
SIP: Optimal Product Selection from Feature Models Using
Many-Objective Evolutionary Optimization

ROBERT M. HIERONS, MIQING LI, and XIAOHUI LIU, Brunel University London, UK
SERGIO SEGURA, University of Seville, Spain
WEI ZHENG, Northwestern Polytechnical University, China

A feature model specifies the sets of features that define valid products in a software product line. Recent
work has considered the problem of choosing optimal products from a feature model based on a set of user
preferences, with this being represented as a many-objective optimization problem. This problem has been
found to be difficult for a purely search-based approach, leading to classical many-objective optimization
algorithms being enhanced either by adding in a valid product as a seed or by introducing additional
mutation and replacement operators that use an SAT solver. In this article, we instead enhance the search in
two ways: by providing a novel representation and by optimizing first on the number of constraints that hold
and only then on the other objectives. In the evaluation, we also used feature models with realistic
attributes, in contrast to previous work that used randomly generated attribute values. The results of
experiments were promising, with the proposed (SIP) method returning valid products with six published
feature models and a randomly generated feature model with 10,000 features. For the model with 10,000
features, the search took only a few minutes.

1. INTRODUCTION

In recent years, there has been significant interest in software product lines (SPLs), in
which families of products are systematically developed using a set of reusable assets.
The set of products within an SPL is typically described by a feature model, with a
feature being some aspect of system functionality [Clements and Northrop 2001]. A
product is seen as being a set of features, and the feature model defines the constraints

This work has been partially supported by the European Commission (FEDER) and Spanish Government un-
der CICYT project TAPAS (TIN2012-32273) and BELI (TIN2015-70560-R), and the Andalusian Government
projects THEOS (TIC-5906) and COPAS (P12-TIC-1867).
Authors’ addresses: R. M. Hierons, M. Li, and X. Liu, Department of Computer Science, Brunel University
London, Uxbridge, Middlesex, UB8 3PH, UK; emails: rob.hierons@brunel.ac.uk, limitsing@gmail.com, Xi-
aoHui.Liu@brunel.ac.uk; S. Segura, Dept. of Computer Languages and Systems, Universidad de Seville,
41012 Seville, Spain; email: sergiosegura@us.es; W. Zheng, School of Software and Microelectronics,
Northwestern Polytechnical University, 127 West Youyi Road, Xi’an Shaanxi, 710072, P.R. China; email:
wzheng@nwpu.edu.cn.

http://dx.doi.org/10.1145/2897760
http://dx.doi.org/10.1145/2897760

between features and so specifies which combinations of features define valid products.
There is evidence of feature models being used by companies such as Boeing [Sharp
1998], Siemens [Hofman et al. 2012], and Toshiba [Matsumoto 2007].

Much of the focus of research regarding feature models has been on automated
techniques that analyze a feature model [Benavides et al. 2010]. This has led to a
range of techniques that will, for example, determine whether a feature model is valid
(defines one or more products) or whether there are features that appear in no valid
products. There are tools such as FaMa [Benavides et al. 2007], SPLAR [Mendonca et al.
2009], and FeatureIDE [Thüm et al. 2014] that implement many analysis techniques.

Another line of work has considered the problem of automatically determining “op-
timal” products based on a feature model and information regarding user preferences.
The result of a search might be used, for example, to determine which products to
release first or which to test. Naturally, there are several aspects that can be used to
determine whether a product is “optimal,” and these relate to the values of attributes of
the features.1 For example, one might prefer products that contain many features since
these will satisfy the demands of more customers. One might also favor products that
have a low associated cost. Recently, Sayyad et al. [2013d] noted that this leads to
a many-objective optimization problem,2 and they explored the use of several many-
objective optimization algorithms. Since a product must satisfy all of the constraints
in the feature model, one objective was the number of constraints that fail. In this
initial piece of work, they used six evolutionary many-objective optimization (EMO)
algorithms, including NSGA-II [Deb et al. 2002], SPEA2 [Zitzler et al. 2002], and IBEA
[Zitzler and Künzli 2004], finding that IBEA outperformed the other techniques.

This work was developed further in a second paper by Sayyad et al. [2013c]. The au-
thors used larger examples in their evaluation and found that their original approach
tended not to find valid products.3 This led to two developments. The first was to remove
core features (features that appear in all valid products) from the representation used in
the search; these features are added to any product returned by the search. The second
enhancement was to seed the search with a valid product. While the search for a seed in-
troduced an initial overhead, it significantly improved the performance of both NSGA-II
and IBEA. An alternative, introduced by Henard et al. [2015], is to use a SAT solver to
implement new mutation and replacement operators used in an EMO algorithm.

Although Sayyad et al. [2013c] and Henard et al. [2015] devised enhancements
that led to EMO algorithms returning valid products, these enhancements have some
disadvantages.

(1) The search for an initial seed takes time. Sayyad et al. [2013c] used one large
feature model in their evaluation (the Linux kernel with 6,888 features) and for
this feature model the initial search for a seed took approximately three hours.

(2) The new replacement and mutation operators, which use SAT solvers, complicate
the overall search process, requiring additional parameters to be set (to specify
how often these new operators are to be applied). The smart mutation operator
determines which features are not involved in the violation of constraints, fixes
the values of these features, and then asks a SAT solver to look for a set of values
for the other features that defines a valid product. The smart replacement oper-
ator randomly replaces a configuration with a new valid configuration. The new
operators take longer to apply than classical operators.

1Similar to other authors, we assume that attribute values are fixed.
2We use the term “many-objective” since in the evolutionary computation community, “multiobjective” means
two or three objectives, while “many-objective” means four or more objectives. It is widely accepted that
many-objective optimization problems are much harder to solve than two to three-objective ones.
3A product is valid if all of the constraints in the feature model hold. Typically, the software engineer is only
interested in valid products.

This article addresses two factors that we believe make this problem of finding “good”
valid products difficult: there are many constraints (all must be satisfied), and as the
number of objectives increases, there is less evolutionary pressure on the number
of constraints that fail (this is just one of several objectives). This article describes
a method that avoids the need for a SAT solver or an initial search for a seed and
introduces two developments that directly address these points. The first of these is a
novel automatically derived representation that aims to reduce the scope for returning
invalid products. Essentially, this representation hard-codes two types of constraints
and so ensures that all solutions returned satisfy these constraints. The first type of
constraint relates to core features, which are features that are in all products: such
features can be removed from the representation and added back into any products
returned. This enhancement to the representation, in which core features are removed,
has already been used by Sayyad et al. [2013c] and Henard et al. [2015]. The second type
of constraint is that sometimes we have that a feature F is included in a product if and
only if one or more of its children are in the product. In such situations, there is no need
to include F in the representation: if a solution returned by the search contains one or
more children of F, then F is added back into the product. The second development is
to compare candidate solutions on the basis of the number of constraints that do not
hold and then, if they are equal on this, the remaining n objectives. We call this the 1 +
n approach and use the name (n + 1) for the traditional approach in which all n + 1
objectives are treated as being equal. For the (n + 1) approach, we use brackets around
“n + 1” to emphasize the fact that the n + 1 objectives are all considered together, in
contrast to the 1 + n approach in which one objective is considered first.

We use the name SIP (ShrInk Prioritize) to denote the combination of the novel
encoding (that shrinks the representation), the 1 + n approach (that prioritizes the
number of constraints that fail), and an EMO algorithm. The aim of both developments
was to produce a search that returns more valid products, providing the software
engineer with a wider range of products from which to choose.

We evaluated the proposed SIP method on the two case studies used in the initial
work of Sayyad et al. [2013d] (WebPortal and E-Shop) and four additional published
case studies: BerkeleyDB, Amazon, Drupal, and ERS.4 Previous work suggests that
methods based on Pareto dominance are less effective than those that are not and
so we implemented one algorithm that is based on Pareto dominance (NSGA-II) and
five that are not (IBEA, SPEA2+SDE [Li et al. 2014a], and three versions of MOEA/D
[Zhang and Li 2007]). These non-Pareto EMO algorithms are state of the art in the EMO
field and have been demonstrated to be very effective in many-objective optimization
[Wagner et al. 2007; Hadka and Reed 2012; Li et al. 2013, 2014].

Experimental studies in this area have used synthetic values for the attributes
of a feature model, and this introduces a threat to validity: it is possible that the
performance of search will be very different in practice. In order to explore this issue,
we had experiments in which we used realistic values for the attributes of the Amazon
and Drupal feature models. For the Drupal model, we had real attributes and values
obtained using repository mining [Sánchez et al. 2015]. While we did not have such real
values for the Amazon feature model, we did have real attribute names and constraints
on the values; we randomly generated realistic values from within the corresponding
ranges. These attributes are not those previously considered in this area and so we
had a different set of (eight) objectives. A final experiment used a larger randomly
generated feature model with 10,000 features. This is larger than the largest feature
model previously considered, which had 6,888 features.

4The SIP code can be found at https://dx.doi.org/10.17633/rd.brunel.2115802 and the experimental data at
https://dx.doi.org/10.17633/rd.brunel.2115490.v1.

https://dx.doi.org/10.17633/rd.brunel.2115802
https://dx.doi.org/10.17633/rd.brunel.2115490.v1

The following are the main contributions of this article:

(1) A novel representation that forces a number of constraints to hold.
(2) A new approach that considers one objective (number of constraints that fail) as

being more important than the others (the 1 + n approach).
(3) Experimental evaluation on six published feature models, including two not previ-

ously considered (Amazon and Drupal).
(4) The first work to use feature models with realistic attribute values (Amazon and

Drupal).
(5) Experimental evaluation on the largest feature model used in this area: a randomly

generated feature model with 10,000 features.
(6) The use of six EMO algorithms, four of which (SPEA2 + SDE and three variants of

MOEA/D) have not previously been applied to the product selection problem. The
product selection problem differs from many other multiobjective problems in two
main ways: there can be many objectives (in our experiments, up to eight), and a
product returned is only of value if one particular objective (number of constraints
that fail) reaches its optimal value.

