years the q-polynomials appeared in several contexts.

q-Polynomials: In the 1980's there were two approaches

$$
\begin{gathered}
{ }_{r} \phi_{p}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{p}
\end{array} \right\rvert\, q ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q\right)_{k} \cdots\left(a_{r} ; q\right)_{k}}{\left(b_{1} ; q\right)_{k} \cdots\left(b_{p} ; q\right)_{k}} \frac{z^{k}}{(q ; q)_{k}}\left[(-1)^{k} q^{\frac{k}{2}(k-1)}\right]^{p-r+1} \\
\sigma(s) \frac{\Delta}{\Delta x\left(s-\frac{1}{2}\right)} \frac{\nabla y(s)}{\nabla x(s)}+\tau(s) \frac{\Delta y(s)}{\Delta x(s)}+\lambda_{n} y(s)=0
\end{gathered}
$$

The Askey-Tableu

In 1998 Koekoek and Swarttouw compiled in a report all known families of q-polynomials that was called the q-Askey Tableu. All q-classical polynomials can be obtained from the Askey-Wilson:

$$
p_{n}(x, a, b, c, d)={ }_{4} \phi_{3}\left(\left.\begin{array}{c}
q^{-n}, q^{n-1} a b c d, a e^{-i \theta}, a e^{i \theta} \\
a b, a c, a d
\end{array} \right\rvert\, q, q\right), x=\cos \theta
$$

The q-Hahn Tableau (Koornwinder, 1993)

Big q - Jacobi polynomials (if $c=q^{-N-1} \rightarrow q$-Hahn)

$$
p_{n}(x ; a, b, c ; q)=\frac{(a q ; q)_{n}(c q ; q)_{n}}{\left(a b q^{n+1} ; q\right)_{n}} 3 \varphi_{2}\left(\left.\begin{array}{c}
q^{-n}, a b q^{n+1}, x \\
a q, c q
\end{array} \right\rvert\, q ; q\right) .
$$

The 1983 Nikiforov \& Uvarov approach

Discretize $\widetilde{\sigma} y^{\prime \prime}(x)+\widetilde{\tau} y^{\prime}(x)+\lambda y(x)=0$ in a nonuniform lattice

$$
y^{\prime}(x) \sim \frac{1}{2}\left[\frac{y(x(s+h))-y(x(s))}{x(s+h)-x(s)}+\frac{y(x(s))-y(x(s-h))}{x(s)-x(s-h)}\right]
$$

The q-hypergemetric Eq. of NU

$$
\begin{gathered}
\tilde{\sigma} y^{\prime \prime}(x)+\widetilde{\tau} y^{\prime}(x)+\lambda y(x)=0 \\
\forall \\
\sigma(s) \frac{\Delta}{\Delta x\left(s-\frac{1}{2}\right)} \frac{\nabla y(s)}{\nabla x(s)}+\tau(s) \frac{\Delta y(s)}{\Delta x(s)}+\lambda_{n} y(s)=0 \\
\nabla f(s)=f(s)-f(s-1), \quad \Delta f(s)=f(s+1)-f(s) \\
\sigma(s)=\tilde{\sigma}(x(s))-\frac{1}{2} \tilde{\tau}(x(s)) \Delta x\left(s-\frac{1}{2}\right), \quad \tau(s)=\tilde{\tau}(x(s)) .
\end{gathered}
$$

The q-hypergemetric Eq. of NU

$$
\begin{gathered}
\widetilde{\sigma} y^{\prime \prime}(x)+\widetilde{\tau} y^{\prime}(x)+\lambda y(x)=0 \\
\forall \\
\sigma(s) \frac{\Delta}{\Delta x\left(s-\frac{1}{2}\right)} \frac{\nabla y(s)}{\nabla x(s)}+\tau(s) \frac{\Delta y(s)}{\Delta x(s)}+\lambda_{n} y(s)=0 \\
\nabla f(s)=f(s)-f(s-1), \quad \Delta f(s)=f(s+1)-f(s) \\
\sigma(s)=\tilde{\sigma}(x(s))-\frac{1}{2} \tilde{\tau}(x(s)) \Delta x\left(s-\frac{1}{2}\right), \quad \tau(s)=\tilde{\tau}(x(s)) .
\end{gathered}
$$

There are nice polynomial solution for any function $x(s)$?

The q-hypergemetric Eq. of NU

$$
\begin{gathered}
\widetilde{\sigma} y^{\prime \prime}(x)+\widetilde{\tau} y^{\prime}(x)+\lambda y(x)=0 \\
\Downarrow \\
\sigma(s) \frac{\Delta}{\Delta x\left(s-\frac{1}{2}\right)} \frac{\nabla y(s)}{\nabla x(s)}+\tau(s) \frac{\Delta y(s)}{\Delta x(s)}+\lambda_{n} y(s)=0
\end{gathered}
$$

$$
\nabla f(s)=f(s)-f(s-1), \quad \Delta f(s)=f(s+1)-f(s)
$$

$$
\sigma(s)=\tilde{\sigma}(x(s))-\frac{1}{2} \tilde{\tau}(x(s)) \Delta x\left(s-\frac{1}{2}\right), \quad \tau(s)=\tilde{\tau}(x(s)) .
$$

There are nice polynomial solution for any function $x(s)$?

$$
x(s)=c_{1}(q) q^{s}+c_{2}(q) q^{-s}+c_{3}(q)=c_{1}(q)\left[q^{s}+q^{-s-\mu}\right]+c_{3}(q)
$$

The q-hypergemetric Eq. of NU

$$
\begin{gathered}
\widetilde{\sigma} y^{\prime \prime}(x)+\widetilde{\tau} y^{\prime}(x)+\lambda y(x)=0 \\
\Downarrow \\
\sigma(s) \frac{\Delta}{\Delta x\left(s-\frac{1}{2}\right)} \frac{\nabla y(s)}{\nabla x(s)}+\tau(s) \frac{\Delta y(s)}{\Delta x(s)}+\lambda_{n} y(s)=0
\end{gathered}
$$

$$
\begin{aligned}
& \nabla f(s)=f(s)-f(s-1), \quad \Delta f(s)=f(s+1)-f(s) \\
& \sigma(s)=\tilde{\sigma}(x(s))-\frac{1}{2} \tilde{\tau}(x(s)) \Delta x\left(s-\frac{1}{2}\right), \quad \tau(s)=\tilde{\tau}(x(s)) .
\end{aligned}
$$

There are nice polynomial solution for any function $x(s)$?

$$
x(s)=c_{1}(q) q^{s}+c_{2}(q) q^{-s}+c_{3}(q)=c_{1}(q)\left[q^{s}+q^{-s-\mu}\right]+c_{3}(q)
$$

Sufficient cong. NU (1983).
Necessary cong. Atakishiyev, Rahman y Suslov Constr. Appr. (1993),

Some basic properties

- The q-analogue of the Rodrigues formula

$$
P_{n}(s)=\frac{B_{n}}{\rho(s)} \underbrace{\frac{\nabla}{\nabla x\left(s+\frac{1}{2}\right)} \cdots \frac{\nabla}{\nabla x\left(s+\frac{n}{2}\right)}}_{\nabla^{(n)}} \underbrace{\left[\rho(s+n) \prod_{m=1}^{n} \sigma(s+m)\right]}_{\rho_{n}(s)}
$$

where $\rho(s)$ if the sol. of $\quad \Delta[\sigma(x) \rho(s)]=\tau(s) \rho(s) \Delta x\left(s-\frac{1}{2}\right)$,

Some basic properties

- The q-analogue of the Rodrigues formula

$$
P_{n}(s)=\frac{B_{n}}{\rho(s)} \underbrace{\frac{\nabla}{\nabla x\left(s+\frac{1}{2}\right)} \cdots \frac{\nabla}{\nabla x\left(s+\frac{n}{2}\right)}}_{\nabla^{(n)}} \underbrace{\left[\rho(s+n) \prod_{m=1}^{n} \sigma(s+m)\right]}_{\rho_{n}(s)}
$$

where $\rho(s)$ if the sol. of $\quad \Delta[\sigma(x) \rho(s)]=\tau(s) \rho(s) \Delta x\left(s-\frac{1}{2}\right)$,

