
Noname manuscript No.
(will be inserted by the editor)

Variability Testing in the Wild: The Drupal Case Study

Ana B. Sánchez · Sergio Segura · José A. Parejo · Antonio Ruiz-Cortés

the date of receipt and acceptance should be inserted later

Abstract Variability testing techniques search for effec-
tive and manageable test suites that lead to the rapid
detection of faults in systems with high variability. Eva-
luating the effectiveness of these techniques in realistic
settings is a must, but challenging due to the lack of
variability intensive systems with available code, au-
tomated tests and fault reports. In this article, we pro-
pose using the Drupal framework as a case study to
evaluate variability testing techniques. First, we repre-
sent the framework variability using a feature model.
Then, we report on extensive non–functional data ex-
tracted from the Drupal Git repository and the Drupal
issue tracking system. Among other results, we iden-
tified 3,392 faults in single features and 160 faults tri-
ggered by the interaction of up to 4 features in Drupal
v7.23. We also found positive correlations relating the
number of bugs in Drupal features to their size, cyclo-
matic complexity, number of changes and fault history.
To show the feasibility of our work, we evaluated the
effectiveness of non–functional data for test case prio-
ritization in Drupal. Results show that non–functional
attributes are effective at accelerating the detection of
faults, outperforming related prioritization criteria as
test case similarity.

1 Introduction

Software variability refers to the ability of a software
system to be extended, changed, customized or con-
figured to be used in a particular context [62]. Soft-
ware applications exposing a high degree of variability
are usually referred to as Variability–Intensive Systems

Department of Computer Languages and Systems.
University of Seville, Spain
E-mail: absanchez@us.es

(VISs). Operating systems as Linux [41,58], develop-
ment tools as Eclipse [35] or even cloud applications as
the Amazon elastic compute service [25] have been re-
ported as examples of VISs. Another prominent exam-
ple of software variability is found in Software Product
Lines (SPL). SPL engineering focuses on the develop-
ment of families of related products trough the sys-
tematic management of variability. For that purpose,
feature models are typically used as the facto standard
for variability modelling in terms of functional fea-
tures and constraints among them [8,36]. Features are
often enriched with non–functional attributes in so-
called attributed feature models [8]. A feature attribute
is usually represented with a name and a value, e.g.
cost = 20.

Testing VISs is extremely challenging due to the
potentially huge number of configurations under test.
For instance, Debian Wheezy, a well–known Linux dis-
tribution, provides more than 37,000 packages that can
be combined with restrictions leading to billions of po-
tential configurations [13]. To address this problem,
researchers have proposed various techniques to re-
duce the cost of testing in the presence of variability,
including test case selection and test case prioritiza-
tion techniques [29,31,53,68]. Test case selection approa-
ches select an appropriate subset of the existing test
suite according to some coverage criteria. Test case prio-
ritization approaches schedule test cases for execution
in an order that attempts to increase their effectiveness
at meeting some performance goal, e.g. accelerate the
detection of faults.

The number of works on variability testing is gro-
wing rapidly and thus the number of experimental eva-
luations. However, it is hard to find real VISs with avai-
lable code, test cases, detailed fault reports and good
documentation that enable reproducible experiments

2 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

[56,58]. As a result, authors often evaluate their tes-
ting approaches using synthetic feature models, faults
and non-functional attributes, which introduces threats
to validity and weaken their conclusions. A related pro-
blem is the lack of information about the distribution
of faults in VISs, e.g. number and types of faults, fault
severity, etc. This may be an obstacle for the design of
new testing techniques since researchers are not fully
aware of the type of faults that they are looking for.

In the search for real variability systems some au-
thors have explored the domain of open source opera-
ting systems [10,24]. However, these works mainly fo-
cus on the variability modelling perspective and thus
ignore relevant data for testers such as the number of
test cases or the distribution of faults. Also, reposi-
tories such as SPLOT [44,60] and SPL2GO [59] pro-
vide catalogues of variability models and source code.
However, they do not include information about the
faults found in the programs and it is up to the user to
inspect the code searching for test cases.

In order to find a real VIS with available code, we
followed the steps of previous authors and looked into
the open source community. In particular, we found
the open source Drupal framework [12] to be a mo-
tivating VIS. Drupal is a modular web content man-
agement framework written in PHP [12,65]. Drupal
provides detailed fault reports including fault descrip-
tion, fault severity, type, status and so on. Also, most
of the modules of the framework include a number of
automated test cases. The high number of the Dru-
pal community members together with its extensive
documentation have also been strengths to choose this
framework. Drupal is maintained and developed by a
community of more than 630,000 users and develo-
pers.

In this article, we propose using the Drupal frame-
work as a motivating case study to evaluate variability
testing techniques. In particular, the following contri-
butions are presented.

1. We map some of the main Drupal modules to fea-
tures and represent the framework variability using
a feature model. The resulting model has 48 fea-
tures, 21 cross–tree constraints and represents more
than 2,000 millions of different Drupal configura-
tions.

2. We report on extensive non–functional data extrac-
ted from the Drupal Git repository. For each fea-
ture under study, we report its size, number of chan-
ges (during two years), cyclomatic complexity, num-
ber of test cases, number of test assertions, num-
ber of developers and number of reported insta-
llations. To the best of our knowledge, the Drupal
feature model together with these non–functional

attributes represents the largest attributed feature
model published so far.

3. We present the number of faults reported on the
Drupal features under study during a period of two
years, extracted from the Drupal issue tracking sys-
tem. Faults are classified according to their severity
and the feature(s) that trigger it. Among other re-
sults, we identified 3,392 faults in Drupal v7.23,
160 of them caused by the interaction of up to 4
different features.

4. We replicated the study of faults in two consecutive
Drupal versions, v7.22 and v7.23, to enable fault–
history test validations, i.e. evaluate how the bugs
detected in Drupal v7.22 could drive the search for
faults in Drupal v7.23.

5. We present a correlation study exploring the rela-
tion among the non–functional attributes of Dru-
pal features and their fault propensity. The results
revealed statistically significant correlations rela-
ting the number of bugs in features to the size and
cyclomatic complexity of its code, number of chan-
ges and number of faults in previous versions of
the framework.

6. We present an experimental evaluation on the use
of black–box combinatorial testing and non–func-
tional data for test case prioritization. The results
of our evaluation shows that prioritization driven
by non–functional attributes effectively accelerate
the detection of faults of combinatorial test suites,
outperforming related functional prioritization cri-
teria such as variability coverage [21,54] and simi-
larity [2,31,54].

These contributions provide a new insight into the
functional and non–functional aspects of a real open–
source VIS. This case study is intended to be used as
a realistic subject for further and reproducible valida-
tion of variability testing techniques. It may also be
helpful for those works on the analysis of attributed
feature models. Last, but not least, this work supports
the use of non–functional attributes as effective drivers
for test case prioritization in the presence of variabi-
lity.

The rest of the article is structured as follows: Sec-
tion 2 introduces the Drupal framework. Section 3 de-
scribes the Drupal feature model. A complete catalo-
gue of non–functional feature attributes is reported in
Section 4. The number and types of faults detected
in Drupal are presented in Section 5. Section 6 pre-
sents a correlation study exploring the relation among
the reported non–functional attributes and the fault
propensity of features. The results of using non–func-
tional attributes to accelerate the detection of faults in
Drupal are presented in Section 7. Section 9 discusses

Variability Testing in the Wild: The Drupal Case Study 3

the threats to validity of our work. The related work
is introduced and discussed in Section 10. We summa-
rize our conclusions in Section 11. Finally, in Section
12, we provide the produced material.

2 The Drupal framework

Drupal is a highly modular open source web content
management framework implemented in PHP [12,65].
It can be used to build a variety of web sites including
internet portals, e-commerce applications and online
newspapers [65]. Drupal is composed of a set of modu-
les. A module is a collection of functions that provide
certain functionality to the system. Installed modules
in Drupal can be enabled or disabled. An enabled mo-
dule is activated to be used by the Drupal system. A
disabled module is deactivated and adds no functio-
nality to the framework.

The modules can be classified into core modules
and additional modules [12,65]. Core modules are ap-
proved by the core developers of the Drupal commu-
nity and are included by default in the basic instal-
lation of Drupal framework. They are responsible for
providing the basic functionality that is used to su-
pport other parts of the system. The Drupal core in-
cludes code that allows the system to bootstrap when it
receives a request, a library of common functions fre-
quently used with Drupal, and modules that provide
basic functionality like user management and templa-
ting. In turn, core modules can be divided into core
compulsory and core optional modules. Core compul-
sory modules are those that must be always enabled
while core optional modules are those that can be ei-
ther enabled or disabled. Additional modules can be
classified into contributed modules and custom modu-
les and can be optionally installed and enabled. Con-
tributed modules are developed by the Drupal commu-
nity and shared under the same GNU Public License
(GPL) as Drupal. Custom modules are those created by
external contributors. Figure 1 depicts some popular
core and additional Drupal modules.

2.1 Module structure

At the code level, every Drupal module is mapped to
a directory including the source files of the module.
These files may include PHP files, CSS stylesheets, Ja-
vaScript code, test cases and help documents. Also,
every Drupal module must include a .module file and
a .info file with meta information about the module.
Besides this, a module can optionally include the di-
rectories and files of other modules, i.e. submodules.

Localiza(on* Templa(ng* Syndica(on* Logging*

Basic*Content*
Management*

User*
Management*

Session*
Management*

URL*Aliasing*

Forums* WYSIWYG*
Event*

Calendars*
Workgroups*

Image*
Galleries*

EEcommerce* AdSense*
Custom*
Module*

Library*of*Common*Func(ons*

Co
re
%

A
dd

i)
on

al
%

Fig. 1 Several Drupal core and additional modules. Taken from
[65]

A submodule extends the functionality of the module
containing it.