The results were promising, with the SIP method proving to be effective. In most
cases, the SIP method returned a population containing only valid products in all runs.
The two exceptions were the Amazon model with realistic attributes and the larger
randomly generated model. However, valid products were returned even for these fea-
ture models. We recorded the time taken by the search for the larger model with 10,000
features and found that for all EMO algorithms, the mean time (over 30 executions)
was under 4 minutes for the SIP method. Note that Sayyad et al. and Henard et al.
allowed their approaches to search for 30 minutes, and Sayyad et al. had an addi-
tional 3-hour search for a seed. Interestingly, with the SIP method, we found that no
search algorithm had consistently superior performance. In contrast, in previous work,
the performance varied significantly between different EMO algorithms. The results
suggest that the SIP method is capable of transforming the search problem into one
that is much easier to solve. We believe that the results can contribute to the devel-
opment of robust techniques for searching for optimal products. Importantly, it should
be straightforward to use the SIP method with other EMO algorithms. Observe also
that our enhancements are tangential to those of Sayyad et al. and Henard et al. and
it should be possible to combine them.

This article is structured as follows. In Section 2, we start by briefly describing
feature models and approaches to many-objective optimization. Section 3 describes
the SIP method, and Section 4 outlines the experimental design. Section 5 gives the
results of the experiments, and Section 6 discusses these and what they tell us about
the research questions. Section 7 outlines threats to validity, and Section 8 describes
earlier work on product selection. Finally, Section 9 draws conclusions and discusses
possible lines of future work.

2. BACKGROUND

In this section, we provide background material regarding feature models (Section 2.1)
and evolutionary many-objective optimization algorithms (Section 2.2).

2.1. Feature Models

Software Product Line (SPL) engineering is a systematic approach to develop families
of software products [Clements and Northrop 2001]. Products in SPLs are defined
in terms of features, a feature being an increment in product functionality [Batory
et al. 2006]. Feature models are commonly used as a compact representation of all the
products in an SPL [Kang et al. 1990]. A feature model is visually represented as a

Fig. 1. A sample feature model.

tree-like structure in which nodes represent features, and connections illustrate the
relationships between them. These relationships constrain the way in which features
can be combined to form valid configurations (products). For example, the feature model
in Figure 1 illustrates how features are used to specify and build software for Global
Position System (GPS) devices. The software loaded into the GPS device is determined
by the features that it supports. The root feature (“GPS”) identifies the SPL. The
following types of relationships constrain how features can be combined in a product:

—Mandatory. If a feature has a mandatory relationship with its parent feature, it
must be included in all the products in which its parent feature appears. In Figure 1,
all GPS products must provide support for Routing.

—Optional. If a feature has an optional relationship with its parent feature, it can
be optionally included in products that include its parent feature. For instance,
Keyboard is defined as an optional feature of the user Interface of GPS products.

—Alternative. A set of child features are defined as alternative if exactly one feature
should be selected when its parent feature is part of the product. In the example,
GPS products must provide support for either a Touch screen or an LCD screen but
not both in the same product.

—Or-Relation. Child features are said to have an or-relation with their parent when
one or more of them can be included in the products in which its parent feature
appears. In Figure 1, software for GPS devices can provide support for 3D map
viewing, Auto-rerouting, or both of them in the same product.

In addition to the parental relationships between features, a feature model can also
contain cross-tree constraints between features. These are typically of the following
form:

—Requires. If a feature A requires a feature B, the inclusion of A in a product implies
the inclusion of B in this product. For example, GPS devices with Traffic avoiding
require the Auto-rerouting feature.

—Excludes. If a feature A excludes a feature B, both features cannot be part of the
same product. In Figure 1, GPS devices with Touch screen exclude the support for a
Keyboard.

Feature models can be extended with extrafunctional information by means of feature
attributes. An attribute usually consists of a name, a domain, and a value. Figure 1

depicts several feature attributes using the notation proposed by Benavides et al.
[2005]. As illustrated, attributes can be used to specify extrafunctional information
such as cost or RAM memory required to support the feature. Similar to other authors,
in this article, we assume that the attribute values are fixed.

The automated analysis of feature models deals with the computer-aided extraction
of information from feature models. Catalogs with up to 30 analysis operations on
feature models have been published [Benavides et al. 2010]. Typical analysis operations
allow us to know whether a feature model is consistent (it represents at least one
product), the number of products represented by a feature model, and whether a feature
model contains any errors. In this article, we address the so-called optimization analysis
operation [Benavides et al. 2010]. This operation takes an attributed feature model and
a set of objective functions as inputs and returns one or more products fulfilling the
criteria established by the functions. For instance, we might search for a GPS program
minimizing cost and memory consumption. The analysis of a feature model is supported
by a number of tools including the FaMa framework [Trinidad et al. 2008], FeatureIDE
[Thüm et al. 2014], and SPLAR [Mendonca et al. 2009].

2.2. Evolutionary Many-Objective Optimization Algorithms

Evolutionary algorithms (EAs) are a class of population-based metaheuristic optimiza-
tion algorithms that simulate the process of natural evolution. EAs are often well suited
to many-objective problems (MOPs) because (1) they ideally do not make any assump-
tion about the underlying fitness landscape and the considered objectives can be easily
added, removed, or modified, and (2) their population-based search can achieve an ap-
proximation of an MOP’s Pareto front,5 with each individual representing a tradeoff
among the objectives.

Despite being the most popular selection criterion in the EMO area, Pareto domi-
nance encounters difficulties in its scalability to optimization problems with more than
three objectives (many-objective optimization problems) [Wagner et al. 2007; Ishibuchi
et al. 2008; Li et al. 2014b]. Due to the exponential decrease of the portion of the space
that one point dominates, Pareto dominance is less able to differentiate points in the
space. Recently, non-Pareto algorithms (algorithms that do not use Pareto dominance
as the main selection criterion) have been shown to be promising in dealing with many-
objective optimization problems [Deb and Jain 2014; Bader and Zitzler 2011; Yang et al.
2013; Ishibuchi et al. 2015]. They typically provide higher selection pressure searching
toward the Pareto front than Pareto-based algorithms.

In this article, we consider six EMO algorithms. One is a classic Pareto-based algo-
rithm (NSGA-II [Deb et al. 2002]), and the rest are five non-Pareto-based algorithms:
Indicator-Based Evolutionary Algorithm (IBEA) [Zitzler and Künzli 2004]; three ver-
sions of the decomposition-based algorithm MOEA/D (MOEA/D-WS [Zhang and Li
2007], MOEA/D-TCH [Zhang and Li 2007], and MOEA/D-PBI [Zhang and Li 2007]);
and SPEA2+SDE [Li et al. 2014a]. Of these, only NSGE-II and IBEA have previ-
ously been applied to the problem of product selection. IBEA is an indicator-based
algorithm that uses a given performance indicator to guide the search. MOEA/D-WS,
MOEA/D-TCH, and MOEA/D-PBI are three versions of the decomposition-based algo-
rithm MOEA/D, which uses three decomposition functions: weight sum, Tchebycheff,
and penalty-based boundary intersection, respectively. SPEA2+SDE modifies the orig-
inal SPEA2 by a shift-based density estimation in order to enable the algorithm to
be suitable for many-objective problems. These EMO algorithms are representative in

5An individual x is said to Pareto dominate an individual y if x is as good as y in all objectives and better
in at least one objective. The Pareto front is the set of elements of the objective space that are not Pareto
dominated by any other elements of the objective space.

the EMO area and, apart from NSGA-II, all have been found to be effective in dealing
with many-objective optimization problems with certain characteristics [Wagner et al.
2007; Hadka and Reed 2012; Li et al. 2013, 2014].

3. THE PROPOSED SIP METHOD

In this section, we describe the components of the SIP method. We start by describing
two approaches to optimization that can be used with any EMO algorithm: one consid-
ering all objectives to be equal (the (n + 1) approach used in previous work) and the
new approach that considers the number of constraints violated and then the other
objectives (the 1 + n approach). We then describe the novel representation.

3.1. Optimization Approach Used

Before applying an EMO algorithm to optimize the objectives in SPL product selection,
an important issue is how to “view” these objectives. A feature model contains a number
of constraints that define the valid products. For example, in Figure 1, there is the
constraint that a product cannot have both a Keyboard and a Touch screen interface.
In order to direct the search toward valid products, one objective is the number of
constraints violated (we wish to minimize this).

One overall approach to optimization is to treat all objectives equally, as done in most
previous work.6

APPROACH 1. The (n + 1) approach: all the objectives are viewed equally in the opti-
mization process of EMO algorithms.

This deals with all the objectives simultaneously and attempts to obtain a set of
good tradeoffs among them. However, as previously observed [Henard et al. 2015], a
software engineer will typically only be interested in products that satisfy all of the
constraints. In such situations, the previous (n + 1) approach may not be suitable since
it does not reflect the interest in valid products. This suggests that there is one main
objective (whether the product is valid) and the others are less important. We therefore
also implemented a new approach to optimization in which the first objective (number
of constraint violations) is viewed as being the main objective and then the remaining
objectives as equal secondary objectives to be optimized.

APPROACH 2. The first objective (number of constraint violations) is viewed as the
main objective to be considered first and then the remaining objectives as secondary
objectives to be optimized equally. We call this the 1 + n approach.

Specifically, we used two simple rules to compare individuals in EMO algorithms:
(1) prefer the individual with fewer constraint violations and (2) prefer the individ-
ual with better fitness (determined by the remaining objectives) when the number of
violated constraints is equal.

In EMO algorithms, there are two operations in which individuals are com-
pared, mating selection and environmental selection. Mating selection, which provides
promising individuals for variation, is implemented by choosing the best individual
from the mating pool (a set of candidate individuals). The proposed rules can be di-
rectly applied to this selection process: the individual having the fewest constraint
violations is chosen, and if there exist several such individuals, then the one with the
best fitness is chosen (in the usual way).