- Differentiation or ladder-type formulas $\tau_{n}(s)=\tau_{n}^{\prime} x\left(s+\frac{n}{2}\right)+\tau_{n}(0)$

$$
\sigma(s) \frac{\nabla P_{n}(x(s))_{q}}{\nabla x(s)}=\frac{\lambda_{n}}{[n]_{q}} \frac{\tau_{n}(s)}{\tau_{n}^{\prime}} P_{n}(x(s))_{q}-\frac{\alpha_{n} \lambda_{2 n}}{[2 n]_{q}} P_{n+1}(x(s))_{q}
$$

Some basic properties

- The q-analogue of the Rodrigues formula

$$
P_{n}(s)=\frac{B_{n}}{\rho(s)} \underbrace{\frac{\nabla}{\nabla x\left(s+\frac{1}{2}\right)} \cdots \frac{\nabla}{\nabla x\left(s+\frac{n}{2}\right)}}_{\nabla^{(n)}} \underbrace{\left[\rho(s+n) \prod_{m=1}^{n} \sigma(s+m)\right]}_{\rho_{n}(s)}
$$

where $\rho(s)$ if the sol. of $\quad \Delta[\sigma(x) \rho(s)]=\tau(s) \rho(s) \Delta x\left(s-\frac{1}{2}\right)$,

- Differentiation or ladder-type formulas $\tau_{n}(s)=\tau_{n}^{\prime} x\left(s+\frac{n}{2}\right)+\tau_{n}(0)$

$$
\sigma(s) \frac{\nabla P_{n}(x(s))_{q}}{\nabla x(s)}=\frac{\lambda_{n}}{[n]_{q}} \frac{\tau_{n}(s)}{\tau_{n}^{\prime}} P_{n}(x(s))_{q}-\frac{\alpha_{n} \lambda_{2 n}}{[2 n]_{q}} P_{n+1}(x(s))_{q}
$$

Some basic properties

- The q-analogue of the Rodrigues formula

$$
P_{n}(s)=\frac{B_{n}}{\rho(s)} \underbrace{\frac{\nabla}{\nabla x\left(s+\frac{1}{2}\right)} \cdots \frac{\nabla}{\nabla x\left(s+\frac{n}{2}\right)}}_{\nabla^{(n)}} \underbrace{\left[\rho(s+n) \prod_{m=1}^{n} \sigma(s+m)\right]}_{\rho_{n}(s)}
$$

$$
\text { where } \rho(s) \text { if the sol. of } \quad \Delta[\sigma(x) \rho(s)]=\tau(s) \rho(s) \Delta x\left(s-\frac{1}{2}\right) \text {, }
$$

- Differentiation or ladder-type formulas $\tau_{n}(s)=\tau_{n}^{\prime} x\left(s+\frac{n}{2}\right)+\tau_{n}(0)$

$$
\sigma(s) \frac{\nabla P_{n}(x(s))_{q}}{\nabla x(s)}=\frac{\lambda_{n}}{[n]_{q}} \frac{\tau_{n}(s)}{\tau_{n}^{\prime}} P_{n}(x(s))_{q}-\frac{\alpha_{n} \lambda_{2 n}}{[2 n]_{q}} P_{n+1}(x(s))_{q}
$$

For linear-type lattices $x(s+\alpha)=A(\alpha) x(s)+B(\alpha)(q$-Hahn Tableau) there is a complete study in Medem, et. al. JCAM (2001) and RAN, JCAM (2006). For the general case see Foupouagnigni et al. Integral Transforms Spec. Funct. (2011).

A corollary of the NU Eq. Let $x(s)=c_{1}(q)\left[q^{s}+q^{-s-\mu}\right]+c_{3}(q)$

The most general case of the NU Eq. corresponds to the choice:

$$
\sigma(s)=q^{-2 s}\left(q^{s}-q^{s_{1}}\right)\left(q^{s}-q^{s_{2}}\right)\left(q^{s}-q^{s_{3}}\right)\left(q^{s}-q^{s_{4}}\right)
$$

and the corresponding general polynomial solution can be expressed in term of basic hypergeometric series

$$
P_{n}(s)={ }_{4} \phi_{3}\left(\left.\begin{array}{c}
q^{-n}, q^{2 \mu+n-1+s_{1}+s_{2}+s_{3}+s_{4}}, q^{s_{1}-s}, q^{s_{1}+s+\mu} \\
q^{s_{1}+s_{2}+\mu}, q^{s_{1}+s_{3}+\mu}, q^{s_{1}+s_{4}+\mu}
\end{array} \right\rvert\, q, q\right)
$$

From the above solution we can obtain Askey-Wilson, q-Racah, q-duales de Hahn, q-Hahn, ... NU Integral Transforms Spec. Funct. (1993); Atakishiyev, Rahman y Suslov Const. Appr. (1993).

The q-hypergemetric Eq. of NU: A final remark

There are a series of interesting papers by Natig (some of then with other people) that further developed the theory initiated by NU:

- The study of the orthogonality of Askey-Wilson polynomials
- The moments of the weight functions of q-polynomials
- The study of the continuous orthogonality of the solutions of the NU Eq. including the discrete case.
- etc.

The q-hypergemetric Eq. of NU: A final remark

There are a series of interesting papers by Natig (some of then with other people) that further developed the theory initiated by NU:

- The study of the orthogonality of Askey-Wilson polynomials
- The moments of the weight functions of q-polynomials
- The study of the continuous orthogonality of the solutions of the NU Eq. including the discrete case.
- etc.

In 1998 Koekoek and Swarttouw compiled in a report all known families of q-polynomials that was called the q-Askey Tableu.

The q-hypergemetric Eq. of NU: A final remark

There are a series of interesting papers by Natig (some of then with other people) that further developed the theory initiated by NU:

- The study of the orthogonality of Askey-Wilson polynomials
- The moments of the weight functions of q-polynomials
- The study of the continuous orthogonality of the solutions of the NU Eq. including the discrete case.
- etc.

In 1998 Koekoek and Swarttouw compiled in a report all known families of q-polynomials that was called the q-Askey Tableu.

$$
q \text {-Askey } \subset \text { Nikiforov-Uvarov Tableau }
$$

The q-hypergemetric Eq. of NU: A final remark

There are a series of interesting papers by Natig (some of then with other people) that further developed the theory initiated by NU:

- The study of the orthogonality of Askey-Wilson polynomials
- The moments of the weight functions of q-polynomials
- The study of the continuous orthogonality of the solutions of the NU Eq. including the discrete case.
- etc.

In 1998 Koekoek and Swarttouw compiled in a report all known families of q-polynomials that was called the q-Askey Tableu.

$$
q \text {-Askey } \subset \text { Nikiforov-Uvarov Tableau }
$$

All q-OP are in the q-Askey tableau?

The q-hypergemetric Eq. of NU: A final remark

There are a series of interesting papers by Natig (some of then with other people) that further developed the theory initiated by NU:

- The study of the orthogonality of Askey-Wilson polynomials
- The moments of the weight functions of q-polynomials
- The study of the continuous orthogonality of the solutions of the NU Eq. including the discrete case.
- etc.

In 1998 Koekoek and Swarttouw compiled in a report all known families of q-polynomials that was called the q-Askey Tableu.

$$
q \text {-Askey } \subset \text { Nikiforov-Uvarov Tableau }
$$

All q-OP are in the q-Askey tableau? NO

The q-hypergemetric Eq. of NU: A final remark

There are a series of interesting papers by Natig (some of then with other people) that further developed the theory initiated by NU:

- The study of the orthogonality of Askey-Wilson polynomials
- The moments of the weight functions of q-polynomials
- The study of the continuous orthogonality of the solutions of the NU Eq. including the discrete case.
- etc.

In 1998 Koekoek and Swarttouw compiled in a report all known families of q-polynomials that was called the q-Askey Tableu.

$$
q \text {-Askey } \subset \text { Nikiforov-Uvarov Tableau }
$$

All q-OP are in the q-Askey tableau? NO
In RAN, Medem JCAM (2001) we found two new families within the q-Hahn tableau. One of then is a positive definite case that has been recently studied by Area et. al. (2016).