A Drupal .info file is a plain text file that describes
the basic information required for Drupal to recognize
the module. The name of this file must match the name
of the module. This file contains a set of so-called di-
rectives. A directive is a property name = value. Some
directives can use an array–like syntax to declare mul-
tiple values properties, name[] = value. Any line that
begins with a semicolon (‘;’) is treated as a comment.
For instance, Listing 1 describes a fragment of the vi-
ews.info file included in the Views module of Drupal
v7.23:

Listing 1 Fragment of the file views.info

name = Views

description = Create customized lists and queries from your db.

package = Views

core = 7.x

php = 5.2

stylesheets[all][] = css/views.css

dependencies[] = ctools

; Handlers

files[] = handlers/views_handler_area.inc

files[] = handlers/views_handler_area_result.inc

files[] = handlers/views_handler_area_text.inc

... more

; Information added by drupal.org on 2014-05-20

version = "7.x-3.8"

core = "7.x"

project = "views"

The structure of .info files is standard across all Drupal
7 modules. The name and description directives spe-
cify the name and description of the module that will
be displayed in the Drupal configuration page. The
package directive defines which package or group of
packages the module is associated with. On the mo-
dules configuration page, modules are grouped and
displayed by package. The core directive defines the
version of Drupal for which the module was written.
The php property defines the version of PHP requi-

4 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

red by the module. The files directive is an array with
the names of the files to be loaded by Drupal. Fur-
thermore, the .info file can optionally include the de-
pendencies that the module has with other modules,
i.e. modules that must be installed and enabled for
this module to work properly. In the example, the mo-
dule Views depends on the module Ctools. The direc-
tive required = TRUE is included in the core compul-
sory modules that must be always enabled.

2.2 Module tests

Drupal modules can optionally include a test direc-
tory with the test cases associated to the module. Dru-
pal defines a test case as a class composed of functions
(i.e. tests). These tests are performed through asser-
tions, a group of methods that check for a condition
and return a Boolean. If it is TRUE, the test passes, if
FALSE, the test fails. There exist three types of tests in
Drupal, unit, integration and upgrade tests. Unit tests
are methods that test an isolated piece of functiona-
lity of a module, such as functions or methods. Integra-
tion tests test how different components (i.e. functiona-
lity) work together. These tests may involve any mo-
dule of the Drupal framework. Integration tests usu-
ally simulate user interactions with the graphical user
interface through HTTP messages. According to the
Drupal documentation1, these are the most common
tests in Drupal. Upgrade tests are used to detect faults
caused by the upgrade to a newer version of the frame-
work, e.g. from Drupal v6.1 to v7.1. In order to work
with tests in Drupal, it is necessary to enable the Sim-
pleTest module. This module is a testing framework
moved into core in Drupal v7. SimpleTest automati-
cally runs the test cases of all the installed modules.
Figure 2 shows a snapshot of SimpleTest while run-
ning the tests of Drupal v7.23 modules.

3 The Drupal feature model

In this section, we describe the process followed to
model Drupal v7.23 variability using a feature model,
depicted in Figure 3. Feature models are the de–facto
standard for software variability modelling [8,36]. We
selected this notation for its simplicity and its broad
adoption in the field of variability testing.

1 https://drupal.org/simpletest

Fig. 2 Running Drupal tests

3.1 Feature tree

According to the Drupal documentation, each module
that is installed and enabled adds a new feature to the
framework [65] (chapter 1, page 3). Thus, we propose
modelling Drupal modules as features of the feature
model. Figure 3 shows the Drupal features that were
considered in our study, 48 in total including the root
feature. In particular, among the 44 core modules of
Drupal, we first selected the Drupal core modules that
must be always enabled (i.e. core compulsory modu-
les), 7 in total, e.g. Node. In Figure 3, these features ap-
pear with a mandatory relation with the features root
and Field. These features are included in all Drupal
configurations. A Drupal configuration is a valid com-
bination of features installed and enabled. Then, we
selected 40 modules within the most installed Dru-
pal core optional modules (e.g. Path) and additional
modules (e.g. Google Analytics) ensuring that all de-
pendencies were self-contained, i.e. all dependencies
points at modules also included in our study. Most of
these modules can be optionally installed and enabled
and thus were modelled as optional features in the fea-
ture model. Exceptionally, the additional module Date
API has a mandatory relation with its parent feature
Date.

Submodules were mapped to subfeatures. Drupal
submodules are those included in the directory of other
modules. They provide extra functionality to its pa-
rent module and they have no meaning without it. As
an example, the feature Date presents several subfea-
tures such as Date API, Date popup and Date views.
Exceptionally, the submodules of Node, Blog and Fo-
rum, appear in separate module folders, however, the
description of the modules in the Drupal documenta-
tion indicates that these modules are specializations of

Variability Testing in the Wild: The Drupal Case Study 5

D
rupal 7.23

N
ode

Filter
C

tools
File

O
ptions

P
ath

B
log

Forum
C

tools access
ruleset

C
tools custom

content

V
iew

s
content

Field
Field U

I

Field S
Q

L
storage

Im
age

S
ystem

U
ser

V
iew

s

V
iew

s U
I

Taxonom
y

C
om

m
ent

Text

D
ate

Token

Forum
 R

equires Taxonom
y

View
s content R

equires View
s

Panels IPE R
equires C

tools

R
ules R

equires Entity tokens

Forum
 R

equires O
ptions

Taxonom
y R

equires O
ptions

Panel N
odes R

equires C
tools

R
ules scheduler R

equires Entity A
PI

Forum
 R

equires C
om

m
ent

D
ate view

s R
equires C

tools
Pathauto R

equires Token
R

ules scheduler R
equires Entity tokens

Im
age R

equires File
D

ate view
s R

equires View
s

Pathauto R
equires Path

R
ules U

I R
equires Entity A

PI

View
s R

equires C
tools

Panels R
equires C

tools
R

ules R
equires Entity A

PI
R

ules U
I R

equires Entity tokens
View

s U
I R

equires C
tools

P
athauto

IM
C

E

D
ate view

s

D
ate

popup

D
ate A

P
I

W
ebForm

Link
E

ntity
A

P
I

E
ntity

tokens

C
K

E
ditor

C
aptcha

Im
age

C
aptcha

Features
P

anels

P
anel

nodes
P

anels
IP

E

Libraries
A

P
I

Jquery
U

pdate
G

oogle
A

nalytics
R

ulesR
ules U

I
R

ules
scheduler

B
ackup

m
igrate

M
andatory

O
ptional

Fig. 3 Drupal feature model

6 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

Node [65]. With respect to the set relationships or and
alternative, typically found in feature models, none of
them were identified among the features considered in
Figure 3.

The selected modules are depicted in Table 6 in
Appendix A. In total, we considered 16 Drupal core
modules and 31 additional modules obtaining a fea-
ture model with 48 features, i.e. root feature + 8 manda-
tory features + 39 optional features.

3.2 Cross–tree constraints

We define the dependencies among modules as cross–
tree constraints in the feature model. Constraints in
feature models are typically of the form requires or ex-
cludes. If a feature A requires a feature B, the inclusion
of A in a configuration implies the inclusion of B in
such configuration. On the other hand, if a feature A
excludes a feature B, both features cannot be part of
the same configuration.

Cross–tree constraints were identified by manually
inspecting the dependencies directive in the .info file
of each module. For each dependency, we created a
requires constraint in the feature model, 42 in total.
For instance, consider the views.info file depicted in
Listing 1. The file indicates that Views depends on the
Ctools module, i.e. dependencies[] = ctools. Thus, we
established a requires constraint between modules Vi-
ews and Ctools. We may remark that 21 out of the 42
cross–tree constraints identified were redundant when
considered together with the feature relationships in
the tree. For instance, the constraint Forum requires
Field is unnecessary since Field is a core feature in-
cluded in all the Drupal configurations. Similarly, the
constraint Date popup requires Date API can be omit-
ted since Date API has a mandatory relationship with
their parent feature Date. We manually identified and
removed all redundant cross–tree constraints. This ma-
kes a total of 21 requires cross–tree constraints shown
in Figure 3. No excludes constraints were identified
among the modules. Interestingly, we found that all
modules in the same version of Drupal are expected to
work fine together. If a Drupal module has incompat-
ibilities with others, it is reported as a bug that must
be fixed. As an example, consider the bug for Drupal
6 titled “Incompatible modules”2.

As a sanity check, we confirmed the constraints iden-
tified using the Javascript InfoVis Toolkit (JIT) Dru-
pal module, which shows a graphical representation
of the modules and their relationships [17]. Figure 4
depicts a fragment of the dependency graph provided

2 https://drupal.org/node/1312808

Fig. 4 Dependency graph generated by the JIT module

by the JIT module showing a dependency (i.e. directed
edge) between Views (source node) and Ctools (target
node). Therefore, we confirm the requires cross–tree
constraint found in the views.info file presented in List-
ing 1.

The ratio of features involved in cross–tree cons-
traints to the total number of features in the model
(CTCR) is 45.8%. This metric provides a rough idea of
the complexity of the model and enables comparisons.
Hence, for instance, Drupal is more complex (in terms
of CTCR) than the models in the SPLOT repository
(Avg. CTCR = 16.1%) [44,60] and the models inves-
tigated by Bagheri et al [5] in their work about feature
model complexity metrics (Avg. CTCR = 19.5%). Con-
versely, Drupal CTCR is less complex than the models
reported by Berger et al. [10] in the context of opera-
ting systems (Avg. CTCR = 72.9%). This was expected
since system software interacts with hardware in mul-
tiple ways and it is certainly more complex than Web
applications. The Drupal feature model represents
2,090,833,920 configurations. In Section 12, we pro-
vide the Drupal feature model in two different formats
(SXFM and FaMa).