Environmental selection, which determines the survival of individuals in the popu-
lation, is implemented in different ways in EMO algorithms. If the population evolves

6An exception is the PULL method of Sayyad, in which the number of constraints that fail is given a higher
weighting. This is discussed in further detail in Section 8.

in a steady-status way [Durillo et al. 2009] in an algorithm, environmental selection is
implemented when only one new individual is produced. In this situation, the proposed
rules can also be directly applied to the comparison between the new individual and
some (or all) old ones in the population, as done in mating selection. On the other hand,
if the population evolves in a generational way in an EMO algorithm, environmental
selection is implemented when a set of new individuals is produced, where the size of
the set is typically equal to the population size N. In this situation, N individuals will
be chosen (to construct the next population) from a mixed set of the last population
and the newly produced individuals on the basis of the proposed rules. Here, we group
individuals of the mixed set into the next population according to their constraint vi-
olations, that is, individuals with the fewest constraint violations being chosen first,
individuals with the second fewest constraint violations second, and so on. This pro-
cedure is continued until the population is full, or not full but cannot accommodate
the next group of individuals with a particular value for the number of constraint vi-
olations. The second case happens quite often since there could be many individuals
with the same number of constraint violations. In this case, the selection strategy of
the considered EMO algorithm is used to choose some of the individuals from the next
group to fill the remaining slots of the population.

This property, of having one main goal, is not one normally found in many-objective
optimization. Typically, for a many-objective optimization problem, there is no hierar-
chy among objectives and different decision makers may have different preferences for
the objectives. Consequently, EMO algorithms typically search for a set of solutions rep-
resenting the whole Pareto-optimal front (i.e., a set of representative tradeoffs among
objectives), so that the decision maker can select one from these solutions according to
his or her preference.

The constraint-handling method described earlier is similar to Deb et al.’s in NSGA-II
[Deb et al. 2002], but with the following differences. NSGA-II integrates constraint han-
dling into the Pareto dominance relation and only considers the comparison between
two individuals; in contrast, the 1 + n method is more general since it is designed
to compare and select any number of individuals, thus being suitable for any EMO
algorithm. In addition, in NSGA-II, the fitness comparison is activated only when both
individuals are valid (i.e., no constraint violations), while in the 1 + n method, the
fitness comparison is made when the considered individuals have the same number
of violated constraints. This is more suitable for the considered problem, since most
individuals in the search process are invalid, with many having the same number of
constraint violations.

3.2. A Novel Representation

The natural representation, which was used previously [Sayyad et al. 2013d], is to
represent a product as a binary string where for a feature Fi, there is a corresponding
gene, with value 1 if the product contains Fi and otherwise 0. This is a direct represen-
tation of the set of features in a product. In initial experiments with the E-shop and
WebPortal case studies7 (Section 5), we found that many of the products returned were
invalid and this is consistent with the observations of Sayyad et al. [2013d].

We conjectured that performance was adversely affected by the following patterns:

(1) The failure to include core features (features that are contained in all valid prod-
ucts). The initial work by Sayyad et al. [2013d] did not take these into account, but
their enhanced version did [Sayyad et al. 2013c], as did Henard et al. [2015].

7We used experiments with these two case studies to explore the nature of the problem. Once we settled on
a range of approaches, we used additional case studies in the final evaluation.

(2) The inclusion of one or more children of a feature F even though F is not in the
product.

In the first case, the problem is that any set of features that fails to contain a core
feature F must be invalid. To tackle this issue, we simply removed all core features from
the representation; such features would be added back into the candidate solutions at
the end of the search. Core features were found using the SPLAR tool [Mendonca
et al. 2009]. This change to the representation immediately avoids the inclusion of
some invalid products and was used by Sayyad et al. in their second paper on this
topic [Sayyad et al. 2013c] and later by Henard et al. [2015]. It would also have been
possible to remove any dead features that were present (features that appear in no
valid products). However, sensible feature models do not contain dead features, and
tools such as FaMa [Benavides et al. 2007] and SPLAR [Mendonca et al. 2009] can be
used to detect dead features.

For the second case, the problem is that if a feature F ′ is in a product and F ′ has
parent F that is not in the product, then the product cannot be valid. This pattern is
entirely syntactic and it is straightforward to identify cases where it occurs. Further, in
such a case, the inclusion of F ′ implies the inclusion of F. This might suggest that we
only need to include leaf features in our representation. However, this is not quite right
since it excludes the case where a feature F is in a product but none of its children are
in the product (they are optional); such a representation could therefore exclude some
valid products. We therefore excluded a feature F if the following property holds: F
has one or more children and is involved in a relationship that is either a Mandatory,
Alternative, or Or relationship (Optional relationships have no effect). If this property
holds, then F is included in a valid product if and only if one or more of its children are
in the product. Thus, there is no need to include F in the representation, and we add F
to a set of features returned by the search if and only if one or more of its children are in
the set. A parent feature F added using this step may, itself, be a child of a feature that
is not in the set and so this second rule is applied repeatedly until no more features
can be added. The number of iterations of this process is at most the depth of the tree
representing the feature model, and this process takes time that is linear in the size of
the feature model. A feature F is kept if there is an Optional relationship with all of its
children since it is possible for a valid product to include F but no children of F. This
is one way in which invalid products can result: we might have a product that does not
include F but does include one or more of its children. Invalid products can also result
from cross-tree constraints.

Consider, for example, the feature model for GPS devices given in Figure 1. The ini-
tial representation would include a bit for each feature and so would contain 1 bit for
each of the features (GPS, Routing, 3D map, Auto-rerouting, Traffic avoiding, Interface,
Keyboard, Screen, Touch, LCD, Radio, AM, FM, Digital). GPS, Routing, Interface, and
Screen are core features and so would not be included under the enhanced represen-
tation of Sayyard at al. and Henard et al. Now consider Radio and its three children
(FM, AM, and Digital) that are in an Or relationship. Under the approach of Sayyard
et al. and Henard et al., all four features would be represented by bits in the encoding.
However, a valid product contains the feature Radio if and only if it contains one or
more of its children. As a result, our encoding would include bits for FM, AM, and
Digital but would not have a bit for Radio. In this example, the novel encoding has two
main benefits:

(1) The representation is smaller, as well as the search space as a consequence.
(2) It is not possible to represent products that contain one or more of FM, AM, and

Digital but do not include the feature Radio. This is useful because all such products
are invalid.

Table I. Features Included in Each Encoding on the GPS SPL

Encoding
Feature Direct Core Hierarchical Novel
GPS � �

Routing � �
3D map � � � �
Auto-rerouting � � � �

Traffic avoiding � � � �
Radio � �

FM � � � �
AM � � � �
Digital � � � �

Interface � �
Keyboard � � � �
Screen � �

Touch � � � �
LCD � � � �

In principle, it might be possible to further adapt the representation by taking into
account cross-tree constraints. We might also have adapted the representation so that
only one child in an Alternative relationship could be included. We see the further
development of the representation, to ensure that additional constraints must be sat-
isfied, as a topic for future work.

The overall (novel) encoding is therefore to use a binary string, where there is a
value vi for feature Fi if and only if Fi is not core and also Fi does not have one or more
children that are in a Mandatory, Or, or Alternative relation. If the search returns a
set P ′ of features, then we generate the corresponding candidate product by applying
the following steps:

(1) Add to P ′ all core features.
(2) Add to P ′ any feature F not in P ′ such that P ′ contains one or more children of F

and apply this step repeatedly until no more features can be added.

In the experiments, we compared the following representations:

(1) That initially used by Sayyad et al. [2013d]. We called this the direct encoding since
each feature has a corresponding bit in the representation.

(2) That used in the second paper of Sayyad et al. [2013c] and also by Henard et al.
[2015]. We called this the core encoding since we do not represent the core features.

(3) A representation in which we retain core features but do not include a feature if
the following holds: the feature is included in a valid product if and only if one or
more of its children are in the product. We called this the hierarchical encoding.

(4) The novel representation outlined in this section, which is the combined application
of (2) and (3). We called this the novel encoding.

We included the third representation in order to be able to separately assess the two
enhancements in the novel encoding. However, this representation was only used in
the initial experiments: the main focus of the experiments was to compare our novel
encoding with the previously proposed direct and core encodings.

The representations for the GPS example are given in Table I.
To conclude, the proposed SIP method is to use the novel encoding, the 1 + n approach,

and an EMO algorithm.

4. EXPERIMENTAL DESIGN

The main aim of the experiments was to explore the relative performance of the differ-
ent representations and algorithms, and for this, we used six published feature models
and a larger randomly generated feature model. We structured the work as follows:
we performed initial experiments on two of the feature models (E-shop and WebPortal)
and in these initial experiments we discovered that the algorithms (when the (n + 1)
approach and direct encoding are used) returned relatively few valid products. This led
to two enhancements: a new representation and the 1 + n approach. We then carried
out experiments using the six published models. This was followed by experiments
with two case studies that had realistic values of attributes rather than randomly
generated attributes (as used in previous work) and then experiments with the larger
randomly generated feature model. In all experiments, we used the SPLAR tool to
determine which features are core [Mendonca et al. 2009]. The experiments were per-
formed 30 times to reduce the impact of the stochastic nature of the algorithms. We
now describe the research questions.

First, there is the question of whether the encoding used affects the performance
of the search and, within this, whether the novel encoding is more effective than the
previously used direct and core encodings.

RESEARCH QUESTION 1. How does the encoding affect the performance of the search
techniques?

Our additional enhancement was to consider the first objective as the main objective,
with the aim being to direct search toward valid products.

RESEARCH QUESTION 2. Does the use of the 1 + n approach make it easier for the search
techniques to find valid products?

Previous work has found that Pareto-based techniques are relatively ineffective when
using the direct and core encodings and so most of the search techniques used were
not based on Pareto dominance. We were interested in whether there were differences
in performance between the search techniques.

RESEARCH QUESTION 3. Are particular EMO algorithms more effective than others?

Previous studies have used feature models with randomly generated attributes and
this leads to a particular threat to validity, which is that these results might not
transfer to feature models with realistic attributes.

RESEARCH QUESTION 4. Does the relative performance differ when realistic attribute
values are used?

RESEARCH QUESTION 5. Is the relative performance similar when using a larger ran-
domly generated feature model?

While it is important that the search returns valid products, ideally we would like
many valid products to be returned.

RESEARCH QUESTION 6. How does the number of valid products returned by search
differ between approaches?

Finally, we also care about execution time: if one approach is much quicker than the
others, then this approach can be allowed to run for more generations.

RESEARCH QUESTION 7. How does the execution time differ between approaches?