Some applications

Discrete oscillators

There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.
N.I. Lobachevsky

Factorization method of Schrödinger 1940, Infeld and Hull 1951

Given a Hamiltonian, that is a 2° order diff. operator

$$
\mathfrak{H} \varphi_{n}=\lambda_{n} \varphi_{n}, \quad \mathfrak{H} \quad \text { de orden } 2
$$

Factorization method of Schrödinger 1940, Infeld and Hull 1951

Given a Hamiltonian, that is a 2° order diff. operator

$$
\mathfrak{H} \varphi_{n}=\lambda_{n} \varphi_{n}, \quad \mathfrak{H} \quad \text { de orden } 2
$$

To find 1° order diff operators a and a^{+}such that
$\mathfrak{H}=a^{+} a, \quad a^{+} \varphi_{n}=\alpha_{n} \varphi_{n+1}, \quad a \varphi_{n}=\beta_{n} \varphi_{n-1}, \quad\left(a^{+}\right)^{*}=a, a^{*}=a^{+}$.
Interest: Solving $a \varphi_{0}=0$, one gets φ_{0}, and $a^{+} \varphi_{n}$ generate the others

The typical example is the quantum harmonic oscillator

$$
\begin{aligned}
\mathfrak{H} \Psi_{n}(x) & :=-\Psi_{n}^{\prime \prime}(x)+x^{2} \Psi_{n}(x)=\left(H_{-} H_{+}+I\right) \Psi_{n}(x)=\lambda_{n} \Psi_{n}(x) . \\
& a:=H_{+}=x+\frac{d}{d x}, \quad a^{+}:=H_{-}=x-\frac{d}{d x} m
\end{aligned}
$$

The typical example is the quantum harmonic oscillator

$$
\begin{aligned}
\mathfrak{H} \Psi_{n}(x) & :=-\Psi_{n}^{\prime \prime}(x)+x^{2} \Psi_{n}(x)=\left(H_{-} H_{+}+I\right) \Psi_{n}(x)=\lambda_{n} \Psi_{n}(x) . \\
a & :=H_{+}=x+\frac{d}{d x}, \quad a^{+}:=H_{-}=x-\frac{d}{d x} m \\
H_{+} \Psi_{0} & =0, \quad H_{+} \Psi_{n}=\sqrt{2 n} \Psi_{n-1}, \quad H_{-} \Psi_{n}=\sqrt{2 n+2} \Psi_{n+1} .
\end{aligned}
$$

How it works?

The typical example is the quantum harmonic oscillator

$$
\begin{aligned}
\mathfrak{H} \Psi_{n}(x) & :=-\Psi_{n}^{\prime \prime}(x)+x^{2} \Psi_{n}(x)=\left(H_{-} H_{+}+I\right) \Psi_{n}(x)=\lambda_{n} \Psi_{n}(x) . \\
a & :=H_{+}=x+\frac{d}{d x}, \quad a^{+}:=H_{-}=x-\frac{d}{d x} m \\
H_{+} \Psi_{0} & =0, \quad H_{+} \Psi_{n}=\sqrt{2 n} \Psi_{n-1}, \quad H_{-} \Psi_{n}=\sqrt{2 n+2} \Psi_{n+1} .
\end{aligned}
$$

How it works?

$$
x \Psi_{0}(x)+\Psi_{0}^{\prime}(x)=0 \quad \Rightarrow \quad \Psi_{0}(x)=\frac{1}{\sqrt[4]{\pi}} e^{-x^{2} / 2}
$$

and $\left[H_{-}\right]^{n} \Psi_{0}(x)=\sqrt{(2 n)!!} \Psi_{n}(x)$, thus

$$
\Psi_{n}(x)=\frac{1}{\pi^{\frac{1}{4}} \sqrt{(2 n)!!}}\left[H_{-}\right]^{n} e^{-x^{2} / 2}=\frac{1}{\pi^{\frac{1}{4}} \sqrt{(2 n)!!}}\left[x I-\frac{d}{d x}\right]^{n} e^{-x^{2} / 2}
$$

This the classical algebraic realization of the quantum oscillator ${ }_{\text {E }}$

Factorization of the NU equation

- Bankerezako (Askey-Wilson Case, JCAM 1999)
- Lorente (Continuous and discrete classical pols., JPA 2001)
- RAN, Costas Santos (NU Eq. JPA 2001):

Factorization of the NU equation

- Bankerezako (Askey-Wilson Case, JCAM 1999)
- Lorente (Continuous and discrete classical pols., JPA 2001)
- RAN, Costas Santos (NU Eq. JPA 2001):

$$
\begin{gathered}
\varphi_{n}(s)=\sqrt{\frac{\rho(s)}{d_{n}^{2}}} P_{n}(x(s))_{q}, \quad \mathfrak{H}(s, n) \varphi_{n}(s)=0 \\
\mathfrak{H}(s, n) \equiv \frac{\sqrt{\sigma(-s-\mu+1) \sigma(s)}}{\nabla \times(s)} e^{-\partial_{s}}+\frac{\sqrt{\sigma(-s-\mu) \sigma(s+1)}}{\Delta x(s)} e^{\partial_{s}}- \\
\left(\frac{\sigma(-s-\mu)}{\Delta \times(s)}+\frac{\sigma(s)}{\nabla \times(s)}-\lambda_{n} \Delta x(s-1 / 2)\right) / .
\end{gathered}
$$

Main properties:

(1) The orthonormal functions φ_{n} satisfy a 2° diff Eq. \& TTRR
(2) There exist tow ladder oerators: $L^{+}(s, n) \varphi_{n}(s)=A_{n} \varphi_{n+1}(s)$ and $L^{-}(s, n) \varphi_{n}(s)=B_{n} \varphi_{n-1}(s)$

Factorization of the NU equation

$$
\begin{gathered}
H(s, n) \equiv \sqrt{\sigma(-s-\mu+1) \sigma(s)} \frac{1}{\nabla \times(s)} e^{-\partial_{s}}+\sqrt{\Theta(s) \sigma(s+1)} \frac{1}{\Delta \times(s)} e^{\partial_{s}}- \\
\left(\frac{\sigma(-s-\mu)}{\Delta \times(s)}+\frac{\sigma(s)}{\nabla \times(s)}-\lambda_{n} \Delta \times(s-1 / 2)\right) / .
\end{gathered}
$$

Theorem: The operator $H(s, n)$ admits the following factorization

$$
\begin{aligned}
& u(s+1, n) H(s, n)=L^{-}(s, n+1) L^{+}(s, n)-h^{\mp}(n) / \\
& u(s, n) H(s, n+1)=L^{+}(s, n) L^{-}(s, n+1)-h^{\mp}(n) /
\end{aligned}
$$

respectively, where

$$
h^{ \pm}(n)=\frac{\lambda_{2 n-2}}{[2 n-2]_{q}} \frac{\lambda_{2 n}}{[2 n]_{q}} \alpha_{n-1} \gamma_{n}, \quad u(s, n)=\frac{\lambda_{n}}{[n]_{q}} \frac{\tau_{n}(s)}{\tau_{n}^{\prime}}-\frac{\sigma(s)}{\nabla x(s)}
$$

where α and γ are the coeff. of the TTRR.

Factorization of the NU equation

$$
\begin{gathered}
H(s, n) \equiv \sqrt{\sigma(-s-\mu+1) \sigma(s)} \frac{1}{\nabla \times(s)} e^{-\partial_{s}}+\sqrt{\Theta(s) \sigma(s+1)} \frac{1}{\Delta \times(s)} e^{\partial_{s}-} \\
\left(\frac{\sigma(-s-\mu)}{\Delta \times(s)}+\frac{\sigma(s)}{\nabla \times(s)}-\lambda_{n} \Delta \times(s-1 / 2)\right) I .
\end{gathered}
$$

Theorem: The operator $H(s, n)$ admits the following factorization

$$
\begin{aligned}
& u(s+1, n) H(s, n)=L^{-}(s, n+1) L^{+}(s, n)-h^{\mp}(n) /, \\
& u(s, n) H(s, n+1)=L^{+}(s, n) L^{-}(s, n+1)-h^{\mp}(n) /
\end{aligned}
$$

respectively, where

$$
h^{ \pm}(n)=\frac{\lambda_{2 n-2}}{[2 n-2]_{q}} \frac{\lambda_{2 n}}{[2 n]_{q}} \alpha_{n-1} \gamma_{n}, \quad u(s, n)=\frac{\lambda_{n}}{[n]_{q}} \frac{\tau_{n}(s)}{\tau_{n}^{\prime}}-\frac{\sigma(s)}{\nabla x(s)}
$$

where α and γ are the coeff. of the TTRR.
This is not a good solution to the problem. Why?