4 Non–functional attributes

In this section, we report a number of non–functional
attributes of the features presented in Figure 3 extrac-
ted from the Drupal web site and the Drupal Git re-
pository. These data are often used as good indicators
of the fault propensity of a software application. Addi-
tionally, this may provide researchers and practition-
ers with helpful information about the characteristics
of features in a real VIS. By default, the information
was extracted from the features in Drupal v7.23. For

Variability Testing in the Wild: The Drupal Case Study 7

the sake of readability, we used a tabular representa-
tion for feature attributes instead of including them in
the feature model of Figure 3. Table 1 depicts the non–
functional attributes collected for each Drupal feature,
namely:

Feature size. This provides a rough idea of the com-
plexity of each feature and its fault propensity [38,
43]. The size of a feature was calculated in terms of
the number of Lines of Code (LoC). LoC were counted
using the egrep and wc Linux commands on each one
of the source files included in the module directory
associated to each feature. The command used is shown
below. Blank lines and test files were excluded from
the counting. The sizes range between 284 LoC (fea-
ture Ctools custom content) and 54,270 LoC (feature Vi-
ews). It is noteworthy that subfeatures are significantly
smaller than their respective parent features. The total
size of the selected Drupal features is 336,025 LoC.

egrep -Rv ’#|ˆ$’ name_module* other_file* | wc -l

Cyclomatic Complexity (CC). This metric reflects the
total number of independent logic paths used in a pro-
gram and provides a quantitative measure of its com-
plexity [50,64]. We used the open source tool phploc
[11] to compute the CC of the source code associa-
ted to each Drupal feature. Roughly speaking, the tool
calculates the number of control flow statements (e.g.
“if”, “while”) per lines of code [11]. The values for this
metric ranged from 0.14 (feature Path) to 1.09 (feature
Entity token). It is noteworthy that Entity tokens, the
feature with highest CC, is one of the smallest features
in terms of LoC (327).

Number of tests. Table 1 shows the total number of
test cases and test assertions of each feature, obtained
from the output of the SimpleTest module. In total,
Drupal features include 352 test cases and 24,152 as-
sertions. In features as Ctools, the number of test cases
(7) and test assertions (121) is low considering that the
size of the feature is over 17,000 LoC. It is also note-
worthy that features such as JQuery update, with more
than 50,000 LoC, have no test cases.

Number of reported installations. This depicts the
number of times that a Drupal feature has been insta-
lled as reported by Drupal users. This data was extrac-
ted from the Drupal web site [12] and could be used as
an indicator of the popularity or impact of a feature.
Notice that the number of reported installations of pa-
rent features and their respective subfeatures is equal
since they are always installed together, although they

may be optionally enabled or disabled. Not surpris-
ingly, the features with the highest number of repor-
ted installations are those included in the Drupal core
(5,259,525 times) followed by Views (802,467 times)
and Ctools (747,248 times), two of the most popular
features in Drupal.

Number of developers. We collected the number of
developers involved in the development of each Dru-
pal feature. This could give us information about the
scale and relevance of the feature as well as its propen-
sity to faults related to the number of people working
on it [43]. This information was obtained from the web
site of each Drupal module as the number of commi-
tters involved [12]. The feature with the highest num-
ber of contributors is Views (178), followed by those
included in the Drupal core (94) and Ctools (75).

Number of changes. Changes in the code are likely to
introduce faults [28,68]. Thus, the number of changes
in a feature may be a good indicator of its error prone-
ness and could help us to predict faults in the future.
To obtain the number of changes made in each feature,
we tracked the commits to the Drupal Git repository3.
The search was narrowed by focusing on the changes
performed during a period of two years, from May 1st

2012 to April 31st 2014. First, we cloned the entire
Drupal v7.x repository. Then, we applied the console
command showed below to get the number of commits
by module, version and date. We collected the num-
ber of changes in Drupal v7.22 to check the correlation
with the number of faults in Drupal v7.23 (see Section
6). As illustrated in Table 1, the number of changes
ranged between 0 (feature Blog) and 90 (feature Backup
and migrate). Interestingly, the eight features with the
highest number of changes are optional. In total, we
counted 557 changes in Drupal v7.22 during a two–
years period.

git log --pretty=oneline --after={2012-05-01}

--before={2014-04-31} 7.21..7.22 name_module | wc -l

5 Faults in Drupal

In this section, we present the number of faults repor-
ted in the Drupal features (i.e. modules) shown in Fig-
ure 3. The information was obtained from the issue
tracking systems of Drupal4 and related modules. In
particular, we used the web–based search tool of the is-
sue systems to filter the bug reports by severity, status,
date, feature name and Drupal version. The search was

3 http://drupalcode.org/project/drupal.git
4 https://drupal.org/project/issues

8 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

Feature Size CC Test cases Test assertions Installations Developers Changes v7.22

Backup and migrate 11,639 0.37 0 0 281,797 7 90

Blog 551 0.16 1 244 5,259,525 94 0

Captcha 3,115 0.19 4 731 226,295 43 15

CKEditor 13,483 0.59 0 0 280,919 29 40

Comment 5,627 0.23 14 3,287 5,259,525 94 2

Ctools 17,572 0.52 7 121 747,248 75 32

Ctools access ruleset 317 0.19 0 0 747,248 75 0

Ctools custom content 284 0.3 0 0 747,248 75 1

Date 2,696 0.44 4 1,724 412,324 42 9

Date API 6,312 0.6 1 106 412,324 42 11

Date popup 792 0.36 0 0 412,324 42 4

Date views 2,383 0.44 0 0 412,324 42 6

Entity API 13,088 0.41 11 851 407,569 45 14

Entity tokens 327 1.09 1 6 407,569 45 1

Features 8,483 0.56 3 16 209,653 36 72

Field 8,618 0.41 9 870 5,259,525 94 6

Field SQL storage 1,292 0.3 1 94 5,259,525 94 1

Field UI 2,996 0.28 3 287 5,259,525 94 4

File 1,894 0.67 39 2,293 5,259,525 94 1

Filter 4,497 0.17 9 958 5,259,525 94 1

Forum 2,849 0.24 2 677 5,259,525 94 3

Google analytics 2,274 0.29 4 200 348,278 21 14

Image 5,027 0.29 2 677 5,259,525 94 9

Image captcha 998 0.28 0 0 226,295 43 0

IMCE 3,940 0.47 0 0 392,705 13 9

Jquery update 50,762 0.26 0 0 286,556 17 1

Libraries API 1,627 0.55 2 135 516,333 7 7

Link 1,934 0.63 8 1,275 286,892 31 11

Node 9,945 0.27 32 1,391 5,259,525 94 9

Options 898 0.17 2 227 5,259,525 94 0

Panel nodes 480 0.35 0 0 206,805 43 2

Panels 13,390 0.35 0 0 206,805 43 34

Panels In-Place Editor 1,462 0.23 0 0 206,805 43 20

Path 1,026 0.14 5 330 5,259,525 94 0

PathAuto 3,429 0.23 5 316 622,478 33 2

Rules 13,830 0.49 5 285 238,388 52 5

Rules scheduler 1,271 0.15 1 7 238,388 52 4

Rules UI 3,306 0.39 0 0 238,388 52 1

System 20,827 0.31 58 2,138 5,259,525 94 19

Taxonomy 5,757 0.23 14 677 5,259,525 94 2

Text 1,097 0.29 3 444 5,259,525 94 0

Token 4,580 0.51 15 347 715,563 31 10

User 8,419 0.26 23 1,355 5,259,525 94 7

Views 54,270 0.41 51 1,089 802,467 178 27

Views content 2,683 0.46 0 0 747,248 75 5

Views UI 782 0.37 9 538 802,467 178 0

WebForm 13,196 0.51 4 456 402,163 46 46

Total 336,025 17.41 352 24,152 97,342,266 3,060 557

Table 1 Non–functional feature attributes in Drupal

Variability Testing in the Wild: The Drupal Case Study 9

Feature
Faults in Drupal v7.22 Faults in Drupal v7.23

Severity Total Total Severity Total Total
Minor Normal Major Critical Single Integ Minor Normal Major Critical Single Integ

Backup migrate 8 58 9 9 80 4 8 58 9 9 80 4

Blog 0 2 2 0 1 3 0 1 2 0 0 3

Captcha 1 14 3 0 17 1 1 14 3 0 17 1

CKEditor 6 165 29 8 197 11 6 163 29 8 197 9

Comment 2 20 5 2 10 19 3 16 5 4 13 15

Ctools 17 146 39 10 181 31 17 146 39 10 181 31

Ctools access r. 0 0 0 0 0 0 0 0 0 0 0 0

Ctools custom c. 2 7 2 0 10 1 2 7 2 0 10 1

Date 4 30 12 1 44 3 4 30 12 1 44 3

Date API 3 29 9 1 41 1 3 29 9 1 41 1

Date popup 2 28 1 0 30 1 2 28 1 0 30 1

Date views 1 18 7 0 25 1 1 18 7 0 25 1

Entity API 9 128 43 13 175 18 9 128 43 13 175 18

Entity Tokens 0 19 8 1 22 6 0 19 8 1 22 6

Features 3 81 17 5 97 9 3 81 17 5 97 9

Field 6 43 12 2 45 18 7 45 11 2 48 17

Field SQL s. 0 5 0 0 3 2 0 5 0 0 3 2

Field UI 6 9 0 0 13 2 6 6 0 0 11 1

File 1 8 5 1 10 5 1 9 5 1 11 5

Filter 3 19 0 2 19 5 3 19 0 2 19 5

Forum 0 6 4 0 6 4 0 6 3 0 5 4

Google anal. 0 8 2 2 11 1 0 8 2 2 11 1

Image 1 10 6 1 10 8 1 9 4 1 9 6

Image captcha 0 3 0 0 3 0 0 3 0 0 3 0

IMCE 0 12 1 1 9 5 0 12 1 1 9 5

Jquery update 4 48 14 10 64 12 4 48 14 10 64 12

Libraries API 1 6 3 1 11 0 1 6 3 1 11 0

Link 6 68 9 3 82 4 6 68 9 3 82 4

Node 8 33 7 7 26 29 10 26 5 6 24 23

Options 0 0 0 0 0 0 0 0 0 0 0 0

Panel Nodes 1 13 2 1 16 1 1 13 2 1 16 1

Panels 5 92 9 5 87 24 5 92 9 5 87 24

Panels IPE 1 18 1 1 19 2 1 18 1 1 19 2

Path 0 3 0 1 3 1 0 2 0 1 2 1

PathAuto 4 33 18 8 54 9 4 33 18 8 54 9

Rules 5 180 54 16 240 15 5 180 54 16 240 15

Rules sched. 0 11 2 0 13 0 0 11 2 0 13 0

Rules UI 0 20 3 3 26 0 0 20 3 3 26 0

System 7 28 4 1 35 5 7 27 4 1 35 4

Taxonomy 0 27 6 4 15 22 0 31 6 4 19 22

Text 0 9 0 0 6 3 0 8 0 0 5 3

Token 6 20 15 3 37 7 6 20 15 3 37 7

User 3 36 6 0 20 25 3 32 6 0 19 22

Views 70 807 205 60 1,091 51 70 807 205 60 1,091 51

Views content 1 23 0 1 23 2 1 23 0 1 23 2

Views UI 1 15 0 0 12 4 1 15 0 0 12 4

WebForm 47 231 10 4 292 0 47 231 10 4 292 0

Total 3,231 3,232

Table 2 Faults in Drupal v7.22 and v7.23

10 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

narrowed by collecting the bugs reported in a period
of two years, from May 1st 2012 to April 31st 2014.
We collected the faults of two consecutive Drupal ver-
sions, v7.22 and v7.23, to achieve a better understand-
ing of the evolution of a real system and to enable test
validations based on fault–history (see Section 7).