Table II. Subject Models

SPL #Features #CTC #Attributes per Feature #Products
BerkeleyDB 13 0 4 512
ERS 36 0 7 6,912
WebPortal 43 6 4 2.1 · 106

E-shop 290 21 4 5.02 · 1049

Drupal 48 21 22 2.09 · 109

AmazonEC2 79 0 17 66,528
Randomly generated 10,000 0 4 ≤ 210000 − 1

4.1. Experimental Subjects

Table II depicts the attributed feature models used in the evaluation. For each model,
the number of features, Cross-Tree Constraints (CTCs), feature attributes, and prod-
ucts are presented. The number of attributes gives the number of attributes that each
feature has and so the total number of actual values used is the product of the num-
ber of features and number of attributes. We give an upper bound on the number of
products for the larger randomly generated model since it is not feasible to determine
the number of products for such a large model. These models cover a range of sizes in
terms of features and attributes. The models BerkeleyDB, ERS, WebPortal, and EShop
have been used in related works on optimal SPL product selection [Guo et al. 2014;
Olaechea et al. 2014; Sayyad et al. 2013a, 2013b, 2013d]. We used the version of these
models from Olaechea et al. [2014] to obtain comparable results. The larger examples
used by Sayyard et al. and Henard et al. were written in the DIMACS notation, which
provides input to SAT solvers; we did not use these since our method takes as input a
feature model written in the SXFM format for feature models. However, we used two
recently published feature models, AmazonEC2 and Drupal, with realistic attribute
values derived from mining real systems.

BerkeleyDB [Siegmund et al. 2012] provides a high-level representation of variability
in a database, and ERS [Esfahani et al. 2013] represents variability in an Emergency
Response System. Web Portal [Mendonca et al. 2008] and EShop [Lau 2006] represent
a product line of web portals and e-commerce applications, respectively. Sayyad et al.
[2013a, 2013b, 2013d], Guo et al. [2014] and Olaechea et al. [2014] extended these
models with three feature attributes with randomly generated values: cost, defects,
and prior usage count. We followed the same approach in this work.

Drupal [Sánchez et al. 2015] represents the variability in the open-source web con-
tent management framework Drupal. The model is provided with values of 22 non-
functional attributes extracted from the Drupal GIT repository and the Drupal issue
tracking system including, among others, size, changes, defects, cyclomatic complexity,
test cases, developers, and reported installations. To the best of our knowledge, this is
the largest attributed feature model with nonsynthetically generated attributes used
for the problem of optimal SPL product selection.

Amazon EC2 [Garcı́a-Galán et al. 2016] represents the configuration space of the
Amazon Elastic Computing Service. The attributes are mainly related to pricing, us-
age, and hardware constraints including cost per hour, cost per month, cores, RAM,
usage, and defaultStorage. Attributes in AmazonEC2 do not have a fixed value. In-
stead, the value of each attribute is derived from the selected features using thou-
sands of constraints of the form “M2_xlarge IMPLIES (Instance.cores==2 AND
Instance.ram==17.1).” For each of these, we assigned a random value to each attribute
within its domain.

Experiments were also performed on a larger, randomly generated, feature model
with 10,000 features. This was generated using the SPLAR tool [Mendonca et al. 2009]
and with the following parameters: 25% mandatory features, 25% optional features,

25% alternative features, minimum branching factor of 5, maximum branching factor
of 10, maximum size for feature groups of 5, and only consistent models. These values
have been found to be typical values for feature models [Thüm et al. 2009].

To summarize, we used four models that have previously been used so that our
results can be compared with other studies. We used two additional real feature models
(Drupal, Amazon) since we had access to realistic attribute values (either real values or
ranges). Finally, we added a randomly generated model with 10,000 features in order
to evaluate the approaches on a large model.

4.2. The Optimization Problems

In the initial experiments, we used the same five objectives as Sayyad et al. [2013d]
and Henard et al. [2015]:

(1) Correctness: the number of constraints that were not satisfied. This value should
be minimized.

(2) Richness of features: how many features were included. This value should be max-
imized, preferring products with many features.

(3) Features that were used before. For each feature, this is a Boolean and the number
for which this is true should be maximized (previously used features are less likely
to be faulty and those used before are likely to be more popular).

(4) Known defects: the number of known defects in features used should be minimized.
There is a constraint on this value: it has to be zero if the feature was not used
before.

(5) Cost: the sum of the costs of the features included. This value should be minimized.

We used these objectives in order to be consistent with previous work. However, as
previously discussed, we included additional experiments in which we used realistic
values for attributes. Since we did not have information on all of these attributes, we
instead used eight objectives for which we had realistic values. For Drupal, we used
the following objectives:

(1) Correctness: the number of constraints that were not satisfied. This value should
be minimized.

(2) Richness of features: how many features were included. This value should be max-
imized.

(3) Number of lines of code: this should be minimized.
(4) Cyclomatic complexity: this should be minimized.
(5) Test assertions: this should be maximized.
(6) Number of installations that contain the feature: this should be maximized.
(7) Number of developers: this should be minimized.
(8) Number of changes: this should be minimized.

We want to minimize the last two (number of developers and number of changes) since
there is evidence that these correlate with how error prone a system is [Matsumoto
et al. 2010; Yoo and Harman 2012].

For Amazon, we used the following:

(1) Correctness: the number of constraints that were not satisfied. This value should
be minimized.

(2) Richness of features: how many features were included. This value should be max-
imized, preferring products with many features.

(3) EC2.costMonth: random value from 0 to 20,000. This value should be minimized.
(4) Instance.cores: random value from 1 to 32. This value should be maximized.
(5) Instance.ecu: random value from 0 to 108. This value should be maximized.

(6) Instance.ram: random value from 0 to 250. This value should be maximized.
(7) Instance.costHour: random value from 0 to 18. This value should be minimized.
(8) Instance.ssdBacked: Boolean. This value should be maximized.

Finally, we included experiments with the larger randomly generated feature model
(with 10,000 features). For this, we used the original five objectives, again to be consis-
tent with earlier work.

4.3. Implementation Details

All the EMO algorithms were executed 30 times for each experiment to reduce the
impact of their stochastic nature. The termination criterion used in all the algorithms
was a predefined number of evaluations, which was set to 50,000 unless otherwise
mentioned. The size of the population for all the algorithms except MOEA/D was set
to 100. The population size in MOEA/D, which is the same as the number of weight
vectors, cannot be arbitrarily specified. Following the practice in Yang et al. [2013],
we used the closest integer to 100 among the possible values as the population size of
the three MOEA/D algorithms (126 and 120 for the five- and eight-objective problems,
respectively).

Some of the algorithms require several parameters to be set. As suggested in their
original papers [Zhang and Li 2007; Zitzler and Künzli 2004], the neighborhood size
was set to 10% of the population size in the three MOEA/D algorithms, the penalty
parameter θ to 5 in MOEA/D-PBI, and the scaling factor κ to 0.05 in IBEA.

Two widely used crossover and mutation operators in combinatorial optimization
problems, uniform crossover and bit-flip mutation, were used. A crossover probability
pc = 1.0 and a mutation probability pm = 1/n (where n denotes the number of decision
variables) were set according to Deb [2001]. As a result of using recommended values
from the literature, we did not require a tuning phase.

All the experiments were performed on a notebook PC with Intel(R) Core(TM)i5-
3230M Quad Core@2.60GHz with 4GB of RAM. We obtained implementations of the
EMO algorithms from standard toolkits.8

4.4. Performance Metrics

We used three performance metrics to study the results of the experiments. Hyper-
volume (HV) [Zitzler and Thiele 1999] is a very popular metric in the EMO area due
to its good theoretical and practical properties, such as being compliant with Pareto
dominance (if one population Pareto dominates another, then it has a higher HV) and
not requiring the problem’s Pareto front to be known. HV calculates the volume of
the objective space between the obtained solution set and a reference point. A large
value is preferable and reflects good performance of the solution set in terms of con-
vergence, extensity, and uniformity. Figure 2 gives an illustration of the HV metric
for four solution sets with different performance. As shown, the solution set that has
good convergence, extensity, and uniformity (Figure 2(a)) leads to a larger shaded area
(HV value) than the other three solution sets that have poor convergence, extensity, or
uniformity, respectively (Figure 2(b)–(d)).

In the calculation of HV, two crucial issues are the scaling of the search space
[Friedrich et al. 2009] and the choice of the reference point [Auger et al. 2009]. Since
the objectives in the considered optimization problems take different ranges of values,
we normalized the objective value of the obtained solutions according to the problem’s

8The code for NSGA-II was obtained from http://www.iitk.ac.in/kangal, that for IBEA was from http://www.
tik.ee.ethz.ch/pisa, the code for MOEA/D was from http://dces.essex.ac.uk/staff/zhang/webofmoead.htm, and
that for SPEA2+SDE was from http://www.brunel.ac.uk/∼cspgmml1/Publication.html.

http://www.iitk.ac.in/kangal
http://www.tik.ee.ethz.ch/pisa
http://www.tik.ee.ethz.ch/pisa
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://www.brunel.ac.uk/protect $elax sim $cspgmml1/Publication.html

Fig. 2. HV result (shaded area) for four sets of solutions with respect to a biobjective minimization problem
scenario. (a) Solution set with good convergence, extensity, and uniformity. (b) Solution set with good extensity
and uniformity, poor convergence. (c) Solution set with good convergence and uniformity, poor extensity.
(d) Solution set with good convergence and extensity, poor uniformity.

range in the objective space. Also, the reference point was set to the Nadir point of the
problem’s range (the point constructed with the worst value on each objective). In ad-
dition, note that the exact calculation of the HV metric is often infeasible for a solution
set with seven or more objectives, and so for the problems with eight objectives, we
estimated the HV result of a solution set by the Monte Carlo sampling method used
by Bader and Zitzler [2011]. Here, 10,000,000 sampling points were used to ensure
accuracy [Bader and Zitzler 2011].

Since the software engineer is only interested in valid products, we also introduced
two metrics to evaluate the ability of each algorithm to return valid products. These
metrics are (1) the number of executions where there was at least one valid individual
in the final population, denoted VN, and (2) the rate of valid individuals in the final
population, denoted VR.