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=I$

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=1$
In fact we have:

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=I$
In fact we have: $[a, \mathfrak{H}]=a$,

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=I$
In fact we have: $[a, \mathfrak{H}]=a, \quad\left[a^{+}, \mathfrak{H}\right]=-a^{+}$

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=1$
In fact we have: $[a, \mathfrak{H}]=a, \quad\left[a^{+}, \mathfrak{H}\right]=-a^{+}$
Thus a, a^{+}, \mathfrak{H} and $/$ form a closed Lie algebra:

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=I$
In fact we have: $[a, \mathfrak{H}]=a, \quad\left[a^{+}, \mathfrak{H}\right]=-a^{+}$
Thus a, a^{+}, \mathfrak{H} and I form a closed Lie algebra: \Rightarrow
THE DYNAMICAL ALGEBRA of the HO and the SODE
The problem of build such dynamical algebra from the NU Eq. was proposed by Atakishiyev in 2002 motivated by the previous works of MacFarlane 1989, Biedenharn 1989, Atakishiyev et at 1991, 1994, 1996, ...

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=1$
In fact we have: $[a, \mathfrak{H}]=a, \quad\left[a^{+}, \mathfrak{H}\right]=-a^{+}$
Thus a, a^{+}, \mathfrak{H} and I form a closed Lie algebra: \Rightarrow
THE DYNAMICAL ALGEBRA of the HO and the SODE
The problem of build such dynamical algebra from the NU Eq. was proposed by Atakishiyev in 2002 motivated by the previous works of MacFarlane 1989, Biedenharn 1989, Atakishiyev et at 1991, 1994, 1996, ...

$$
J_{+}=\alpha \sqrt{a^{+} a} a^{+} \quad J_{-}=\beta a \sqrt{a^{+} a} \quad J_{0}=\gamma \mathfrak{H}
$$

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=I$
In fact we have: $[a, \mathfrak{H}]=a, \quad\left[a^{+}, \mathfrak{H}\right]=-a^{+}$
Thus a, a^{+}, \mathfrak{H} and I form a closed Lie algebra: \Rightarrow
THE DYNAMICAL ALGEBRA of the HO and the SODE
The problem of build such dynamical algebra from the NU Eq. was proposed by Atakishiyev in 2002 motivated by the previous works of MacFarlane 1989, Biedenharn 1989, Atakishiyev et at 1991, 1994, 1996, ...

$$
\begin{array}{lcl}
J_{+}=\alpha \sqrt{a^{+} a} a^{+} & J_{-}=\beta a \sqrt{a^{+} a} & J_{0}=\gamma \mathfrak{H} \\
\alpha=1 & \beta=-1 & \gamma=1 \\
{\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm}} & {\left[J_{+}, J_{-}\right]=2 J_{0}} & \mathrm{SU}(2)
\end{array}
$$

Motivation

Going further $\left[a, a^{+}\right]:=a a^{+}-a^{+} a=I$
In fact we have: $[a, \mathfrak{H}]=a, \quad\left[a^{+}, \mathfrak{H}\right]=-a^{+}$
Thus a, a^{+}, \mathfrak{H} and I form a closed Lie algebra: \Rightarrow
THE DYNAMICAL ALGEBRA of the HO and the SODE
The problem of build such dynamical algebra from the NU Eq. was proposed by Atakishiyev in 2002 motivated by the previous works of MacFarlane 1989, Biedenharn 1989, Atakishiyev et at 1991, 1994, 1996, ...

$$
\begin{array}{lcl}
J_{+}=\alpha \sqrt{a^{+} a} a^{+} & J_{-}=\beta a \sqrt{a^{+} a} & J_{0}=\gamma \mathfrak{H} \\
\alpha=1 & \beta=1 & \gamma=1 \\
{\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm}} & {\left[J_{+}, J_{-}\right]=-2 J_{0}} & \operatorname{SU}(1,1)
\end{array}
$$

The q-wave functions φ_{n} and the q-Hamiltonian \mathfrak{H}_{q}

$$
\begin{gathered}
\mathfrak{H}_{q}(s) \varphi_{n}(s)=\lambda_{n} \varphi_{n}(s) \\
\mathfrak{H}_{q}(s):=\frac{1}{\nabla x_{1}(s)} A(s) H_{q}(s) \frac{1}{A(s)}, \quad \varphi_{n}(s)=\frac{A(s) \sqrt{\rho(s)}}{d_{n}} P_{n}(s ; q),
\end{gathered}
$$

where

$$
\begin{gathered}
H_{q}(s):=-\frac{\sqrt{\sigma(-s-\mu+1) \sigma(s)}}{\nabla x(s)} e^{-\partial_{s}}-\frac{\sqrt{\sigma(-s-\mu) \sigma(s+1)}}{\Delta x(s)} e^{\partial_{s}} \\
+\left(\frac{\sigma(-s-\mu)}{\Delta x(s)}+\frac{\sigma(s)}{\nabla x(s)}\right) /,
\end{gathered}
$$

The q-wave functions φ_{n} and the q-Hamiltonian \mathfrak{H}_{q}

$$
\begin{aligned}
& \mathfrak{H}_{q}(s) \varphi_{n}(s)=\lambda_{n} \varphi_{n}(s) \\
& \mathfrak{H}_{q}(s):=\frac{1}{\nabla x_{1}(s)} A(s) H_{q}(s) \frac{1}{A(s)}, \quad \varphi_{n}(s)=\frac{A(s) \sqrt{\rho(s)}}{d_{n}} P_{n}(s ; q),
\end{aligned}
$$

where

$$
\begin{gathered}
H_{q}(s):=-\frac{\sqrt{\sigma(-s-\mu+1) \sigma(s)}}{\nabla x(s)} e^{-\partial_{s}}-\frac{\sqrt{\sigma(-s-\mu) \sigma(s+1)}}{\Delta x(s)} e^{\partial_{s}} \\
+\left(\frac{\sigma(-s-\mu)}{\Delta x(s)}+\frac{\sigma(s)}{\nabla x(s)}\right) I,
\end{gathered}
$$

The next step is to find two operators $a(s)$ and $b(s)$ such that

$$
\mathfrak{H}_{q}(s)=b(s) a(s)
$$

We will follow an original idea by Atakishiyev:

The α-operators

In order to factorize an arbitrary difference equation, one should express it explicitly in terms of the shift operators $\exp \left(a \frac{d}{d s}\right)$, defined $a s \exp \left(a \frac{d}{d s}\right) f(s)=f(s+a), a \in \mathbb{C}$.

The α-operators

In order to factorize an arbitrary difference equation, one should express it explicitly in terms of the shift operators $\exp \left(a \frac{d}{d s}\right)$, defined $a s \exp \left(a \frac{d}{d s}\right) f(s)=f(s+a), a \in \mathbb{C}$.