First, we filtered the faults by feature name (using
the field “component”), framework version and the da-
tes previously mentioned. Then, the search was refined
to eliminate the faults not accepted by the Drupal co-
mmunity, those classified as duplicated bugs, non repro-
ducible bugs and bugs working as designed. The latter
are issues that have been considered not to be a bug
because the reported behaviour was either an inten-
tional part of the project, or the issue was caused by
customizations manually applied by the user. A total
of 3,401 faults matched the initial search for Drupal
v7.22 and 3,392 faults for Drupal v7.23.

Second, we tried to identify those faults that were
caused by the interaction of several features, i.e. in-
tegration faults. Our first approach was to follow the
strategy presented by Artho et al. [3] in the context of
operating systems. That is, for each feature, we searched
for faults descriptions containing the keywords “break”,
“conflict” or “overwrite”. However, the search did not
return any result related to the interaction among fea-
tures. We hypothesize that keywords related to poten-
tial bugs caused by the interaction among features may
be domain–dependent. Thus, we followed a different
approach. For each feature, we searched for bug re-
ports that included the name (not case–sensitive) of
some of the other features under study in its descrip-
tion or tags. As an example, consider the bug report
depicted in Listing 2 extracted from the Drupal is-
sue tracking system. The bug is associated to the mo-
dule Rules and its description contains the name of the
feature Comment. Thus, we considered it as a candi-
date integration fault between both features, Rules and
Comment. In total, we detected 444 candidate integra-
tion faults in Drupal v7.22 and 434 in Drupal v7.23
following this approach. Interestingly, we found can-
didate faults containing the name of up to 9 different
features.

Listing 2 Drupal bug report
(http://www.drupal.org/node/1673836)

Adding rule for comments causes:Fatal error: Call to undefined

function comment_node_url() in...bartik/template.php on line 164

I added rule that would react on an event ‘A comment is viewed

by showing up a message for every new comment added... and it

broke every page on which I added new comment (It was all

working fine before this rule was introduced, commenting also).

For all other pages where there are old comments everything is

quite fine. Tried to deleted rule, to disable rules module,

cleared cache, run cron... nothing changed. The only thing that

gets back my pages without this fatal error is if I disable

comments module, but I need comments.

Next, we manually checked the bug reports of each
candidate integration fault and discarded those that i)
included the name of a feature but it actually made no
reference to the feature (e.g. image), ii) included the
name of Drupal features not considered in our study,
and iii) included users and developers’ comments sug-
gesting that the fault was not caused by the interaction
among features. We may remark that in many cases the
description of the fault clearly suggested an integra-
tion bug, see as an example the last sentence in List-
ing 2: “The only thing that gets back my pages without
this fatal error is if I disable comments module”. The fi-
nal counting revealed 160 integration faults in Drupal
v7.23 and 170 in Drupal v7.22. In Drupal v7.23, we
found that 3 out of 160 faults were caused by the inter-
action of 4 features, 25 were caused by the interaction
of 3 features and 132 faults were triggered by the in-
teraction between 2 features. It is noteworthy that 51
out of the 160 integration faults were caused by the
interaction of Views with other features. Views enables
the configuration of all the views of Drupal sites. Also,
31 integration faults were triggered by the interaction
of Ctools with other features. Ctools provides a set of
APIs and tools for modules to improve the developer
experience. A complete list of the integration faults de-
tected and the features involved on them is presented
in Table 7 in Appendix A. It is noteworthy that we did
not find any specific keywords in the bugs’ descrip-
tions suggesting that they were caused by the interac-
tion among features.

Table 2 summarizes the faults found in both ver-
sions of Drupal. For each feature, the total number
of individual and integration faults in which it is in-
volved are presented classifying them according to the
reported severity level. We found that the bugs repor-
ted in additional Drupal modules (e.g. Ctools) do not
discriminate among subversions of Drupal 7, i.e. they
specify that the fault affects to Drupal v7.x. In those
cases, we assumed that the bug equally affected to the
two versions of Drupal under study, v7.22 and v7.23.
This explains why the number of faults in most of the
additional features is the same for both versions of the
framework in Table 2. Notice, however, that in some
cases the number of integration faults differs, e.g. fea-
ture CKEditor.

6 Correlation study

The information extracted from software repositories
can be used, among other purposes, to drive the search
for faults. In fact, multiple works in the field of soft-

Variability Testing in the Wild: The Drupal Case Study 11

ware repository mining have explored the correlations
between certain non–functional properties and met-
rics and the fault propensity of software components
[3,30,33,46,49]. In this section, we investigate whether
the non–functional attributes presented in Section 4
could be used to estimate the fault propensity of Dru-
pal features.

The correlation study was performed using the R
statistical environment [51] in two steps. First, we che-
cked the normality of the data using the Shapiro-Wilk
test concluding that the data do not follow a normal
distribution. Second, we used the Spearman’s rank or-
der coefficient to assess the relationship between the
variables. We selected Spearman’s correlation because
it does not assume normality, it is not very sensitive
to outliers, and it measures the strength of associa-
tion between two variables under a monotonic rela-
tionship5, which fits well with the purpose of this study.

The results of the correlation study are presented
in Table 3. For each correlation under study the follo-
wing data are shown: identifier, measured variables,
Spearman’s correlation coefficient (ρ) and p-value. The
Spearman’s correlation coefficient takes a value in the
range [-1,1]. A value of zero indicates that no associ-
ation exists between the measured variables. Positive
values of the coefficient reflect a positive relationship
between the variables, i.e. as one variable decreases,
the other variable also decreases and vice versa. Con-
versely, negatives values of the coefficient provide evi-
dence of a negative correlation between the variables,
i.e. the value of one variable increases as the value of
the other decreases. Roughly speaking, the p–value re-
presents the probability that the coefficient obtained
could be the result of mere chance, assuming that the
correlation does not exist. It is commonly assumed that
p–values under 0.05 are enough evidence to conclude
that the variables are actually correlated and that the
estimated ρ is a good indicator of the strength of such
relationship, i.e. the result is statistically significant.
The correlations that revealed statistically significant
results are highlighted in grey in Table 3. By default,
all correlations were investigated in Drupal v7.23 ex-
cept several exceptions explicitly mentioned. The re-
sults of the correlation study are next discussed.

C1. Correlation between feature size and faults. The
Spearman coefficient reveals a strong positive corre-
lation (ρ = 0.78) between the LoC and the number of
faults in Drupal features. This means that the num-

5 A monotonic relationship implies that as the value of one
variable increases, so does the value of the other variable; or as
the value of one variable increases, the other variable value de-
creases.

ber of LoC could be used as a good estimation of their
fault propensity. In our study, we found that 7 out of
the 10 largest features were also among the 10 features
with a higher number of faults. Conversely, 5 out of the
10 smallest features were among the 6 features with a
lower number of bugs.

C2. Correlation between changes and faults. We stud-
ied the correlation between the number of changes in
Drupal v7.22 and the number of faults in Drupal v7.23,
obtaining a Spearman coefficient of 0.68. This means
that the features with a higher number of changes are
likely to have a higher number of bugs in the subse-
quent release of the framework. In our study, we found
that 7 out of the 10 features with the highest number
of changes in Drupal v7.22 were also among the 10
features with the highest number of faults in Drupal
v7.23.

C3. Correlation between faults in consecutive ver-
sions of the framework. We investigated the correla-
tion between the number of reported faults in Drupal
features in two consecutive versions of the framework,
v7.22 and v7.23. As mentioned in Section 5, the bugs
reported in Drupal additional modules are not related
to a specific subversion of the framework (they just
indicate 7.x). Thus, in order to avoid biased results,
we studied this correlation on the features of the Dru-
pal core (16 out of 47) where the specific version of
Drupal affected by the bugs is provided. We obtained
a Spearman’s correlation coefficient of 0.98 reflecting
a very strong correlation between the number of fa-
ults in consecutive versions of Drupal features. This
provides helpful information about the across–release
fault propensity of features and it could certainly be
useful to drive testing decisions when moving into a
new version of the framework, e.g. test case prioritiza-
tion.

C4. Correlation between code complexity and faults.
We studied the correlation between the cyclomatic com-
plexity of Drupal features and the number of faults
detected on them. As a result, we obtained a corre-
lation coefficient of 0.51, which reflect a fair correla-
tion between both parameters, i.e. features with a high
cyclomatic complexity tend to have a high number of
faults. It is noteworthy, however, that this correlation
is weaker than the correlation observed between the
number of LoC and the number of faults (C1) with a
coefficient of 0.78. Despite this, we believe that the cy-
clomatic complexity could still be a helpful indicator
to estimate the fault propensity of features with simi-

12 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

Id Variables Correlation (ρ) p–value
Variable 1 Variable 2

C1 LoC v7.23 Faults v7.23 0.78 4.16× 10−11

C2 Changes v7.22 Faults v7.23 0.68 8.36× 10−8

C3 Faults v7.22 Faults v7.23 0.98 3.26× 10−13

C4 CC v7.23 Faults v7.23 0.51 2.32× 10−4

C5 Developers v7.23 Faults v7.23 -0.27 0.066
C6 Assertions v7.23 Faults v7.23 0.16 0.268
C7 CTC v7.23 Faults v7.23 0.11 0.449
C8 CTC v7.23 Int. Faults v7.23 0.21 0.150
C9 CoC v7.23 Faults v7.23 0.28 0.051

Table 3 Spearman correlation results

lar size.