Finally, it is necessary to mention that in computing HV, we only used the valid
solutions in the population (as invalid solutions could be meaningless for the decision
maker). As a result, we computed HV using only the valid individuals in the final
population and so used all objectives except the first one (the number of constraints
violated). In addition, the results of HV and VR given in the tables were averaged over
the executions where at least one valid individual was returned. In cases where valid
solutions were not produced in any of the 30 executions (VN = 0), we reported 0 for HV
and VR.

Since invalid products have no value, the most important metric is the value of VN.
A high value for VR means that the software engineer has many valid products from
which to choose, and a high value for HV means that these have good performance in
terms of convergence and diversity.

5. RESULTS

In this section, we start by discussing the initial results of experiments with E-shop
and WebPortal; we then describe the results for the four other published systems; we
then give the results of the experiments that used realistic values for attributes; and
finally, we describe the results for the experiments with a larger randomly generated
feature model. As explained earlier, in the experiments, we recorded the values of HV
(Hypervolume), VN (number of executions where there was at least one valid individual
in the final population), and VR (the rate of valid individuals in the population on
average for the executions where there was at least one valid individual in the final
population). The software engineer is only interested in valid products and so we say
that an approach is effective if it often returns valid products.

Table III. E-Shop, 50,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000000 0 0.00% 0.136545 13 100%
IBEA 0.000000 0 0.0% 0.169191 16 100%

MOEA/D-WS 0.016184 26 21.42% 0.184810 5 100%
MOEA/D-TCH 0.000000 0 0.00% 0.199697 1 100%
MOEA/D-PBI 0.018815 4 10.50% 0.166157 5 100%
SPEA2+SDE 0.000000 0 0.00% 0.144341 15 100%

Table IV. E-Shop, 50,000 Evaluations, Hierarchical Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.003545 26 2.50% 0.202163 3 100%
IBEA 0.236265 7 42.20% 0.212066 3 100%

MOEA/D-WS 0.021644 24 27.64% 0.242515 2 100%
MOEA/D-TCH 0.000000 0 0.00% 0.230922 1 100%
MOEA/D-PBI 0.000000 0 0.00% 0.196956 2 100%
SPEA2+SDE 0.000000 0 0.00% 0.187481 3 100%

Table V. E-Shop, 50,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.003343 28 2.07% 0.149158 30 100%
IBEA 0.267410 30 33.91% 0.175422 30 100%

MOEA/D-WS 0.074223 30 26.74% 0.207303 30 100%
MOEA/D-TCH 0.000000 0 0.00% 0.190666 30 100%
MOEA/D-PBI 0.070765 30 30.62% 0.151068 30 100%
SPEA2+SDE 0.000000 0 0.00% 0.152678 30 100%

5.1. The E-Shop and WebPortal Case Studies

Initial experiments were carried out using E-shop and WebPortal and with four en-
codings: the direct encoding, the core encoding (where core features are removed), the
hierarchical encoding (where some parents are removed), and the novel encoding. The
results for E-shop, with 50,000 evaluations, can be found in Tables III through VI. First,
consider the (n + 1) approach. This was relatively ineffective with the direct encoding,
with most techniques failing to return valid products. The main exception to this is
MOEA/D-WS, which returned valid products in 26 of the 30 runs. The performance
with the hierarchical encoding was not much better, though interestingly NSGA-II
also produced valid products on most runs. For both of these, the performance of IBEA
was relatively poor. The performance with the core encoding was superior, with several
of the search techniques returning valid products on most or all executions. Further
improvements can be found with the novel encoding: all but one search technique re-
turned valid products on all executions. For this case, IBEA gave the largest number
of valid solutions (a VR of 84.26%) and the highest HV. The performance of the 1 + n
approach was particularly impressive. For both the core and novel encoding, all solu-
tions returned were valid (a VN of 30 and VR of 100%). For both of these encodings,
MOEA/D-WS and MOEA/D-TCH had the highest HV values. Note that the 1 + n ap-
proach always returned a VR value of 100%, even for cases where the (n + 1) approach
had a low VN value. One explanation is that, once the search has found a valid product,

Table VI. E-Shop, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.003751 30 4.97% 0.162943 30 100%
IBEA 0.256768 30 84.26% 0.190496 30 100%

MOEA/D-WS 0.209292 30 52.05% 0.222875 30 100%
MOEA/D-TCH 0.164266 25 14.16% 0.226257 30 100%
MOEA/D-PBI 0.212182 30 53.59% 0.192485 30 100%
SPEA2+SDE 0.206785 30 15.70% 0.159930 30 100%

Table VII. E-Shop, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 0.000/0.8589 0.473/0.8284 0.000/0.8589 0.000/0.8589 0.346/0.8589
MOEA/D-PBI 0.000/0.8589 0.000/0.8589 0.000/0.8589 0.391/0.8570
MOEA/D-TCH 0.004/0.8589 0.000/0.8589 0.039/0.8589
MOEA/D-WS 1.000/0.2557 0.000/0.8589

IBEA 0.000/0.8589

Table VIII. WebPortal, 50,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.012498 22 1.52% 0.222625 30 100%
IBEA 0.300289 30 61.64% 0.260523 30 100%

MOEA/D-WS 0.089601 29 24.64% 0.246124 30 100%
MOEA/D-TCH 0.115301 7 2.72% 0.270310 30 100%
MOEA/D-PBI 0.083995 30 21.41% 0.253738 30 100%
SPEA2+SDE 0.260506 30 17.80% 0.246970 30 100%

it is able to find additional valid products from this (similar to the use of a seed by
Sayyad et al. [2013c]) and the search prioritizes these above any invalid products.

We used rigorous nonparametric statistical tests to compare the HV values returned
by the algorithms when using the novel encoding and 1 + n approach. We first tested
the hypothesis that all EMO algorithms perform equally using the Kruskal-Wallis
test, finding that the hypothesis was rejected at the 95% confidence level. Note that
this was the case in all of the experiments reported in this article and so this step is
not mentioned again. We then used the post hoc Kruskal-Wallis test (implemented in
SPSS) for pairwise comparisons of the six algorithms. In all of the experiments, the
final p-value between two algorithms was obtained after the Bonferroni adjustment
was made (this step will not be described again). We also used the Mann-Whitney U
test to calculate the effect size (ES) of pairwise algorithms. First, the standardized test
statistic Z was obtained by the Mann-Whitney U test (implemented by SPSS). Then
the ES was calculated using ES = Z√

N
, where N is the total number of samples. The

results for E-shop are given in Table VII, where a cell having contents x/y denotes the
p-value being x and the effect size being y.

Table IX. WebPortal, 50,000 Evaluations, Hierarchical Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.119382 30 2.60% 0.281518 30 100%
IBEA 0.314488 30 88.67% 0.315128 30 100%

MOEA/D-WS 0.256401 30 36.93% 0.281208 30 100%
MOEA/D-TCH 0.223456 8 17.72% 0.296501 30 100%
MOEA/D-PBI 0.256274 30 39.82% 0.303493 30 100%
SPEA2+SDE 0.291120 30 39.77% 0.312388 30 100%

Table X. WebPortal, 50,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.059950 30 1.70% 0.275413 30 100%
IBEA 0.308381 30 78.99% 0.307052 30 100%

MOEA/D-WS 0.224224 30 34.10% 0.270491 30 100%
MOEA/D-TCH 0.134629 30 5.44% 0.294767 30 100%
MOEA/D-PBI 0.219215 30 32.30% 0.291351 30 100%
SPEA2+SDE 0.278030 30 25.53% 0.301224 30 100%

Table XI. WebPortal, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.168637 30 6.02% 0.284126 30 100%
IBEA 0.318109 30 97.04% 0.318734 30 100%

MOEA/D-WS 0.259688 30 45.69% 0.285585 30 100%
MOEA/D-TCH 0.253752 30 34.02% 0.298269 30 100%
MOEA/D-PBI 0.258445 30 49.15% 0.306512 30 100%
SPEA2+SDE 0.296880 30 51.83% 0.314618 30 100%

We also carried out experiments with E-shop and 500,000 evaluations to see whether
this increase in number of evaluations affects performance. The results of these exper-
iments can be found in the appendix (Tables XXV–XXVIII). The patterns are similar
to the results with 50,000 evaluations, but it is worth noting that NSGA-II is effective
with even the direct encoding. As before, only valid products were returned with the
core and novel encoding with the 1 + n approach, and MOEA/D-WS and MOEA/D-TCH
had the highest HV values for these cases.

Although we see similar patterns for 50,000 and 500,000 evaluations, the results for
500,000 evaluation are superior. In particular, there was only one case where the VN
score for 500,000 was inferior to the score for 50,000 (direct encoding, 1 + n approach,
MOEA/D-WS). In addition, in all cases with the novel encoding and 1 + n approach,
the HV values for 500,000 were higher than the HV values for 50,000. It may well be
that we would obtain even better results if the number of evaluations was increased
further. We followed the same statistical procedure as before. The results of the post
hoc Kruskal-Wallis test and the effect size are shown in the appendix (Table XXIX).

5.2. The Remaining Case Studies Using Published Feature Models

We carried out experiments with Amazon, Berkeley, Drupal, and ERS in order to
check whether the results for E-Shop and WebPortal extended to other models (the
results of the experiments using Amazon and Drupal with realistic attribute values
are described in the next section). As before, we used the two approaches: 1 + n and (n +
1). Previously, we carried out experiments with four encodings, using the hierarchical

Table XII. Webportal, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 1.000/0.1756 0.000/0.8589 0.000/0.8589 0.000/0.8589 0.000/0.8589
MOEA/D-PBI 0.000/0.8589 1.000/0.1680 0.001/0.8589 0.000/0.8589
MOEA/D-TCH 0.000/0.8589 0.000/0.8589 1.000/0.2847
MOEA/D-WS 0.000/0.8589 0.000/0.8589

IBEA 0.001/0.8570

encoding to check that this was not as effective as the novel encoding (i.e., that the
enhancements in the core encoding still have value when also using the hierarchical
encoding). Having confirmed this, there was no need to carry out additional experiments
with the hierarchical encoding. Thus, for the remaining case studies, we used the two
previously published encodings (direct and core) and the encoding proposed in this
article (the novel encoding).