Let $\alpha \in \mathbb{R}$ and $A(s)$ and $B(s)$ are continuous functions. We define a family of α-down and α-up operators by

$$
\begin{gathered}
\mathfrak{a}_{\alpha}^{\downarrow}(s):=\frac{B(s)}{\sqrt{\nabla x_{1}(s)}} e^{-\alpha \partial_{s}}\left(e^{\partial_{s}} \sqrt{\frac{\sigma(s)}{\nabla x(s)}}-\sqrt{\frac{\sigma(-s-\mu)}{\Delta x(s)}}\right) \frac{1}{A(s)}, \\
\mathfrak{a}_{\alpha}^{\uparrow}(s):=\frac{A(s)}{\nabla x_{1}(s)}\left(\sqrt{\frac{\sigma(s)}{\nabla x(s)}} e^{-\partial_{s}}-\sqrt{\frac{\sigma(-s-\mu)}{\Delta x(s)}}\right) e^{\alpha \partial_{s}} \frac{\sqrt{\nabla x_{1}(s)}}{B(s)} . \\
\mathfrak{H}_{q}(s)=\mathfrak{a}_{\alpha}^{\uparrow}(s) \mathfrak{a}_{\alpha}^{\downarrow}(s), \quad \forall \alpha \in \mathbb{R}, \text { and } B(s) .
\end{gathered}
$$

The Dynamical Algebra

Definition: Let ς be a complex number, and let $a(s)$ and $b(s)$ be two operators. We define the ς-commutator of a and b as

$$
[a(s), b(s)]_{\varsigma}=a(s) b(s)-\varsigma b(s) a(s), \quad \varsigma=q^{\gamma} \neq 0 .
$$

The Dynamical Algebra

Definition: Let ς be a complex number, and let $a(s)$ and $b(s)$ be two operators. We define the ς-commutator of a and b as

$$
[a(s), b(s)]_{\varsigma}=a(s) b(s)-\varsigma b(s) a(s), \quad \varsigma=q^{\gamma} \neq 0 .
$$

Why we are interested in this?

The Dynamical Algebra

Definition: Let ς be a complex number, and let $a(s)$ and $b(s)$ be two operators. We define the ς-commutator of a and b as

$$
[a(s), b(s)]_{\varsigma}=a(s) b(s)-\varsigma b(s) a(s), \quad \varsigma=q^{\gamma} \neq 0 .
$$

Why we are interested in this?
Proposition: Let $\mathfrak{H}_{q}(s)$ be an operator, such that $\exists a(s), b(s)$ and $\varsigma, \Lambda \in \mathbb{C}$, that $\mathfrak{H}_{q}(s)=b(s) a(s)$, and $[a(s), b(s)]_{s}=\Lambda$.

The Dynamical Algebra

Definition: Let ς be a complex number, and let $a(s)$ and $b(s)$ be two operators. We define the ς-commutator of a and b as

$$
[a(s), b(s)]_{\varsigma}=a(s) b(s)-\varsigma b(s) a(s), \quad \varsigma=q^{\gamma} \neq 0 .
$$

Why we are interested in this?
Proposition: Let $\mathfrak{H}_{q}(s)$ be an operator, such that $\exists a(s), b(s)$ and $\varsigma, \Lambda \in \mathbb{C}$, that $\mathfrak{H}_{q}(s)=b(s) a(s)$, and $[a(s), b(s)]_{s}=\Lambda$.
Then, if $\mathfrak{H}_{q}(s) \Phi(s)=\lambda \Phi(s) \quad \Rightarrow$

The Dynamical Algebra

Definition: Let ς be a complex number, and let $a(s)$ and $b(s)$ be two operators. We define the ς-commutator of a and b as

$$
[a(s), b(s)]_{\varsigma}=a(s) b(s)-\varsigma b(s) a(s), \quad \varsigma=q^{\gamma} \neq 0
$$

Why we are interested in this?
Proposition: Let $\mathfrak{H}_{q}(s)$ be an operator, such that $\exists a(s), b(s)$ and $\varsigma, \Lambda \in \mathbb{C}$, that $\mathfrak{H}_{q}(s)=b(s) a(s)$, and $[a(s), b(s)]_{\varsigma}=\Lambda$.
Then, if $\mathfrak{H}_{q}(s) \Phi(s)=\lambda \Phi(s) \quad \Rightarrow$

$$
\mathfrak{H}_{q}(s)\{a(s) \Phi(s)\}=\varsigma^{-1}(\lambda-\Lambda)\{a(s) \Phi(s)\}
$$

The Dynamical Algebra

Definition: Let ς be a complex number, and let $a(s)$ and $b(s)$ be two operators. We define the ς-commutator of a and b as

$$
[a(s), b(s)]_{\varsigma}=a(s) b(s)-\varsigma b(s) a(s), \quad \varsigma=q^{\gamma} \neq 0
$$

Why we are interested in this?
Proposition: Let $\mathfrak{H}_{q}(s)$ be an operator, such that $\exists a(s), b(s)$ and $\varsigma, \Lambda \in \mathbb{C}$, that $\mathfrak{H}_{q}(s)=b(s) a(s)$, and $[a(s), b(s)]_{\varsigma}=\Lambda$.
Then, if $\mathfrak{H}_{q}(s) \Phi(s)=\lambda \Phi(s) \quad \Rightarrow$

$$
\begin{aligned}
& \bullet \mathfrak{H}_{q}(s)\{a(s) \Phi(s)\}=\varsigma^{-1}(\lambda-\Lambda)\{a(s) \Phi(s)\}, \\
& \bullet \mathfrak{H}_{q}(s)\{b(s) \Phi(s)\}=(\Lambda+\varsigma \lambda)\{b(s) \Phi(s)\} .
\end{aligned}
$$

The Dynamical Algebra

Definition: Let ς be a complex number, and let $a(s)$ and $b(s)$ be two operators. We define the ς-commutator of a and b as

$$
[a(s), b(s)]_{\varsigma}=a(s) b(s)-\varsigma b(s) a(s), \quad \varsigma=q^{\gamma} \neq 0
$$

Why we are interested in this?
Proposition: Let $\mathfrak{H}_{q}(s)$ be an operator, such that $\exists a(s), b(s)$ and $\varsigma, \Lambda \in \mathbb{C}$, that $\mathfrak{H}_{q}(s)=b(s) a(s)$, and $[a(s), b(s)]_{\varsigma}=\Lambda$.
Then, if $\mathfrak{H}_{q}(s) \Phi(s)=\lambda \Phi(s) \quad \Rightarrow$

$$
\begin{array}{rlrl}
\bullet & \mathfrak{H}_{q}(s)\{a(s) \Phi(s)\} & =\varsigma^{-1}(\lambda-\Lambda)\{a(s) \Phi(s)\}, & a(s) \text { lowering op. } \\
\bullet \mathfrak{H}_{q}(s)\{b(s) \Phi(s)\} & =(\Lambda+\varsigma \lambda)\{b(s) \Phi(s)\} . & b(s) \text { raising op. }
\end{array}
$$

The Dynamical Algebra

Let us assume that $[a(s), b(s)]_{\varsigma}=I, \varsigma=q^{2}$, and $b(s)=a^{+}(s)$.

The Dynamical Algebra

Let us assume that $[a(s), b(s)]_{\varsigma}=l, \varsigma=q^{2}$, and $b(s)=a^{+}(s)$.
Then one can rewrite the q^{2}-commutator as follows

$$
\left[a(s), a^{+}(s)\right]=I-\left(1-q^{2}\right) a^{+}(s) a(s) \equiv q^{2 N(s)}
$$

where, $N(s)=\ln \left[I-\left(1-q^{2}\right) a^{+}(s) a(s)\right] / \ln q^{2}$.

The Dynamical Algebra

Let us assume that $[a(s), b(s)]_{\varsigma}=l, \varsigma=q^{2}$, and $b(s)=a^{+}(s)$.
Then one can rewrite the q^{2}-commutator as follows

$$
\left[a(s), a^{+}(s)\right]=I-\left(1-q^{2}\right) a^{+}(s) a(s) \equiv q^{2 N(s)}
$$

where, $N(s)=\ln \left[I-\left(1-q^{2}\right) a^{+}(s) a(s)\right] / \ln q^{2} . \Rightarrow$

$$
[N(s), a(s)]=-a(s), \quad\left[N(s), a^{+}(s)\right]=a^{+}(s),
$$

i.e., $N(s)$ is the "number" operator.