C5. Correlation between faults and number of de-
velopers. We investigated the correlation between the
number of developers contributing to a Drupal feature
and the number of bugs reported in that feature. We
hypothesized that a large number of developers could
result in coordination problems and a higher number
of faults. Surprisingly, we obtained a negative correla-
tion value (-0.27), which not only rejects our hypoth-
esis but it suggests the opposite, those features with a
higher number of developers, usually the Drupal core
features, have less faults. We presume that this is due
to the fact that core features are included in all Drupal
configurations and thus they are better supported and
more stable. Nevertheless, we obtained a p–value over
0.05 and therefore this relationship is not statistically
significant.

C6. Correlation between tests and faults. It could be
expected that those features with a high number of
test assertions contain a low number of faults since
they are tested more exhaustively. We investigated this
correlation obtaining a Spearman’s coefficient of 0.16
and a p–value of 0.268. Thus, we cannot conclude that
those features with a higher number of test assertions
are less error–prone.

C7-8. Correlation between faults and Cross–Tree
Constraints (CTCs). In [21], Bagheri et al. studied se-
veral feature model metrics and suggested that those
features involved in a higher number of CTCs are more
error–prone. To explore this fact, we analyzed the fea-
tures involved in CTCs in order to study the relation
between them and their fault propensity. We obtained
a correlation coefficient of 0.11 between the number of
CTCs in which a feature is involved and the number of
faults in that feature (C7). The correlation coefficient
rose to 0.21 when considering integration faults only
(C8). Therefore, we conclude that the correlation be-

tween feature involvement in CTCs and fault propen-
sity is not confirmed in our study.

C9. Correlation between faults and Coefficient of
Connectivity–Density (CoC). The CoC is a feature mo-
del complexity metric proposed by Bagheri et al. [5]
and adapted by the authors for its use at the feature
level [54]. The CoC measures the complexity of a fea-
ture as the number of tree edges and cross–tree cons-
traints connected to it. We studied the correlation be-
tween the complexity of features in terms of CoC and
the number of faults detected on them. The correla-
tion study revealed a Spearman’s coefficient of 0.28.
Therefore, we cannot conclude that those features with
a higher CoC are more error–prone. Nevertheless, we
obtained a p-value very close to the threshold of sta-
tistical significance (0.051), therefore this relationship
is a good candidate to be further investigated in future
studies of different VISs.

Regarding feature types, we identified 326 faults
in the mandatory features of the Drupal feature mo-
del and 3,540 faults in the optional features. Manda-
tory features have a lower ratio of faults per feature
(326/8 = 40.7) than optional ones (3,540/39 = 90.7).
We presume that this is due to the fact that 7 out of the
8 mandatory features represent core compulsory mo-
dules included in all Drupal configurations and thus
they are better supported and more stable. Regarding
fault severity, around 71.6% of the faults were clas-
sified as normal, 16.1% as major, 6.9% as minor and
5.2% as critical. We observed no apparent correlation
between fault severity and the types of features and
thus we did not investigate it further.

Variability Testing in the Wild: The Drupal Case Study 13

7 Evaluation

In this section, we evaluate the feasibility of the Dru-
pal case study as a motivating experimental subject to
evaluate variability testing techniques. In particular,
we present an experiment to answer the following re-
search questions:

RQ1: Are non–functional attributes helpful to accelerate
the detection of faults of combinatorial test suites? The
correlations found between the non–functional attri-
butes of Drupal features and their fault propensity sug-
gest that non–functional information could be helpful
to drive the search for faults. In this experiment, we
measure the gains in the rate of fault detection when
using non–functional attributes to prioritize combina-
torial test suites.

RQ2: Are non–functional attributes more, less or equally
effective than functional data at accelerating the detec-
tion of faults? Some related works have proposed using
functional information from the feature model to drive
test case prioritization such as configuration similar-
ity, commonality or variability coverage [21,31,54]. In
this experiment, we measure whether non–functional
attributes are more, less or equally effective than func-
tional data at accelerating the detection of faults.

We next describe the experimental setup, the priori-
tization criteria compared, the evaluation metric used
and the results of the experiment.

7.1 Experimental setup

The goal of this experiment is to use a combinatorial
algorithm (e.g. ICPL) to generate a pair–wise suite for
the Drupal feature model, and then, use different cri-
teria based on functional and non–functional informa-
tion to derive an ordering of test cases that allows de-
tecting faults as soon as possible. The evaluation was
performed in several steps. First, we seeded the feature
model with the faults detected in Drupal v7.23, 3,392
in total. For this purpose, we created a list of faulty fea-
ture sets. Each set represents faults triggered by n fea-
tures (n ∈ [1,4]). For instance, the list {{Node}{Ctools,
User}} represents a fault in the feature Node and an-
other fault caused by the interaction between the fea-
tures Ctools and User. Second, we used the ICPL algo-
rithm [34] to generate a pairwise suite for the Drupal
feature model. We define a test case in this domain as
a valid Drupal configuration, i.e. valid set of features.
Among the whole testing space of Drupal (more than

2,000 millions of test cases), the ICPL algorithm re-
turned 13 test cases that covered all the possible pairs
of feature combinations. Then, we checked whether
the pairwise suite detected the seeded faults. We con-
sidered that a test case detects a fault if the test case
includes the feature(s) that trigger the bug. The pair-
wise test suite detected all the faults.

Next, we reordered the test cases in the pairwise
suite according to different prioritization criteria. In
order to answer RQ1, we prioritized the suite using the
non–functional attributes that correlated well with the
fault propensity, namely, the feature size, number of
changes and number of faults in the previous version
of the framework, i.e. Drupal v7.22. To answer RQ2,
we reordered the test cases using two of the functional
prioritization criteria that have provided better results
in related evaluations, the similarity and VC&CC met-
rics. These prioritization criteria are fully described in
Section 7.1.1. For each prioritized test suite, we mea-
sured how fast the faults of Drupal 7.23 were detected
by each ordering calculating their Average Percentage
of Faults Detected (APFD) values (see Section 7.1.2).

Finally, we repeated the whole process using the
CASA algorithm [27] for the generation of the pairwise
test suite for more heterogeneous results. Since CASA
is not deterministic, we ran the algorithm 10 times for
each prioritization criterion and calculated averages.
The suites generated detected all the faults.

7.1.1 Prioritization criteria

Given a test case t composed of a set of features, t =
{f1, f2, f3...fn}, we propose the following criteria to mea-
sure its priority:

Size–driven. This criterion measures the priority of a
test case as the sum of the LoC of its features. Let loc(f)
be a function returning the number of LoC of feature
f . The Priority Value (PV) of t is calculated as follows:

P VSize(t) =
|t|∑
i=1

loc(f i) (1)

Fault–driven. This criterion measures the priority va-
lue of the test case as the sum of the number of bugs
detected on its features. Inspired by the correlations
described in Section 6, we propose counting the num-
ber of faults in Drupal v7.22 to effectively search for
faults in Drupal v7.23. Let f aults(f ,v) be the function
returning the number of bugs in version v of feature
f . The priority of t is calculated as follows:

14 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

P VFaults(t) =
|t|∑
i=1

f aults(f i,“7.22′′) (2)

Change–driven. This criterion calculates the priority
of a test case by summing up the number of changes
found on its features. As with the number of faults, we
propose a history–based approach and use the num-
ber of changes in Drupal v7.22. Consider the function
changes(f ,v) returning the number of changes in ver-
sion v of feature f . The priority of t is calculated as
follows:

P VChanges(t) =
|t|∑
i=1

changes(f i,“7.22′′) (3)

Variability Coverage and Cyclomatic complexity
(VC&CC). This criterion aims to get an acceptable trade
off between fault coverage and feature coverage. It was
presented by Bagheri et al. in the context of SPL test
case selection [21] and later adapted by the authors
for SPL test case prioritization [54]. In [54] , the au-
thors compared several prioritization criteria for SPLs
and found that VC&CC ranked first at accelerating the
detection of faults. This motivated the selection of this
prioritization criterion as the best of its breed. Given a
feature model fm and a test case t, the VC&CC metric
is calculated as follows:

P VVC&CC(t, fm) =
√
vc(t, fm)2 + cc(t, fm)2 (4)

where vc(t, fm) calculates the variability coverage
of a test case t for the feature model fm. The variabi-
lity coverage of a test case is the number of variation
points involved in it. A variation point is any feature
that provides different variants to create a configura-
tion. cc(t, fm) represents the cyclomatic complexity of
t. The cyclomatic complexity of a test case is calculated
as the number of cross–tree constraints involved in it.
We refer the reader to [54] for more details about this
prioritization criterion.

Dissimilarity. The (dis)similarity metric has been pro-
posed by several authors as an effective prioritization
criterion to maximize the diversity of a test suite [31,
54]. Roughly speaking, this criterion gives a higher pri-
ority to those test cases with fewer features in common
since they are likely to get a higher feature coverage
than similar test cases. In [54], the authors proposed
to prioritize the test cases based on the dissimilarity

metric using the Jaccard distance to measure the simi-
larity among test cases. The Jaccard distance [63] is de-
fined as the size of the intersection divided by the size
of the union of the sample sets. In our context, each set
represents a test case containing a set of features. The
prioritized test suite is created by progressively adding
the pairs of test cases with the highest Jaccard distance
between them until all test cases are included. Given
two test cases ta and tb, the distance between them is
calculated as follows:

Dissimilarity(ta, tb) = 1− |ta
⋂
tb |

|ta
⋃
tb |

(5)

The resulting distance varies between 0 and 1, where
0 denotes that the test cases ta and tb are the same and
1 indicates that ta and tb share no features.