The results for the Amazon model (appendix, Tables XXX, XXXI, and XXXII) again
show all algorithms returning only valid solutions when we used the novel encoding and
1 + n approach. No other combination of representation and approach to optimization
achieved such strong results, but it is worth noting that for the (n + 1) approach, we
have that the novel encoding outperformed the core and direct encodings. For the direct
and core encodings, the 1 + n approach outperformed the (n + 1) approach in terms
of number of executions that returned valid solutions (with the exception of IBEA),
but the pattern is much more mixed if one considers HV. Thus, the 1 + n approach
was better at finding valid solutions but sometimes returned a less diverse population.
Finally, observe that most techniques performed poorly in the experiments using the
direct and core encodings and the (n + 1) approach; IBEA is the exception to this since
it always found at least one valid product. We followed the same statistical procedure
as before. The results of the post hoc Kruskal-Wallis test and the effect size are shown
in the appendix (Table XXXIII).

Consider now the results with the Berkeley feature model (appendix, Tables XXXIV,
XXXV, and XXXVI). This appears to be a simpler problem, possibly due to having a
relatively small number of products and attributes, with all combinations of encoding
and approach to optimization always returning some valid products. However, only the
1 + n approach (all three encodings) always returned only valid products (VR = 100%).
For the 1 + n approach, there appears to be relatively little difference in the differ-
ent encodings. In contrast, if we use the (n + 1) approach, then the novel encoding
outperforms the core encoding and this, in turn, outperforms the direct encoding. Ta-
ble XXXVII in the appendix gives the results of the post hoc Kruskal-Wallis test and
effect size for the EMO algorithms when using the novel encoding and 1 + n approach.

Similar to Berkeley, the results with Drupal (appendix, Tables XXXVIII, XXXIX,
and XL) suggest that this is a simpler search problem. With the 1 + n approach,
all combinations of encoding and algorithm always returned a population of valid
solutions. For the (n + 1) approach, we find a more varied performance. We again found
that the novel encoding outperformed the core encoding, and this outperformed the
direct encoding. We find that MOEA/D-TCH only returned valid solutions in one of
the 30 executions. With the novel encoding and 1 + n approach, IBEA had the highest
HV value. Table XLI in the appendix gives the results of the post hoc Kruskal-Wallis
test and effect sizes for the EMO algorithms when using the novel encoding and 1 + n
approach.

For ERS (appendix, Tables XLII, XLIII, and XLIV), we find that the 1 + n approach
always returned only valid products when using either the novel or core encoding. For
all algorithms, when using the 1 + n approach, we find that the novel encoding
produced

Table XIII. Drupal, Real Attributes, 50,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000002 30 2.60% 0.074917 30 100%
IBEA 0.122192 30 41.13% 0.123803 30 100%

MOEA/D-WS 0.081417 30 19.12% 0.116287 30 100%
MOEA/D-TCH 0.037675 7 1.62% 0.117087 30 100%
MOEA/D-PBI 0.085339 30 19.37% 0.013610 29 100%
SPEA2+SDE 0.100164 30 9.57% 0.131757 30 100%

Table XIV. Drupal, Real Attributes, 50,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000565 30 3.82% 0.074595 30 100%
IBEA 0.129126 30 62.47% 0.122216 30 100%

MOEA/D-WS 0.100438 30 26.89% 0.117124 30 100%
MOEA/D-TCH 0.061993 30 17.52% 0.113405 30 100%
MOEA/D-PBI 0.096058 30 24.25% 0.010170 30 100%
SPEA2+SDE 0.113642 30 18.27% 0.134213 30 100%

Table XV. Drupal, Real Attributes, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.015450 30 6.92% 0.076093 30 100%
IBEA 0.128167 30 80.13% 0.129285 30 100%

MOEA/D-WS 0.103297 30 36.05% 0.117130 30 100%
MOEA/D-TCH 0.095600 30 23.89% 0.119054 30 100%
MOEA/D-PBI 0.106123 30 35.40% 0.055917 30 100%
SPEA2+SDE 0.118850 30 32.73% 0.134299 30 100%

higher HV values than the core encoding. For the novel encoding and 1 + n approach,
we find that NSGA-II had the highest HV value. This is in contrast to previous work in
which NSGA-II was found to perform poorly and also with the direct encoding where
we use the (n + 1) approach; in this case, NSGA-II also performed poorly. For the (n +
1) approach, the novel encoding was most effective and the direct encoding the least
effective. Table XLV in the appendix gives the results of the post hoc Kruskal-Wallis
test and the effect sizes for the EMO algorithms when using the novel encoding and
1 + n approach.

5.3. Experiments with Realistic Attributes

As previously explained, we performed experiments with the Amazon and Drupal case
studies using eight attributes for which we either had real attribute values or had
ranges from which we could generate values. The results for Drupal can be found
in Tables XIII through XV, in which the 1 + n approach always returned only valid
products. For all three encodings, when we used the 1 + n approach, we found that
SPEA2+SDE returned the highest HV value. As before, the novel encoding produced
slightly better results than the core encoding (slightly higher HV values). Table XVI
gives the results of the post hoc Kruskal-Wallis test and the effect size values for the
EMO algorithms when using the novel encoding and 1 + n approach.

For the Amazon model (Tables XVII–XIX), we again found that the results were good
for the combination of the novel encoding and the 1 + n approach. However, in this case,
one technique (MOEA/D-PBI) performed poorly. Previous work has shown that there

Table XVI. Drupal, Real Attributes, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 0.000/0.8589 0.417/0.8474 0.000/0.8589 0.000/0.8589 0.000/0.8589
MOEA/D-PBI 0.491/0.8226 0.000/0.8589 0.000/0.8589 0.000/0.8589
MOEA/D-TCH 0.000/0.8589 0.229/0.8589 0.926/0.7196
MOEA/D-WS 0.210/0.8589 0.000/0.8589

IBEA 0.000/0.8589

Table XVII. Amazon, Realistic Attributes, 50,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000000 0 0% 0.001023 30 100%
IBEA 0.000000 0 0% 0.001328 1 100%

MOEA/D-WS 0.000375 1 1.67% 0.000926 22 100%
MOEA/D-TCH 0.000000 0 0% 0.000000 0 0%
MOEA/D-PBI 0.000000 0 0% 0.000000 0 0%
SPEA2+SDE 0.000000 0 0% 0.000935 27 100%

Table XVIII. Amazon, Realistic Attributes, 50,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000000 0 0% 0.000976 30 100%
IBEA 0.000000 0 0% 0.000000 0 0%

MOEA/D-WS 0.000126 1 1.72% 0.000954 23 100%
MOEA/D-TCH 0.000000 0 0% 0.000000 0 0%
MOEA/D-PBI 0.000000 0 0% 0.000000 0 0%
SPEA2+SDE 0.000000 0 0% 0.001125 29 100%

are circumstances under which MOEA/D-PBI performs poorly, an example being when
there is an irregular or degenerate Pareto front [Deb and Jain 2014; Li et al. 2014a].
In addition, IBEA only returned valid solutions in 17 of the 30 executions. For this
combination of approach and encoding, we have that SPEA2+SDE produced the highest
HV value. All other combinations of encoding/approach led to quite poor performance,
and it is particularly notable that IBEA did not produce any valid products for the
(n + 1) approach (irrespective of the encoding). The most likely explanation for this is
that for this problem, we had eight objectives, rather than five, and the Amazon model
is larger than the other model (Drupal) for which we used eight objectives. Table XX
gives the results of the post hoc Kruskal-Wallis test and the effect sizes for the EMO
algorithms when using the novel encoding and 1 + n approach.

5.4. Experiments with a Larger Feature Model

This subsection contains the results of the experiments performed with a larger ran-
domly generated feature model. As previously stated, for this we used five objectives
and applied three different encodings (direct, core, and novel) and the two different
approaches ((n + 1) vs. 1 + n). Interestingly, none of the experiments with the di-
rect and core encodings returned valid products (and so we do not include tables for
these experiments). The results of the experiments with the novel encoding are given in
Table XXI. The results reinforce some of the previous observations, but there are larger
differences for this model. The key observation is that the choice of representation and
approach appears to be crucial: we only obtained valid products when using the novel
encoding and the 1 + n approach. Among the techniques that return valid solutions

Table XIX. Amazon, Realistic Attributes, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000306 30 1.78% 0.001844 30 100%
IBEA 0.000000 0 0% 0.001897 17 100%

MOEA/D-WS 0.001158 30 19.68% 0.001877 30 100%
MOEA/D-TCH 0.000000 0 0% 0.001688 30 100%
MOEA/D-PBI 0.001017 25 10.97% 0.000000 0 0%
SPEA2+SDE 0.000000 0 0% 0.002001 30 100%

Table XX. Amazon, Realistic Attributes, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 0.005/0.5536 0.001/0.6718 1.000/0.3513 0.000/0.7693 0.000/0.9182
MOEA/D-PBI 0.000/0.9182 0.000/0.8473 0.000/0.9182 0.000/0.9182
MOEA/D-TCH 0.429/0.3235 1.000/0.1744 0.000/0.6060
MOEA/D-WS 0.000/0.5154 0.000/0.4774

IBEA 1.000/0.1773

Table XXI. Random Model, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0 0 0% 0.014588 24 100%
IBEA 0 0 0% 0.020762 25 100%

MOEA/D-WS 0 0 0% 0.042142 15 100%
MOEA/D-TCH 0 0 0% 0.025037 19 100%
MOEA/D-PBI 0 0 0% 0.042513 18 100%
SPEA2+SDE 0 0 0% 0.018173 28 100%

(for the novel encoding and 1 + n approach), SPEA2+SDE appears to have performed
the best since it returned valid products on almost all executions. However, it had
a relatively low HV score, suggesting that it returned less diverse populations. Both
MOEA/D-PBI and MOEA/D-WS returned much higher HV values, indicating a more
diverse population, but also found valid products less frequently. Table XXII gives the
results of the post hoc Kruskal-Wallis test and the effect sizes for the EMO algorithms
when using the novel encoding and 1 + n approach.