The Dynamical Algebra

Let us assume that $[a(s), b(s)]_{\varsigma}=l, \varsigma=q^{2}$, and $b(s)=a^{+}(s)$.
Then one can rewrite the q^{2}-commutator as follows

$$
\left[a(s), a^{+}(s)\right]=I-\left(1-q^{2}\right) a^{+}(s) a(s) \equiv q^{2 N(s)}
$$

where, $N(s)=\ln \left[I-\left(1-q^{2}\right) a^{+}(s) a(s)\right] / \ln q^{2} . \Rightarrow$

$$
[N(s), a(s)]=-a(s), \quad\left[N(s), a^{+}(s)\right]=a^{+}(s),
$$

i.e., $N(s)$ is the "number" operator. Next we introduce

$$
\widetilde{b}(s):=q^{-N(s) / 2} a(s), \quad \tilde{b}^{+}(s):=a^{+}(s) q^{-N(s) / 2}
$$

which satisfy $\widetilde{b}(s) \widetilde{b}^{+}(s)-q \widetilde{b}^{+}(s) \widetilde{b}(s)=q^{-N(s)}$.

The Dynamical Algebra

The operators $\widetilde{b}(s), \widetilde{b}^{+}(s)$, and $N(s)$ lead to the dynamical algebra $s u_{q}(1,1)$ with the generators $\left(\beta^{-1}=q+q^{-1}\right.$.)

$$
\begin{gathered}
K_{0}(s)=\frac{1}{2}(N(s)+1 / 2), \quad K_{+}(s)=\beta\left(\widetilde{b}^{+}(s)\right)^{2}, \quad K_{-}(s)=\beta \widetilde{b}^{2}(s) \\
{\left[K_{0}(s), K_{ \pm}(s)\right]= \pm K_{ \pm}(s), \quad\left[K_{-}(s), K_{+}(s)\right]=\left[2 K_{0}(s)\right]_{q^{2}}}
\end{gathered}
$$

of the algebra $s u_{q}(1,1)$.

The Dynamical Algebra

The operators $\widetilde{b}(s), \widetilde{b}^{+}(s)$, and $N(s)$ lead to the dynamical algebra $s u_{q}(1,1)$ with the generators $\left(\beta^{-1}=q+q^{-1}\right.$.)

$$
\begin{gathered}
K_{0}(s)=\frac{1}{2}(N(s)+1 / 2), \quad K_{+}(s)=\beta\left(\widetilde{b}^{+}(s)\right)^{2}, \quad K_{-}(s)=\beta \widetilde{b}^{2}(s) \\
{\left[K_{0}(s), K_{ \pm}(s)\right]= \pm K_{ \pm}(s), \quad\left[K_{-}(s), K_{+}(s)\right]=\left[2 K_{0}(s)\right]_{q^{2}}}
\end{gathered}
$$

of the algebra $s u_{q}(1,1)$.
Similarly we can derive the dynamical algebra $s u_{q}(2)$.

Dynamical Algebra: Problem 1

Let us now pose the problem 1: Given the operator $\mathfrak{H}_{q}(s)$
To find two operators $a(s)$ and $b(s)$ and $\varsigma \in \mathbb{C}$ such that:

Dynamical Algebra: Problem 1

Let us now pose the problem 1: Given the operator $\mathfrak{H}_{q}(s)$
To find two operators $a(s)$ and $b(s)$ and $\varsigma \in \mathbb{C}$ such that:

1) the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and

Dynamical Algebra: Problem 1

Let us now pose the problem 1: Given the operator $\mathfrak{H}_{q}(s)$
To find two operators $a(s)$ and $b(s)$ and $\varsigma \in \mathbb{C}$ such that:

1) the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and 2$)[a(s), b(s)]_{s}=l$.

Dynamical Algebra: Problem 1

Let us now pose the problem 1: Given the operator $\mathfrak{H}_{q}(s)$
To find two operators $a(s)$ and $b(s)$ and $\varsigma \in \mathbb{C}$ such that:

1) the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and 2) $[a(s), b(s)]_{s}=l$.

For the first question we already have the answer: the operators $b(s)=\mathfrak{a}_{\alpha}^{\uparrow}(s)$ and $a(s)=\mathfrak{a}_{\alpha}^{\downarrow}(s)$ factorize the Hamiltonian

$$
\mathfrak{H}_{q}(s)=\mathfrak{a}_{\alpha}^{\uparrow}(s) \mathfrak{a}_{\alpha}^{\downarrow}(s)
$$

Dynamical Algebra: Problem 1

Let us now pose the problem 1: Given the operator $\mathfrak{H}_{q}(s)$
To find two operators $a(s)$ and $b(s)$ and $\varsigma \in \mathbb{C}$ such that:

1) the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and 2) $[a(s), b(s)]_{\varsigma}=l$.

For the first question we already have the answer: the operators $b(s)=\mathfrak{a}_{\alpha}^{\uparrow}(s)$ and $a(s)=\mathfrak{a}_{\alpha}^{\downarrow}(s)$ factorize the Hamiltonian

$$
\mathfrak{H}_{q}(s)=\mathfrak{a}_{\alpha}^{\uparrow}(s) \mathfrak{a}_{\alpha}^{\downarrow}(s) .
$$

The question is under which conditions they also satisfy the commutation relation.

Dynamical Algebra: Problem 1

Let us now pose the problem 1: Given the operator $\mathfrak{H}_{q}(s)$
To find two operators $a(s)$ and $b(s)$ and $\varsigma \in \mathbb{C}$ such that:

1) the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and 2) $[a(s), b(s)]_{s}=l$.

For the first question we already have the answer: the operators $b(s)=\mathfrak{a}_{\alpha}^{\uparrow}(s)$ and $a(s)=\mathfrak{a}_{\alpha}^{\downarrow}(s)$ factorize the Hamiltonian

$$
\mathfrak{H}_{q}(s)=\mathfrak{a}_{\alpha}^{\uparrow}(s) \mathfrak{a}_{\alpha}^{\downarrow}(s) .
$$

The question is under which conditions they also satisfy the commutation relation.

In the following we assume that $A(s)=B(s) . \quad \Rightarrow$

The Dynamical Algebra: Problem 1

Theorem 1: NECESSARY CONDITION

Let $\left(\varphi_{n}\right)_{n}$ the eigenfunctions of $\mathfrak{H}_{q}(s)$ corresponding to the eigenvalues $\left(\lambda_{n}\right)_{n}$ and suppose that the problem 1 has a solution for $\Lambda \neq 0$. Then, the eigenvalues λ_{n} of the NU q-equation are q-linear or q^{-1}-linear functions of n, i.e.,

$$
\lambda_{n}=C_{1} q^{n}+C_{3} \quad \text { or } \quad \lambda_{n}=C_{2} q^{-n}+C_{3},
$$

respectively.

The Dynamical Algebra: Problem 1

Theorem 1: NECESSARY CONDITION

Let $\left(\varphi_{n}\right)_{n}$ the eigenfunctions of $\mathfrak{H}_{q}(s)$ corresponding to the eigenvalues $\left(\lambda_{n}\right)_{n}$ and suppose that the problem 1 has a solution for $\Lambda \neq 0$. Then, the eigenvalues λ_{n} of the NU q-equation are q-linear or q^{-1}-linear functions of n, i.e.,

$$
\lambda_{n}=C_{1} q^{n}+C_{3} \quad \text { or } \quad \lambda_{n}=C_{2} q^{-n}+C_{3},
$$

respectively.

$$
\lambda_{n}=-[n]_{q}\left(\frac{q^{\frac{n-1}{2}}+q^{-\frac{n-1}{2}}}{2} \widetilde{\tau}^{\prime}+[n-1]_{q} \frac{\widetilde{\sigma}^{\prime \prime}}{2}\right)
$$

The Dynamical Algebra: Problem 1

Theorem 1: NECESSARY CONDITION

Let $\left(\varphi_{n}\right)_{n}$ the eigenfunctions of $\mathfrak{H}_{q}(s)$ corresponding to the eigenvalues $\left(\lambda_{n}\right)_{n}$ and suppose that the problem 1 has a solution for $\Lambda \neq 0$. Then, the eigenvalues λ_{n} of the NU q-equation are q-linear or q^{-1}-linear functions of n, i.e.,

$$
\lambda_{n}=C_{1} q^{n}+C_{3} \quad \text { or } \quad \lambda_{n}=C_{2} q^{-n}+C_{3},
$$

respectively.