7.1.2 Evaluation metric

In order to evaluate how quickly faults are detected
during testing we used the Average Percentage of Faults
Detected (APFD) metric [18,19,52]. The APFD metric
measures the weighted average of the percentage of fa-
ults detected during the execution of the test suite. To
formally illustrate APFD, let T be a test suite which
contains n test cases, and let F be a set of m faults re-
vealed by T. Let TFi be the position of the first test case
in ordering T’ of T which reveals the fault i. According
to [19], the APFD metric for the test suite T’ is given
by the following equation:

AP FD = 1− T F1+T F2+...+T Fn
n×m + 1

2n

APFD values are in the range (0,1). The closest the va-
lue is to 1, the fastest is the suite at detecting faults.
For example, consider a test suite of 4 test cases (T1-
T4) and 5 faults (F1-F5) detected by those test cases,
as shown in Table 4. Consider two orderings of these
test cases, ordering O1: T1,T2,T3,T4 and ordering O2:
T3,T2,T4,T1. According to the previous APFD equa-
tion, ordering O1 produces an APFD of 58% :

1− 1+1+2+3+4
4×5 + 1

2×4 = 0.58

and ordering O2 an APFD of 78% :

1− 1+1+1+1+3
4×5 + 1

2×4 = 0.78,

being O2 much faster detecting faults than O1.

Variability Testing in the Wild: The Drupal Case Study 15

Tests/Faults F1 F2 F3 F4 F5

T1 X X

T2 X X

T3 X X X X

T4 X

Table 4 Test suite and faults exposed

7.2 Experimental results

Table 5 depicts the results of the experiment. For each
combinatorial testing algorithm, ICPL and CASA, the
table shows the APFD values of the pairwise test suites
prioritized according to the criteria presented in pre-
vious section. The first row shows the APFD of the
suites when no prioritization is applied. The top three
highest APFD values of each column are highlighted
in bold. For ICPL, the prioritized suites based on non–
functional attributes revealed the best results with fa-
ult–driven prioritization ahead (95.5%), followed by
the size–driven (95.4%) and change–driven (95%) prio-
ritization criteria. For CASA, the best APFD value was
again obtained by the fault–driven prioritization cri-
terion (93.4%), followed by the VC&CC (92.8%), size–
driven (92.7%) and change–driven (91.8%) criteria. O-
verall, prioritization driven by non–functional attribu-
tes revealed the best rates of early fault detection fol-
lowed by the functional prioritization criteria VC&CC
and dissimilarity. Not surprisingly, all prioritization
criteria accelerated the detection of faults of the un-
prioritized suites. It is noteworthy that the APFD val-
ues of the suites generated with CASA were lower than
those of ICPL in all cases. We presume this is due to
the internal ordering implemented as a part of the ICPL
algorithm [34].

Prioritization criterion ICPL CASA

None 87.7 87.4

Size–driven 95.4 92.7

Fault–driven 95.5 93.4

Change–driven 95.0 91.8

VC&CC 93.5 92.8

Dissimilarity 92.7 87.9

Table 5 APFD values of the prioritized test suites

Figure 5 shows the percentage of detected faults
versus the fraction of the ICPL prioritized test suites.
Roughly speaking, the graphs show how the APFD va-
lue evolves as the test suite is exercised. Interestingly,
all three non–functional prioritization criteria revealed

92% of the faults (3,120 out of 3,392) by exercising just
8% of their respective suites, i.e. 1 test case out of 13.
In contrast, the original suite (unprioritized) detected
just 5% of the faults (169 out of 3,392) with the same
number of test cases. The fault-driven prioritized suite
was the fastest suite in detecting all the faults (3,392)
by using just 24% of the test cases (3 out of 13). All
other orderings required 31% of the suite (4 out 13) to
detect all the faults with the exception of the dissimi-
larity criterion, which required exercising 47% of the
test cases (6 out of 13).

Based on the result obtained, we can answer to the
research questions as follows:

Response to RQ1. The results show that non–functional
attributes are effective drivers to accelerate the detec-
tion of faults and thus the response is “Yes, non–functional
attributes are helpful to accelerate the detection of faults in
VISs”.

Response to RQ2. The prioritization driven by non–
functional attributes led to faster fault detection than
functional criteria in all cases with the only exception
of the criterion VC&CC, which ranked second for the
CASA test suite. Therefore, the response derived from
our study is “Non–functional attributes are more effective
than functional data at accelerating the detection of faults
in most of the cases”.

8 Applicability to other VISs

Based on our experience, we believe that the approach
proposed throughout this article could be applicable
to model the variability of other open-source VISs. For
that purpose, we have identified a number of basic re-
quirements that the VIS under study should fulfill and
that could be helpful for researchers interested in fo-
llowing our steps, namely:

Identification of features. The system should be com-
posed of units such as modules or plug-ins that can be
easily related to features of the VIS.

Explicit variability constraints. The system should pro-
vide information about the constraints among the fea-
tures of the VIS, either explicitly in configuration files
or as a part of the documentation of the system.

Feature information. The system under study should
provide extensive and updated information about its
features. This may include data as the number of down-
loads, reported installations, test cases, number of de-

16 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

(a) No prioritization (b) Size–driven prioritization (c) Fault–driven prioritization

(d) Change–driven prioritization (e) VC&CC (f) Dissimilarity

Fig. 5 Percentage of detected faults versus the fraction of the exercise suites

velopers, etc.

Bug tracking system. The VIS should have a bug track-
ing system highly used by its community of users and
frequently updated. It is desirable that the developers
follow a rigorous bug review process updating the fields
related to version, bug status and severity. Also, it is
crucial that bugs are related to the features in which
they were found using a standardized procedure, e.g.
using labels.

Version Control System (VCS). The system should use
a VCS that can be easily queried to get information
about the number of commits by feature, date and ver-
sion.

9 Threats to validity

The factors that could have influenced our case study
are summarized in the following internal and external
validity threats.

Internal validity. This refers to whether there is suffi-
cient evidence to support the conclusions and the sour-
ces of bias that could compromise those conclusions.
The re-engineering process could have influenced the
final feature model of Drupal and therefore the eval-
uation results. To alleviate this threat, we followed a

systematic approach and mapped Drupal modules to
features. This is in line with the Drupal documenta-
tion, which defines an enabled module as a feature
providing certain functionality to the system [65]. This
also fits in the definition of feature given by Batory,
who defines a feature as an increment in product func-
tionality [7]. In turn, submodules were mapped to sub-
features since they provide extra functionality to its
parent module and they have no meaning without it.
Finally, we used the dependencies defined in the infor-
mation file of each Drupal module to model CTCs.

Other risk for the internal validity of our work is
the approach followed to collect the data about inte-
gration faults in Drupal, which mainly relies on the
bug report description. It is possible that we missed
some integration faults and, conversely, we could have
misclassified some individual faults as integration fa-
ults. To mitigate this threat as much as possible we
manually checked each candidate integration fault try-
ing to discard those that were clearly not caused by
the interaction among features. This was an extremely
time–consuming and challenging task that required a
good knowledge of the framework. We may empha-
size that the main author of the article has more than
one year of experience in industry as a Drupal devel-
oper. Also, as a further validation, the work was dis-
cussed with two members of the Drupal core team who
approved the followed approach and gave us helpful
feedback.

Variability Testing in the Wild: The Drupal Case Study 17

As previously mentioned, the faults in additional
modules are not related to a specific Drupal subver-
sion, i.e. they are reported as faults in Drupal v7.x.
Therefore, we assumed that the faults in those modu-
les equally affected the versions 7.22 and 7.23 of Dru-
pal. This is a realistic approach since it is common in
open source projects that unfixed faults affect to se-
veral versions of the system. However, this may intro-
duce a bias in the fault–driven prioritization since se-
veral of the faults in Drupal v7.22 remained in Dru-
pal v7.23. To minimize this threat, we excluded Dru-
pal additional modules from the correlation study be-
tween the number of faults in Drupal v7.22 and Dru-
pal v7.23, where a very strong correlation was revealed
(0.98). It is also worth mentioning that the size–driven
and change–driven prioritization criteria ranked 2nd
and 3rd for ICPL and 3rd and 4rd for CASA, which
still shows the efficacy of non–functional attributes at
driving the search for faults.

External validity. This can be mainly divided into li-
mitations of the approach and generalizability of the
conclusions. Regarding the limitations, we may men-
tion that Drupal modules have their own versioning
system, i.e. there may exists different versions of the
same feature (e.g. Views 7.x-3.8). We found, however,
that bug reports in Drupal rarely include information
about the version of the faulty modules and thus we
did not keep track of modules’ versions in our work.
Although this may slightly affect the realism of the
case study, it still provides a fair vision of the num-
ber and distribution of faults in a real feature–based
VIS.

The correlations and prioritization results reported
are based on a single case study and thus cannot be
generalized to other VIS. However, based on our ex-
perience, we believe that the described re–engineering
process could be applicable to other open–source plug–
in and module–based systems such as Wordpress or
Prestashop, recently used in variability-related papers
[47,57]. We admit, however, that the described process
could not be applicable to other domains with poorly
documented variability. Despite this, our work does
confirm the results of related works in software reposi-
tory mining showing that can be found correlation be-
tween non–functional data and the fault propensity of
software components. Similarly, our results show the
efficacy of using non–functional attributes as driver
for test case prioritization in VISs.

10 Related work

Related work on variability testing mainly addresses
the problems of test case selection [4,6,16,21,32,37,
39,40,42,48,55,66] and test case prioritization [2,6,
15,20,22,31,35,45,54,61,67]. Most approaches use func-
tional information to drive testing such as those based
on combinatorial testing [2,22,31,32,35,37,39,40,42,
48,54,67,61,66], similarity [2,31,54] or other metrics
extracted from the feature model [16,21,32,54,55]. Se-
veral works have also explored the use of non–functional
properties during testing such as user preferences and
cost [6,14,15,20,22,23,32,35,55,61,66,67]. The lack
of realistic case studies often lead researchers to evalu-
ate their approaches using synthetic variability models
[2,4,20,21,22,32,37,39,54,55], faults [2,15,16,21,54]
and non–functional attributes [6,20,22,32,55], which
introduce threats to validity and weaken their contri-
butions. Our work complements related approaches
by providing a realistic experimental subject composed
of a feature model and a full collection of non–functional
feature attributes including the number and distribu-
tion of faults. We also present a novel correlation study
pointing at the non–functional attributes that could
drive the search for faults in VISs more effectively. Fi-
nally, we present novel results on the use of real non–
functional properties to drive test case prioritization
in an open source VIS. To the best of our knowledge,
this is the first work comparing the effectiveness of
functional and non–functional prioritization criteria
to accelerate the detection of bugs.