Finally, we considered the time taken by each method and evaluated this when using
the model with 10,000 features. These values were averaged over 30 runs, with Table
XXIII giving the execution time (50,000 evaluations). Interestingly, in all cases, the 1 +
n approach took less time than the previously used approach (with the same encoding).
Recall that Sayyad et al. and Henard et al. used the core encoding and the (n + 1)
approach. For all of the EMO algorithms, this combination (core encoding, (n + 1)
approach) is slower than the SIP method (novel encoding, 1 + n approach). If we fix the
overall combination of encoding and approach, we find that in most cases, SPEA2+SDE
is the slowest EMO algorithm, IBEA is the second slowest, and the other four have
similar performance.

6. DISCUSSION

We now explore the results and what they tell us about the research questions.

Table XXII. Random Model, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 0.112/0.7962 0.223/0.7476 0.000/0.6908 0.001/0.6157 0.000/0.7323
MOEA/D-PBI 0.000/0.7088 0.001/0.7151 1.000/0.0093 0.414/0.6356
MOEA/D-TCH 0.000/0.7135 1.000/0.6500 0.737/0.5575
MOEA/D-WS 0.000/0.6708 0.003/0.6366

IBEA 0.000/0.7746

Table XXIII. Time Taken in Seconds, Randomly Generated Model

Encoding EMO Algorithm (n + 1) 1 + n

Direct encoding

NSGA-II 132.326000 131.444000
IBEA 165.169000 158.104000

MOEA/D-WS 148.954660 142.332000
MOEA/D-TCH 159.605793 145.403000
MOEA/D-PBI 164.638539 150.022000
SPEA2+SDE 596.126000 145.257000

Core encoding

NSGA-II 105.831000 103.188000
IBEA 147.404000 132.454000

MOEA/D-WS 136.588161 115.169000
MOEA/D-TCH 145.6549118 108.499000
MOEA/D-PBI 141.3576826 112.164000
SPEA2+SDE 428.576000 168.624000

Novel encoding

NSGA-II 101.760000 98.758000
IBEA 154.399000 131.465000

MOEA/D-WS 135.978589 104.442000
MOEA/D-TCH 132.905541 99.700000
MOEA/D-PBI 131.915617 102.999000
SPEA2+SDE 247.786000 223.777000

6.1. Research Question 1: The Importance of the Encoding

It is clear that the encoding does matter: the novel encoding consistently outperformed
the direct encoding and also both the core and hierarchical encodings (where these were
evaluated). This was both for the case where all objectives are considered together and
for the 1 + n approach. Interestingly, the novel encoding significantly outperformed the
core encoding in the experiments with Amazon with realistic attributes. The strongest
result was with the larger randomly generated model, where the SIP method (using the
novel encoding and the 1 + n approach) was the only one that returned valid products.
The results indicate that the encoding does affect performance, with the novel encoding
proving to be most effective.

6.2. Research Question 2: The Value of Using the 1 + n Approach

The results are also clear here: the 1 + n approach consistently outperformed the (n +
1) approach. If we consider all of the published feature models (i.e., not the randomly
generated feature model), then we find that the 1 + n approach with the novel en-
coding returned populations containing only valid products on all runs except when
using Amazon with realistic attribute values. For this case (Amazon, realistic attribute
values), the 1 + n approach gave superior values for all of the measures (HV, VN, and
VR) and returned only valid products on all executions except when using IBEA or
MOEA/D-PBI. For the larger feature model, we only obtained valid products when
we used the novel encoding and 1 + n approach. The results suggest that the 1 + n
approach was more effective than the (n + 1) approach.

Table XXIV. Best-Performing EMO Algorithm, Novel Encoding, and 1 + n

Subject Model Best-Performing MOEA Superior to All Except
E-Shop 50,000 MOEA/D-TCH MOEA/D-WS, MOEA/D-PBI
E-Shop 500,000 MOEA/D-WS MOEA/D-TCH

WebPortal IBEA MOEA/D-PBI
Amazon SPEA2+SDE NSGA-II, IBEA, MOEA/D-WS, MOEA/D-TCH
Berkeley SPEA2+SDE IBEA
Drupal IBEA MOEA/D-PBI

ERS NSGA-II SPEA2+SDE, MOEA/D-TCH, MOEA/D-WS
Drupal, real SPEA2+SDE IBEA

Amazon, realistic SPEA2+SDE MOEA/D-WS
Larger model SPEA2+SDE NSGA-II, IBEA

6.3. Research Question 3: The Relative Performance of the EMO Algorithms

An interesting initial observation is that there is no “clear winner,” in contrast to previ-
ous work that found IBEA to be superior to other techniques. One possible explanation
for this is our use of a range of EMO algorithms that are not based on Pareto dom-
inance. However, there is a second explanation, which is that the best results were
obtained with the novel encoding and the 1 + n approach: this is not a representation
or approach previously used.

Since the novel encoding with the 1 + n approach consistently gave the best perfor-
mance, we focus on the most effective EMO algorithm when using this combination.
Since the software engineer is only interested in valid products, we compared first on
the basis of the VN score, then on VR (if two or more had the best VN), and finally on
the HV values (if two or more had the best VN and VR). A high HV value is preferred,
since it means that the obtained valid product set has a good combined performance
of convergence and diversity. Table XXIV gives the best-performing EMO algorithms
for the experiments using the novel encoding and 1 + n approach. For each model, the
second column gives the best-performing EMO algorithm, and the third column gives
the other EMO algorithms where the differences in HV values were not statistically
significant. It is interesting to observe that SPEA2+SDE was the most effective EMO
algorithm for the three experimental subjects that proved to be most challenging for
search (Drupal and Amazon with realistic attribute values and the larger randomly
generated model). It is also worth noting that IBEA typically had high values for VR.
This is consistent with the fact that IBEA prefers boundary solutions of the problem
(i.e., the products having the optimal value of some objectives).

The main point is that there is no clear “best” EMO algorithm. In fact, in contrast to
earlier work, there is one subject for which NSGA-II outperforms all others. While in
many cases SPEA2+SDE provided the best performance, experiments found this to be
the slowest technique and any differences in performance may well be negated by this
factor.

Note that one would expect the best-performing algorithm to depend on the nature
of the given product selection optimization problem. For example, SPEA2+SDE has
been found to perform well with problems in which convergence is difficult, such as
those with a large number of objectives. Thus, it might be a good choice if the software
engineer has a particularly large feature model or there is a large number of objectives.
The three MOEA/D algorithms are suitable for problems in which it is hard to find a
set of widely distributed valid products. IBEA is a good choice for the decision maker
who is more interested in the boundary solutions (i.e., the products having extreme
value of one or several objectives) of the problem.

6.4. Research Question 4: The Effect of Using Realistic Attribute Values

The results for this were quite similar, in that the novel encoding and the 1 + n approach
both led to improvements in performance. In particular, for the Drupal model, which
has real attribute values, the SIP method always returned a population that contained
only valid products. Interestingly, for the Amazon model, we found that IBEA was
ineffective when we used the (n + 1) approach: it returned no valid products. The
performance of IBEA was also poor with the 1 + n approach: in only one run of the direct
and core encodings did it return valid products, though it did return valid products
in 17 out of 30 runs with the novel encoding. The overall results for the Amazon
model were also much poorer with realistic attributes than with randomly generated
attributes. This might indicate that the nature of “real” models is a little different from
randomly generated models, but there is an alternative explanation, which is that
the differences were caused by moving from five to eight objectives. This is consistent
with previous work that has found that the time taken depends more on the number
of objectives than the number of features [Olaechea et al. 2014]. Observe that for
the Amazon model, the results for the “unenhanced” approach of Sayyad et al. and
Henard et al. ((n + 1) approach, core encoding, without using seeding or specialized
replacement and mutation operators) were very poor: only on two runs of the EMO
algorithms was a valid product returned. This is in contrast with the SIP method,
where several EMO algorithms (including NSGA-II) returned valid products on all
runs.

Observe that we did not tune the EMO algorithms used. Tuning can significantly
affect performance and so there is potential, for example, for some other methods to
work with the randomly generated model if tuned. However, the lack of tuning can be
seen as a strength since the SIP method was effective without tuning.

6.5. Research Question 5: The Larger Model

The results with the larger randomly generated model were consistent with those with
other models but were much more extreme. We only obtained valid products when we
used both the novel encoding and the 1 + n approach, but all of the EMO algorithms
were effective with this combination. Interestingly, even NSGA-II was effective with
this combination, returning valid products in 24 of the 30 runs. This is in contrast to
the results with previous work, in which NSGA-II performs poorly.

6.6. Research Question 6: Number of Valid Products Returned

Here we are interested in the VR values as well as the number of searches that re-
turned at least one valid product. Again, we find that the SIP method outperforms the
alternatives. It is particularly noticeable that the 1 + n approach always had a value
of 100% if at least one valid product was returned. However, this is not too surprising
since the 1 + n approach will consider a valid product to be superior to all invalid
products: once a valid product has been found, a search might generate variants of
it and any of these that are valid are likely to be retained. Once a valid product has
been found, it might act a little like a seed in the approach of Sayyad et al. [2013c] but
with the additional benefit that any valid product found is prioritized over all invalid
approaches. When using the (n + 1) approach with a given EMO algorithm, in almost
all cases the novel encoding led to a higher VR value than the core encoding, and this,
in turn, led to a higher VR value than the direct encoding.

6.7. Research Question 7: Time Taken

If we compare algorithms (for fixed encoding and approach), we find that in most cases,
SPEA2+SDE is the slowest and IBEA the next slowest. When comparing NSGA-II and

the variants of MOEA/D, the pattern varies with the exception that NSGA-II is always
fastest. However, the differences between NSGA-II and the variants of MOEA/D were
relatively small when using the SIP method. Interestingly, the SIP method is always
faster than the (n + 1) approach with either the direct encoding or the core encoding.
Recall that Sayyad et al. [2013c]. and Henard et al. [2015] used the core encoding and
the (n + 1) approach. In addition, the “enhanced” versions previously devised, that
proved to be effective, either required an additional phase to generate a seed [Sayyad
et al. 2013c] or used more complicated replacement and mutation operators based on
a SAT solver [Henard et al. 2015].