$$
\lambda_{n}=-[n]_{q}\left(\frac{q^{\frac{n-1}{2}}+q^{-\frac{n-1}{2}}}{2} \widetilde{\tau}^{\prime}+[n-1]_{q} \frac{\widetilde{\sigma}^{\prime \prime}}{2}\right)=C_{1} q^{n}+C_{2} q^{-n}+C_{3}
$$

The Dynamical Algebra: Problem 1

Theorem 1: NECESSARY CONDITION

Let $\left(\varphi_{n}\right)_{n}$ the eigenfunctions of $\mathfrak{H}_{q}(s)$ corresponding to the eigenvalues $\left(\lambda_{n}\right)_{n}$ and suppose that the problem 1 has a solution for $\Lambda \neq 0$. Then, the eigenvalues λ_{n} of the NU q-equation are q-linear or q^{-1}-linear functions of n, i.e.,

$$
\lambda_{n}=C_{1} q^{n}+C_{3} \quad \text { or } \quad \lambda_{n}=C_{2} q^{-n}+C_{3},
$$

respectively.
$\lambda_{n}=-[n]_{q}\left(\frac{q^{\frac{n-1}{2}}+q^{-\frac{n-1}{2}}}{2} \widetilde{\tau}^{\prime}+[n-1]_{q} \frac{\sigma^{\prime \prime}}{2}\right)=C_{1} q^{n}+C_{2} q^{-n}+C_{3}$
Impossible to solve: general Askey-Wilson, q-Racah, big and little q-Jacobi polynomials.

The Dynamical Algebra: Problem 1

Theorem 2: NECESSARY AND SUFFICIENT CONDITION

Let be $\mathfrak{H}_{q}(s)$ the q-Hamiltonian defined from the NU Eq. The operators $\mathfrak{a}_{\alpha}^{\uparrow}(s)$ and $\mathfrak{a}_{\alpha}^{\downarrow}(s)$ factorize the Hamiltonian $\mathfrak{H}_{q}(s)$ and satisfy the relation $\left[\mathfrak{a}_{\alpha}^{\downarrow}(s), \mathfrak{a}_{\alpha}^{\uparrow}(s)\right]_{\varsigma}=\Lambda$ for $\varsigma \in \mathbb{C}$ iff the following two conditions hold:

$$
\begin{gathered}
\frac{\nabla \times(s)}{\nabla x_{1}(s-\alpha)} \sqrt{\frac{\nabla x_{1}(s-1) \nabla x_{1}(s)}{\nabla \times(s-\alpha) \Delta \times(s-\alpha)}} \sqrt{\frac{\sigma(s-\alpha) \sigma(-s-\mu+\alpha)}{\sigma(s) \sigma(-s-\mu+1)}}=\varsigma, \quad \text { and } \\
\frac{1}{\Delta \times(s-\alpha)}\left(\frac{\sigma(s-\alpha+1)}{\nabla x_{1}(s-\alpha+1)}+\frac{\sigma(-s-\mu+\alpha)}{\nabla x_{1}(s-\alpha)}\right)-\varsigma \frac{1}{\nabla x_{1}(s)}\left(\frac{\sigma(s)}{\nabla \times(s)}+\frac{\sigma(-s-\mu)}{\Delta \times(s)}\right)=\Lambda .
\end{gathered}
$$

The values ς and Λ are uniquely determined!

The Dynamical Algebra: Problem 2

To find two operators $a(s)$ and $b(s)$ and a constant ς such that the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and $[a(s), b(s)]_{s}=I$ and such that $a(s)$ and $b(s)$ are the lowering and raising operators, i.e.,

$$
a(s) \varphi_{n}(s)=D_{n} \Phi_{n-1}(s) \quad \text { and } \quad b(s) \varphi_{n}(s)=U_{n} \Phi_{n+1}(s)
$$

The Dynamical Algebra: Problem 2

To find two operators $a(s)$ and $b(s)$ and a constant ς such that the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and $[a(s), b(s)]_{s}=I$ and such that $a(s)$ and $b(s)$ are the lowering and raising operators, i.e.,

$$
a(s) \varphi_{n}(s)=D_{n} \Phi_{n-1}(s) \quad \text { and } \quad b(s) \varphi_{n}(s)=U_{n} \Phi_{n+1}(s)
$$

Answer: λ_{n} should be a ς-linear function, i.e., λ_{n} has the form $\lambda_{n}=A \varsigma^{n}+D$ and this is again a necessary condition

The Dynamical Algebra: Problem 2

To find two operators $a(s)$ and $b(s)$ and a constant ς such that the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and $[a(s), b(s)]_{s}=I$ and such that $a(s)$ and $b(s)$ are the lowering and raising operators, i.e.,

$$
a(s) \varphi_{n}(s)=D_{n} \Phi_{n-1}(s) \quad \text { and } \quad b(s) \varphi_{n}(s)=U_{n} \Phi_{n+1}(s)
$$

Answer: λ_{n} should be a ς-linear function, i.e., λ_{n} has the form $\lambda_{n}=A \varsigma^{n}+D$ and this is again a necessary condition
When the α-operators are mutually adjoint?

The Dynamical Algebra: Problem 2

To find two operators $a(s)$ and $b(s)$ and a constant ς such that the Hamiltonian $\mathfrak{H}_{q}(s)=b(s) a(s)$ and $[a(s), b(s)]_{s}=I$ and such that $a(s)$ and $b(s)$ are the lowering and raising operators, i.e.,

$$
a(s) \varphi_{n}(s)=D_{n} \Phi_{n-1}(s) \quad \text { and } \quad b(s) \varphi_{n}(s)=U_{n} \Phi_{n+1}(s)
$$

Answer: λ_{n} should be a ς-linear function, i.e., λ_{n} has the form $\lambda_{n}=A \varsigma^{n}+D$ and this is again a necessary condition

When the α-operators are mutually adjoint?
Answer: It depends of the "scalar product". E.g. Discrete case: $\alpha=0$ is a sufficient condition

Example 1: The AI-Salam \& Carlitz I

The q-Hamiltonian is, in this case, $\left(x=q^{s}\right)$.

$$
\mathfrak{H}_{q}(s)=-\frac{q^{2} \sqrt{a(x-1)(x-a)}}{(q-1)^{2} x^{2}} e^{-\partial_{s}}-\frac{\sqrt{a(1-q x)(a-q x)}}{x^{2}} e^{\partial_{s}}+\left(\frac{\sqrt{q}(q(x-1) x+a(1+q-q x))}{(q-1)^{2} x^{2}}\right) /
$$

Then, $\mathfrak{H}_{q}(s) \varphi_{n}(s)=q^{\frac{3}{2}} \frac{1-q^{-n}}{(1-q)^{2}} \varphi_{n}(s)$ and the operators

$$
\begin{aligned}
& \mathfrak{a}^{\downarrow}(s) \equiv \mathfrak{a}_{0}^{\downarrow}(s)=\frac{q^{\frac{1}{4}} x^{-1}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}\left(\sqrt{(x-1 / q)(x-a / q)} e^{\partial_{s}}-\sqrt{a} l\right), \\
& \mathfrak{a}^{\uparrow}(s) \equiv \mathfrak{a}_{0}^{\uparrow}(s)=\frac{q^{\frac{1}{4}} x^{-1}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}\left(\sqrt{(x-1)(x-a)} e^{-\partial_{s}}-\sqrt{a / q} l\right),
\end{aligned}
$$

are such that

Example 1: The AI-Salam \& Carlitz I

$$
\mathfrak{a}^{\uparrow}(s) \mathfrak{a}^{\downarrow}(s)=\mathfrak{H}_{q}(s), \quad \text { and } \quad\left[\mathfrak{a}^{\downarrow}(s), \mathfrak{a}^{\uparrow}(s)\right]_{q^{-1}}=\frac{1}{k_{q}}
$$

Notice that since this is a discrete case when $\alpha=0$ the operators $\mathfrak{a}^{\uparrow}(s)$ and $\mathfrak{a}^{\downarrow}(s)$ are mutually adjoint.