Some other authors have explored variability in the
open source community before us. In [9,10,41,58], the
authors studied several programs in the operating sys-
tems domain from a variability modelling perspective.
Galindo et al. [24] explored variability modelling and
analysis in the Debian operating system. Johansen et
al. [35] modelled the variability in the Eclipse frame-
work and used the number of downloads of its plug-
ins (i.e. features) to evaluate a weight–based combina-
torial testing algorithm. Nguyen et al. [47] proposed
a variability–aware test execution approach and eval-
uated it using the WordPress blogging Web applica-
tion. In [57], the authors reported their experience on
variability analysis and testing on the development of
an online store using the Prestashop e–commerce plat-
form. Inspired by previous works, we explore the open
source Drupal framework as a motivating VIS from a
variability testing perspective.

Several repositories and benchmarks are available
in the context of variability and SPLs. The SPLOT re-
pository [44,60] stores a collection of feature models
commonly used in the literature. SPL2GO [59] is an

18 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

online collection of SPLs for which source code and va-
riability model (e.g, feature model) are provided. The
Variability Bug Database (VBD) [1] is a collection of
faults detected in Linux. For each bug, detailed infor-
mation is provided such as its location in the code, ex-
ecution trace, discussion, etc. Garvin et al. [26] pre-
sented an exploratory study on two open source sys-
tems with publicly available bug databases to under-
stand the nature of real-world interaction faults and to
understand the types of mutations that would mimic
these faults. Our work contributes to those reposito-
ries by providing a complete case study composed of
a feature model, available source code and test cases,
non–functional attributes as well as the number, type
and severity of faults.

A number of works have explored the correlation
between non–functional properties of software com-
ponents and their fault propensity [30,33,49]. Although
the results may vary among different systems, faults
usually correlate well with properties such as code com-
plexity, pre–release defects, test coverage, number and
frequency of changes and organization structure [46].
These results are confirmed by our correlation study,
which relates the number of bugs in features to the
size and cyclomatic complexity of its code, number of
changes and number of faults in previous versions of
the framework. This may be helpful to identify those
non–functional attributes that are more effective at gui-
ding the search for faults in VISs.

11 Conclusions

In this article, we presented the Drupal framework as
a motivating real VIS in the context of variability tes-
ting. We modelled the framework variability using a
feature model and reported on a number of non–func-
tional feature attributes including the number, types
and severity of faults. Among other results, we found
integration faults caused by the interaction of up to 4
different Drupal features. Also, we found that features
providing key functionality of the framework are in-
volved in a high percentage of integration faults, e.g.
feature Views is present in 30% of the interaction fa-
ults found in Drupal v7.23. Another interesting find-
ing is the absence of no excludes constraints in Drupal.
This suggests that variability constraints may differ in
different domains. Additionally, we performed a rig-
orous statistical correlation study to investigate how
non–functional properties may be used to predict the
presence of faults in Drupal. As a result, we provide
helpful insights about the attributes that could (and
could not) be effective bug predictors in a VIS. Finally,
we presented an experimental evaluation on the use

of non–functional data for test case prioritization. The
results show that non–functional attributes effectively
accelerate the detection of faults of combinatorial test
suites, outperforming related functional prioritization
criteria as test case similarity.

This case study provides variability researchers and
practitioners with helpful information about the dis-
tribution of faults and test cases in a real VIS. Also, it
is a valuable asset to evaluate variability testing tech-
niques in realistic settings rather than using random
variability models and simulated faults. Finally, we trust
that this work encourages others to keep exploring on
the use of non–functional attributes in the context of
variability testing, e.g. from a multi–objective perspec-
tive.

12 Material

The Drupal feature model, non–functional attributes,
source code of the evaluation and R scripts to repro-
duce the statistical analysis of the correlations are avai-
lable at http://www.isa.us.es/anabsanchez-sosym14.

Acknowledgments

We thank the Drupal core developers Francisco José
Seva Mora and Christian López Espı́nola and the anony-
mous contributors of the Drupal forum for their help-
ful assistance. We are also grateful to Dr. Myra Cohen
and the anonymous reviewers of the 8th International
Workshop on Variability Modelling of Software inten-
sive Systems (VaMoS’14) whose comments and sugges-
tions helped us to improve the article substantially.

This work was partially supported by the European
Commission (FEDER), the Spanish and the Andalu-
sian R&D&I programmes (grants IPT-2012-0890-390000
(SAAS FIREWALL), TIN2012-32273 (TAPAS), TIC-5906
(THEOS), TIC-1867 (COPAS)).

References

1. I. Abal, C. Brabrand, and A. Wasowski. 42 variability bugs
in the linux kernel: A qualitative analysis. In International
Conference on Automated Software Engineering, pages 421–
432, 2014.

2. M. Al-Hajjaji, T. Thum, J. Meinicke, M. Lochau, and
G. Saake. Similarity-based prioritization in software
product-line testing. In Software Product Line Conference,
pages 197–206, 2014.

3. C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and S. Zacchi-
roli. Why do software packages conflict? In Conference on
Mining Software Repositories, pages 141–150. IEEE, 2012.

Variability Testing in the Wild: The Drupal Case Study 19

4. E. Bagheri, F. Ensan, and D. Gasevic. Grammar-based test
generation for software product line feature models. In
Conference of the Centre for Advanced Studies on Collaborative
Research, pages 87–101, 2012.

5. E. Bagheri and D. Gasevic. Assessing the maintainability of
software product line feature models using structural met-
rics. Software Quality Control, 2011.

6. H. Baller, S. Lity, M. Lochau, and I. Schaefer. Multi-objective
test suite optimization for incremental product family tes-
ting. In International Conference on Software Testing, Verifi-
cation, and Validation, 2014.

7. D. Batory. Feature models, grammars, and propositional
formulas. In Software Product Line Conference, 2005.

8. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
analyses of feature models 20 years later: A literature re-
view. Information Systems, 35(6):615–636, 2010.

9. T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki.
Variability modeling in the real: a perspective from the ope-
rating systems domain. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering,
pages 73–82. ACM, 2010.

10. T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki.
A study of variability models and languages in the systems
software domain. IEEE Transactions on Software Engineering,
39(12):1611–1640, Dec 2013.

11. S. Bergmann. pholoc. http://github.com/

sebastianbergmann/phploc, accessed March 2014.
12. D. Buytaert. Drupal framework. http://www.drupal.org,

accessed March 2014.
13. Debian Wheezy. http://www.debian.org/releases/

wheezy/, accessed March 2014.
14. A. Demuth, R. E. Lopez-Herrejon, and A. Egyed. Automatic

and incremental product optimization for software product
lines. In International Conference on Software Testing, pages
31–40. IEEE, 2014.

15. X. Devroey, G. Perrouin, M. Cordy, P. Schobbens, A. Legay,
and P. Heymans. Towards statistical prioritization for soft-
ware product lines testing. In Eighth International Workshop
on Variability Modelling of Software-Intensive Systems, num-
ber 10, 2014.

16. X. Devroey, G. Perrouin, and P. Schobbens. Abstract test
case generation for behavioural testing of software product
lines. In Software Product Line Conference, volume 2, pages
86–93. ACM, 2014.

17. Drupal JIT module. http://www.drupal.org/project/

thejit, accessed March 2014.
18. S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case

prioritization: a family of empirical studies. Transactions on
Software Engineering, 28(2):159–182, 2002.

19. S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Mali-
shevsky. Selecting a cost-effective test case prioritization
technique. Software Quality Journal, 12(3):185–210, 2004.

20. A. Ensan, E. Bagheri, M. Asadi, D. Gasevic, and Y. Bilet-
skiy. Goal-oriented test case selection and prioritization for
product line feature models. In Conference Information Tech-
nology: New Generations, pages 291–298. IEEE, 2011.

21. F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary search-
based test generation for software product line feature mod-
els. In Conference on Advanced Information Systems Engineer-
ing, pages 613–628, 2012.

22. J. Ferrer, P. Kruse, F. Chicano, and E. Alba. Evolutionary al-
gorithm for prioritized pairwise test data generation. In Ge-
netic and Evolutionary Computetion Conference, pages 1213–
1220, 2012.

23. J. A. Galindo, M. Alferez, M. Acher, B. Baudry, and D. Be-
navides. A variability-based testing approach for synthesiz-
ing video sequences. In International Symposium on Software
Testing and Analysis, pages 293–303, 2014.

24. J. A. Galindo, D. Benavides, and S. Segura. Debian packages
repositories as software product line models. towards auto-
mated analysis. In Automated Configuration and Tailoring of
Applications, pages 29–34, 2010.

25. J. Garcı́a-Galán, O. Rana, P. Trinidad, and A. Ruiz-Cortés.
Migrating to the cloud: a software product line based anal-
ysis. In 3rd International Conference on Cloud Computing and
Services Science, pages 416–426, 2013.

26. B. J. Garvin and M. B. Cohen. Feature interaction faults
revisited: an exploratory study. In International Symposium
on Software Reliability Engineering, pages 90–99, 2011.

27. B. J. Garvin, M. B. Cohen, and M. B. Dwyer. An improved
meta-heuristic search for constrained interaction testing. In
International Symposium on Search Based Software Engineer-
ing, pages 13–22, 2009.

28. T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predict-
ing fault incidence using software change history. Technical
report, National Institute of Statistical Sciences, 653–661,
1998.

29. J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic al-
gorithm for optimized feature selection with resource cons-
traints in software product lines. Journal of Systems and Soft-
ware, 2011.

30. A. E. Hassan. Predicting faults using the complexity of code
changes. In International Conference on Software Engineering,
pages 78–88, 2009.

31. C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans,
and Y. Le Traon. Bypassing the combinatorial explosion:
using similarity to generate and prioritize t-wise test con-
figurations for software product lines. IEEE Transactions on
Software Engineering, 40:1, 2014.

32. C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le
Traon. Multi-objective test generation for software prod-
uct lines. In International Software Product Line Conference,
pages 62–71, 2013.