Other related cases:

Example 1: The AI-Salam \& Carlitz I

$$
\mathfrak{a}^{\uparrow}(s) \mathfrak{a}^{\downarrow}(s)=\mathfrak{H}_{q}(s), \quad \text { and } \quad\left[\mathfrak{a}^{\downarrow}(s), \mathfrak{a}^{\uparrow}(s)\right]_{q^{-1}}=\frac{1}{k_{q}}
$$

Notice that since this is a discrete case when $\alpha=0$ the operators $\mathfrak{a}^{\uparrow}(s)$ and $\mathfrak{a}^{\downarrow}(s)$ are mutually adjoint.

Other related cases:

- the AI-Salam \& Carlitz I polynomials with $a=-1$ are the discrete q-Hermite I $h_{n}(x ; q)$

Example 1: The AI-Salam \& Carlitz I

$$
\mathfrak{a}^{\uparrow}(s) \mathfrak{a}^{\downarrow}(s)=\mathfrak{H}_{q}(s), \quad \text { and } \quad\left[\mathfrak{a}^{\downarrow}(s), \mathfrak{a}^{\uparrow}(s)\right]_{q^{-1}}=\frac{1}{k_{q}}
$$

Notice that since this is a discrete case when $\alpha=0$ the operators $\mathfrak{a}^{\uparrow}(s)$ and $\mathfrak{a}^{\downarrow}(s)$ are mutually adjoint.

Other related cases:

- the AI-Salam \& Carlitz I polynomials with $a=-1$ are the discrete q-Hermite I $h_{n}(x ; q)$
- Changing q by q^{-1}, we obtain the factorization and the dynamical algebra for the AI-Salam \& Carlitz functions II

Example 1: The AI-Salam \& Carlitz I

$$
\mathfrak{a}^{\uparrow}(s) \mathfrak{a}^{\downarrow}(s)=\mathfrak{H}_{q}(s), \quad \text { and } \quad\left[\mathfrak{a}^{\downarrow}(s), \mathfrak{a}^{\uparrow}(s)\right]_{q^{-1}}=\frac{1}{k_{q}}
$$

Notice that since this is a discrete case when $\alpha=0$ the operators $\mathfrak{a}^{\uparrow}(s)$ and $\mathfrak{a}^{\downarrow}(s)$ are mutually adjoint.

Other related cases:

- the AI-Salam \& Carlitz I polynomials with $a=-1$ are the discrete q-Hermite I $h_{n}(x ; q)$
- Changing q by q^{-1}, we obtain the factorization and the dynamical algebra for the AI-Salam \& Carlitz functions II
- from where putting $a=-1$ and $x \rightarrow i x$ follows the solution for the discrete Hermite q-polynomials $\widetilde{h}_{n}(x ; q)$

Other examples in the q-Askey Tableau

$x(s)$	$P_{n}(s)_{q}$	$\sigma(s)+\tau(s) \nabla x_{1}(s)$	$\sigma(s)$	λ_{n}
q^{s}	$U_{n}^{(a)}(x ; q)$	a	$(x-1)(x-a)$	$q^{\frac{3}{2}} \frac{1-q^{-n}}{(1-q)^{2}}$
q^{-s}	$V_{n}^{(a)}(x ; q)$	$(1-x)(a-x)$	a	$q^{\frac{1}{2}} \frac{1-q^{n}}{(1-q)^{2}}$
q^{s}	$h_{n}(x ; q)$	-1	$x^{2}-1$	$q^{\frac{3}{2} \frac{1-q^{-n}}{(1-q)^{2}}}$
q^{s}	$\widetilde{h}_{n}(x ; q)$	$1+x^{2}$	1	$q^{\frac{1}{2} \frac{1-q^{n}}{(1-q)^{2}}}$
q^{-s}	$v_{n}^{\mu}(x ; q)$	μ	$(1-1 / q)\left(\mu-q / q^{s}\right)$	$q^{\frac{3}{2} \frac{1-q^{n}}{(1-q)^{2}}}$
q^{s}	$S_{n}(x ; q)$	x^{2}	$q^{-1} x$	$q^{\frac{1}{2} \frac{1-q^{n}}{(1-q)^{2}}}$
q^{s}	$p_{n}(x ; a \mid q)$	$-a x$	$q^{-1} x(x-1)$	$q^{\frac{1}{2} \frac{1-q-q}{(1-q)^{-2}}}$
q^{s}	$L_{n}^{\alpha}(x ; q)$	$a x(x+1)$	$q^{-1} x$	$q^{\frac{1}{2}} \frac{1-q^{n}}{(1-q)^{2}}$
q^{-s}	$C_{n}(x ; a ; q)$	$x(x-1)$	$q^{-1} a x$	$q^{\frac{1}{2} \frac{1-q^{n}}{(1-q)^{2}}}$

AI-Salam \& Carlitz I, II, discrete q-Hermite I, II, q-Charlier-type, Stieltjes-Wigert,
Wall polynomials, discrete q-Laguerre, q-Charlier.

Other examples in the q-Askey Tableau

$x(s)$	$P_{n}(s)_{q}$	$\sigma(s)+\tau(s) \nabla x_{1}(s)$	$\sigma(s)$	λ_{n}
q^{s}	$U_{n}^{(a)}(x ; q)$	a	$(x-1)(x-a)$	$q^{\frac{3}{2} \frac{1-q-n}{(1-q)^{2}}}$
q^{-s}	$V_{n}^{(a)}(x ; q)$	$(1-x)(a-x)$	a	$q^{\frac{1}{2}} \frac{1-q^{n}}{(1-q)^{2}}$
q^{s}	$h_{n}(x ; q)$	-1	$x^{2}-1$	$q^{\frac{3}{2} \frac{1-q-n}{(1-q)^{2}}}$
q^{s}	$\widetilde{h}_{n}(x ; q)$	$1+x^{2}$	1	$q^{\frac{1}{2} \frac{1-q}{(1-q)^{2}}}$
q^{-s}	$v_{n}^{\mu}(x ; q)$	μ	$(1-1 / q)\left(\mu-q / q^{s}\right)$	$q^{\frac{3}{2} \frac{1-q^{n}}{(1-q)^{2}}}$
q^{s}	$S_{n}(x ; q)$	x^{2}	$q^{-1} x$	$q^{\frac{1}{2} \frac{1-q}{(1-q)^{2}}}$
q^{s}	$p_{n}(x ; a \mid q)$	$-a x$	$q^{-1} x(x-1)$	$q^{\frac{1}{2} \frac{1-q-q}{(1-q)^{2}}}$
q^{s}	$L_{n}^{\alpha}(x ; q)$	$a x(x+1)$	$q^{-1} x$	$q^{\frac{1}{2}} \frac{1-q^{n}}{(1-q)^{2}}$
q^{-s}	$C_{n}(x ; a ; q)$	$x(x-1)$	$q^{-1} a x$	$q^{\frac{1}{2} \frac{1-q^{n}}{(1-q)^{2}}}$

AI-Salam \& Carlitz I, II, discrete q-Hermite I, II, q-Charlier-type, Stieltjes-Wigert,
Wall polynomials, discrete q-Laguerre, q-Charlier.
The Askey-Wilson case: Only for some special cases. continuous q-Laguerre and continuous q-Hermite polynomials.

Open problems

- What about the lowering and raising properties of the α-down and α-up operators?
- What happen for the general Askey-Wilson case and for the general big q-Jacobi?
- There exists a more general dynamical algebra? Of which kind?

Open problems

- What about the lowering and raising properties of the α-down and α-up operators?
- What happen for the general Askey-Wilson case and for the general big q-Jacobi?
- There exists a more general dynamical algebra? Of which kind?

Last but not least ...

Some other relevant results related with the q-polynomials by Natig: Classical-type integral transform formulas: Mellin transforms, Fourier-Gauss transforms, etc.

That's all folks ... thanks for your attention!

Leganés, June 1996

München, July 2005

Natig Atakishiyev's secret: "Los problemas matemáticos hacen que canalicemos nuestros esfuerzos y nos ayudan a sobrevivir. Solucionar un enigma es lo más gratificante que hay. Si no tuviéramos este tipo de incógnitas esperándonos al día siguiente, los matemáticos no viviríamos tanto"