33. K. Herzig, S. Just, A. Rau, and A. Zeller. Predicting defects
using change genealogies. In International Symposium on
Software Reliability Engineering, pages 118–127, 2013.

34. M. F. Johansen, O. Haugen, and F. Fleurey. An algorithm for
generating t-wise covering arrays from large feature mod-
els. In Software Product Line Conference, volume 1, pages
46–55, 2012.

35. M. F. Johansen, O. Haugen, F. Fleurey, A. G. Eldegard, and
T. Syversen. Generating better partial covering arrays by
modeling weights on sub-product lines. In International
Conference on Model Driven Engineering Languages and Sys-
tems, pages 269–284, 2012.

36. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.
Feature-oriented domain analysis (foda) feasibility study. In
Software Engineering Institute, 1990.

37. B. Pérez Lamancha and M. Polo Usaola. Testing product
generation in software product lines using pairwise for fea-
ture coverage. In International conference on Testing Software
and Systems, pages 111–125, 2010.

38. K. S. Lew, T. S. Dillon, and K. E. Forward. Software com-
plexity and its impact on software reliability. Transactions
on software engineering, 14:1645–1655, 1988.

39. R. E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and
E. Alba. Multi-objective optimal test suite computation for
software product line pairwise testing. In IEEE International
Conference on Software Maintenance, pages 404–407, 2013.

40. R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed, and
E. Alba. Comparative analysis of classical multi-objective
evolutionary algorithms and seeding strategies for pairwise
testing of software product lines. In IEEE Congress on Evo-
lutionary Computation, pages 387–396, 2014.

20 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

41. R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski.
Evolution of the linux kernel variability model. In Software
Product Line Conference, pages 136–150, 2010.

42. D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu. Practical
pairwise testing for software product lines. In International
Software Product Line Conference, pages 227–235, New York,
NY, USA, 2013. ACM.

43. S. Matsumoto, Y. kamei, A. Monden, K. Matsumoto, and
M. Nakamura. An analyses of developer metrics for fault
prediction. In International Conference on Predictive Models
in Software Engineering, number 18, 2010.

44. M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t. - soft-
ware product lines online tools. In Conference Companion
on Object Oriented Programming Systems Languages and Ap-
plications, pages 761–762, 2009.

45. S. Mohanty, A. Abhinna Acharya, and D. Prasad Mohapatra.
A survey on model based test case prioritization. Computer
Science and Information Technologies, 2:1042–1047, 2011.

46. N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and
B. Murphy. Change bursts as defect predictors. In Interna-
tional Symposium on Software Reliability Engineering, pages
309–318, 2010.

47. H. V. Nguyen, C. Kästner, and T.N. Nguyen. Exploring
variability-aware execution for testing plugin-based web
applications. In International Conference on Software Engi-
neering, pages 907–918, 6 2014.

48. S. Oster, F. Markert, and P. Ritter. Automated incremental
pairwise testing of software product lines. In Software Prod-
uct Line Conference, 2010.

49. T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs
are. In International symposium on Software testing and anal-
ysis, pages 86–96, 2004.

50. S. R Pressmen. Software Engineering: A practitioners
Approach. McGraw Hill, International Edition-5, 2001.

51. R Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vi-
enna, Austria, 2014.

52. G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Priori-
tizing test cases for regression testing. IEEE Transactions on
Software Engineering, 27:929–948, 2001.

53. A. B. Sánchez and S. Segura. Automated testing on the anal-
ysis of variability-intensive artifacts: an exploratory study
with sat solvers. In XVII Jornadas de Ingenierı́a del Software
y de Bases de Datos, 2012.

54. A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. A comparison
of test case prioritization criteria for software product lines.
In IEEE International Conference on Software Testing, Verifi-
cation, and Validation, pages 41–50, Cleveland, OH, April
2014.

55. A. Salam Sayyad, T. Menzies, and H. Ammar. On the value
of user preferences in search-based software engineering: A
case study in software product lines. In International Con-
ference on Software Engineering, pages 492–501, 2013.

56. S. Segura and A. Ruiz-Cortés. Benchmarking on the
automated analyses of feature models: A preliminary
roadmap. In International Workshop on Variability Modeling
of Software-Intensive Systems, pages 137–143, 2009.

57. S. Segura, A. B. Sánchez, and A. Ruiz-Cortés. Automated
variability analysis and testing of an e-commerce site: An
experience report. In International Conference on Automated
Software Engineering, pages 139–150. ACM, 2014.

58. S. She, R. Lotufo, T. Berger, A. Wasowski, and k. Czarnecki.
The variability model of the linux kernel. In International
Workshop on Variability Modelling of Software-intensive Sys-
tems, 2010.

59. SPL2GO repository. http://spl2go.cs.ovgu.de/, ac-
cessed March 2014.

60. S.P.L.O.T.: Software Product Lines Online Tools. http://
www.splot-research.org/, accessed March 2014.

61. H. Srikanth, M. B. Cohen, and X. Qu. Reducing field failures
in system configurable software: Cost-based prioritization.
In International Symposium on Software Reliability Engineer-
ing, pages 61–70, 2009.

62. M. Svahnberg, L. van Gurp, and J. Bosch. A taxonomy of va-
riability realization techniques: Research articles. Software
Practice and Experience, 35:705–754, 2005.

63. P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison Wesley, 2006.

64. U. Tiwari and S. Kumar. Cyclomatic complexity metric for
component based software. In Software Engineering Notes,
volume 39, pages 1–6, January 2014.

65. T. Tomlinson and J. K. VanDyk. Pro Drupal 7 development:
third edition. 2010.

66. S. Wang, S. Ali, and A. Gotlieb. Minimizing test suites
in software product lines using weight-based genetic algo-
rithms. In The Genetic and Evolutionary Computation Confer-
ence, pages 1493–1500, 2013.

67. S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and
M. Liaaen. Multi-objective test prioritization in software
product line testing: An industrial case study. In Software
Product Line Conference, pages 32–41, 2014.

68. S. Yoo and M. Harman. Regression testing minimisation,
selection and prioritisation: A survey. In Software Testing,
Verification and Reliability, pages 67–120, 2012.

Variability Testing in the Wild: The Drupal Case Study 21

A Appendix

ID Module Type

1 Backup and migrate Additional
2 Blog Core optional
3 Captcha Additional
4 CKEditor Additional
5 Comment Core optional
6 Ctools Additional
7 Ctools access ruleset Additional
8 Ctools custom content Additional
9 Date Additional

10 Date API Additional
11 Date popup Additional
12 Date views Additional
13 Entity API Additional
14 Entity tokens Additional
15 Features Additional
16 Field Core compulsory
17 Field SQL storage Core compulsory
18 Field UI Core optional
19 File Core optional
20 Filter Core compulsory
21 Forum Core optional
22 Google analytics Additional
23 Image Core optional
24 Image captcha Additional
25 IMCE Additional
26 Jquery update Additional
27 Libraries API Additional
28 Link Additional
29 Node Core compulsory
30 Options Core optional
31 Panel nodes Additional
32 Panels Additional
33 Panels In-Place Editor Additional
34 Path Core optional
35 Pathauto Additional
36 Rules Additional
37 Rules scheduler Additional
38 Rules UI Additional
39 System Core compulsory
40 Taxonomy Core optional
41 Text Core compulsory
42 Token Additional
43 User Core compulsory
44 Views Additional
45 Views content Additional
46 Views UI Additional
47 WebForm Additional

Table 6 Drupal modules included in the case study

22 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

Fault Feature (ID from Table 6)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

F1 X X
F2 X X
F3 X X
F4 X X
F5 X X
F6 X X
F7 X X
F8 X X
F9 X X

F10 X X
F11 X X
F12 X X X
F13 X X
F14 X X
F15 X X
F16 X X X
F17 X X
F18 X X
F19 X X X
F20 X X X
F21 X X
F22 X X X
F23 X X
F24 X X X X
F25 X X
F26 X X
F27 X X
F28 X X
F29 X X
F30 X X
F31 X X X
F32 X X
F33 X X X
F34 X X
F35 X X
F36 X X
F37 X X
F38 X X X
F39 X X X
F40 X X
F41 X X
F42 X X
F43 X X
F44 X X
F45 X X
F46 X X
F47 X X
F48 X X
F49 X X
F50 X X X
F51 X X
F52 X X
F53 X X
F54 X X X
F55 X X
F56 X X
F57 X X
F58 X X
F59 X X
F60 X X
F61 X X
F62 X X
F63 X X X
F64 X X
F65 X X
F66 X X
F67 X X X X
F68 X X
F69 X X
F70 X X
F71 X X X
F72 X X
F73 X X
F74 X X
F75 X X X

Variability Testing in the Wild: The Drupal Case Study 23

Fault Feature (ID from Table 6)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
F76 X X X
F77 X X
F78 X X
F79 X X
F80 X X
F81 X X
F82 X X X
F83 X X X X
F84 X X
F85 X X
F86 X X X
F86 X X
F88 X X
F89 X X
F90 X X
F91 X X
F92 X X
F93 X X
F94 X X
F95 X X
F96 X X
F97 X X X
F98 X X
F99 X X

F100 X X
F101 X X
F102 X X
F103 X X X
F104 X X
F105 X X
F106 X X
F107 X X
F108 X X
F109 X X X
F110 X X
F111 X X
F112 X X
F113 X X X
F114 X X
F115 X X
F116 X X
F117 X X
F118 X X
F119 X X
F120 X X
F121 X X
F122 X X
F123 X X X
F124 X X
F125 X X
F126 X X
F127 X X
F128 X X
F129 X X
F130 X X X
F131 X X
F132 X X X
F133 X X X
F134 X X
F135 X X
F136 X X
F137 X X
F138 X X
F139 X X X
F140 X X
F141 X X
F142 X X
F143 X X X
F144 X X
F145 X X X
F146 X X
F147 X X
F148 X X
F149 X X X
F150 X X
F151 X X

24 Ana B. Sánchez, Sergio Segura, José A. Parejo, Antonio Ruiz-Cortés

Fault Feature (ID from Table 6)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
F152 X X
F153 X X
F154 X X
F155 X X
F156 X X
F157 X X
F158 X X
F159 X X
F160 X X

Table 7: Integration faults in Drupal v7.23