Note that for a feature model, the execution time of the EMO algorithms heavily
depends on the number of features. For the larger feature model, the execution time of
an algorithm was at least 100 seconds in most cases (as shown in XXIII). In contrast,
for the other feature models, which have far fewer features, the algorithms took much
less time. For example, for the E-shop model with 50,000 evaluations, the execution of
NSGA-II with the SIP method required less than 2.5 seconds.

6.8. Summary

The results of the experiments suggest that the choice of encoding and approach have
more impact on performance than the choice of EMO algorithm. This effect is partic-
ularly noticeable for the larger randomly generated model, where only with the novel
encoding and 1 + n approach were valid products returned; with this combination,
some EMO algorithms returned valid products in most searches. The results with the
Amazon feature model, when using realistic attribute values, were also poorer, and it is
unclear whether this is a result of using realistic values for attributes or simply having
more objectives. It is interesting to observe that for both of these models, we have that
the results using the “unenhanced” approach of Sayyad et al. [2013c] and Henard et al.
[2015] (core encoding, (n + 1) approach) were extremely poor. Thus, the experiments
have replicated the results of Sayyad et al. [2013c] and Henard et al. [2015], which
show that their “unenhanced” approach can perform poorly. However, we have avoided
the need to introduce an additional initial search (as used by Sayyad et al. [2013c])
or additional, more complicated forms of replacement and mutation based on a SAT
solver (as used by Henard et al. [2015]) and have shown that instead, we can obtain
good performance by using the novel encoding and the 1 + n approach. The final obser-
vation is that the running time is less for the SIP method than with the “unenhanced”
approach of Sayyad et al. [2013c] and Henard et al. [2015].

7. THREATS TO VALIDITY

This section briefly reviews the threats to validity in the experimental study and how
these were reduced. We consider threats to internal validity, construct validity, and
external validity.

Threats to internal validity concern any factors that might introduce bias. One pos-
sible source of bias is the tool used to perform the experiments, and so we used publicly
available code developed by others and thoroughly tested this. The testing process in-
volved testing individual components, a review being carried out by another author
(who did not write the code), and performing some initial experiments. We used the
same settings as Sayyad et al. and Henard et al. for the previously used EMO algo-
rithms, and for the other algorithms we used values that have been recommended in
previous studies. Since the optimization methods used are stochastic, we also aver-
aged results over 30 runs in order to reduce the impact of chance. In the calculation
of HV, the choice of the reference point may introduce bias. Since the problem’s range
is available, we set the reference point to the Nadir point of the problem’s range (the
point constructed with the worst value on each objective). This is a commonly used

setting and can provide a comprehensive assessment of the solution set’s performance
in terms of both convergence and diversity. In addition, when a solution set involves
seven or more objectives, it is often infeasible to precisely measure its HV value. Here,
we estimated the HV of such a solution set by using the Monte Carlo sampling method
proposed by Bader and Zitzler, with 10,000,000 sampling points being used to ensure
the accuracy of the HV results [Bader and Zitzler 2011].

Threats to construct validity reflect the possibility that the measurement process did
not reflect the properties that are of interest in practice. We focused on the generation
of valid products since an invalid product should be of no value (it is a product that
cannot be produced). The five objectives used in most of the experiments are those used
in the previous studies of Sayyad et al. and Henard et al. It is possible that the use of
a different set of objectives would lead to different results, and this is something that
might be studied in future work.

Finally, threats to external validity relate to the degree to which we can generalize
from the experiments. This is almost always a problem in software engineering research
since the population is not known and there is no way of performing uniform sampling
from this population. We reduced the effect of this by using feature models that were
previously considered in the literature and adding two additional feature models. In
addition, previous work has randomly generated values for the attributes: we did not
have to do this for the two new feature models (we had access to either real values or
ranges of values from which values could be produced). We also used a larger, randomly
generated, feature model.

EMO algorithms involve a number of configuration parameters, such as crossover
and mutation rate, population size, and number of evaluations (or generations). Param-
eter tuning is an important issue and can significantly affect the performance of search
algorithms. However, tuning often takes much longer than running the algorithms
[Olaechea et al. 2014]. Despite using recommended values from the literature, the con-
sidered EMO algorithms could be further improved by careful turning, especially when
increasing the population size and the number of evaluations (this is already shown
in the E-shop instance). The fact that the SIP method works well without tuning is
promising.

8. RELATED WORK

8.1. Single-Objective Optimization

Initial work in the area of product selection used single-objective optimization, and we
start by describing these approaches.

White et al. [2009, 2008] proposed a polynomial-time approximation algorithm, called
Filtered Cartesian Flattening (FCF), for the selection of a highly optimal feature set
that adheres to global resource constraints (e.g., budget). FCF transforms an optimal
feature selection problem into an equivalent Multi-dimensional Multiple-choice Knap-
sack Problem (MMKP), which is then solved using an MMKP approximation algorithm.
The evaluation results showed that FCF can generate approximate solutions for fea-
ture models with up to 10,000 features in seconds. More recently, Guo et al. [2011] used
a genetic algorithm named GAFES to tackle the same problem. As a part of their algo-
rithm, they used a repair operator to transform invalid products into valid ones, after
crossover. GAFES uses a single-objective approach by aggregating various weighted
objectives into a single fitness function. They reported that GAFES outperforms the
FCF algorithm on synthetically generated feature models.

M ̈uller [2011] proposed a Simulated Annealing algorithm for the selection of products
to be built from an SPL. The search was guided using a single-objective function to
maximize the profit as a fixed tradeoff between generated revenue and incurred cost.

Wang and Pang [2014] presented an Ant Colony Optimization algorithm for opti-
mal product selection in SPLs and compared it to the Filtered Cartesian Flattening
algorithm of White et al. [2009, 2008] and the GAFES genetic algorithm of Guo et al.
[2011]. Experiments were conducted using randomly generated feature models with
up to 1,000 features. They concluded that their proposal offers a modest compromise
between both approaches in terms of solution quality and performance.

The disadvantage of these approaches, with respect to many-objective optimization,
is that a single-objective search either uses less information about the features or
combines objectives to form one value and so imposes a weighting on the objectives.

8.2. Many-Objective Optimization

Sayyad et al. [2013a, 2013b, 2013d] compared seven different EMO algorithms for
optimal product selection in SPLs. The experiments aimed to optimize five objectives on
two feature models with up to 290 features and synthetically generated attributes. The
authors concluded that the IBEA algorithm outperforms other widely used algorithms
such as NSGA-II. In subsequent works [Sayyad et al. 2013c; Sayyad 2014], Sayyad
et al. presented several heuristics to improve the performance of many-objective SPL
optimal product selection, two of which were to remove core and dead features from
the input feature model and plant a valid solution like a seed in the initial population.
These heuristics were evaluated on seven feature models with up to 6,888 features
from the Linux Variability Analysis Tools (LVAT) repository.9 Our work differs from
the aforementioned since we propose a purely search-based method and avoid the need
for a potentially expensive initial step that devises a seed (this took approximately 3
hours for the Linux Kernel feature model in Sayyad’s work).

Sayyad et al. introduced two additional enhancements: the PUSH method and the
PULL method [Sayyad 2014]. In the PUSH method, the mutation operator is adapted
so that it cannot be applied in certain circumstances in which it would be guaran-
teed to lead to an invalid product (e.g., deleting a parent but not its children). The
motivation for the PUSH method is similar to our motivation for the novel encoding.
However, by adapting the encoding, rather than the mutation operator, we ensure that
no candidate solutions fail certain constraints. In the PULL method, the number of
constraint violations is given a weight of 4 (the other four objectives have a weight of
1) [Sayyad 2014]. The motivation for the PULL method is the same as our motivation
for the 1 + n approach: the software engineer is only interested in valid products and
so the number of constraint violations is the most important objective. However, our
approach is rather different: we first consider the number of constraints that fail and
only after this do we consider the other objectives. As a result, we avoid the need to
set a value for a weight and we also have an approach that works with a wide range of
EMO algorithms, including algorithms that are not based on Pareto dominance (e.g.,
IBEA and MOEA/D). The degree to which EMO algorithms are affected by weights
varies and so the PULL technique would have to be adapted for different algorithms.
Another advantage of the 1 + n approach is that the computational cost is reduced.
Sayyad found that the combination of the PUSH and PULL methods worked well for
smaller models but performed poorly when applied to the Linux kernel model.

Cruz et al. [2013] proposed using many-objective optimization for the generation of
SPL product portfolios. For the evaluation of their work, they used the NSGA-II algo-
rithm for the selection of products minimizing cost and maximizing user relevance on a
library management case study with 23 features and four attributes per feature. In con-
trast, this work presents a thorough comparison of enhanced EMO algorithms for opti-
mal product selection in SPLs using a variety of feature models and multiple objectives.

9https://code.google.com/p/linux-variability-analysis-tools/.

https://code.google.com/p/linux-variability-analysis-tools/

Some authors have addressed the problem of optimal product selection using
constraint programming techniques [Benavides et al. 2005; Karatas et al. 2013; Li
et al. 2012; Siegmund et al. 2012]. These methods are able to find exact solutions for
small models but exhibit exponential time complexity and poor scalability. Guo et al.
[2014] proposed using parallel computation to find exact optimal products in SPLs
more quickly. However, the results suggest that it would still take days to obtain valid
solutions for a feature model with 290 features and seven objectives. Compared to
their work, this article addresses the problem of finding approximate optimal products
in a reasonable time, even in large-scale problems.

Olaechea et al. [2014] compared an incremental exact algorithm named GIA with
an approximate approach using IBEA on five feature models with up to 290 features
and seven objectives. Four of these models were used in the research reported in this
article (EShop, WebPortal, ERS, and Berkeley). They concluded that GIA can produce
optimal solutions in less than 2 hours for small SPLs with up to 44 features, while
IBEA can produce approximate solutions with an average of at least 42% accuracy
in less than 20 minutes for SPLs with up to 290 features. Furthermore, the authors
found that IBEA is highly sensitive to its parameter settings (such as the mutation
rate, population size, and evaluation number), which suggests that substantial effort
may be required to find the best parameter values for acceptable approximation. This
implies that it may be possible to improve the performance of the EMO algorithms
considered in our study. A finely tuned parameter setting (despite the high cost) could
lead to a further performance improvement of the EMO algorithms, especially with
respect to the population size and the number of evaluations.

Henard et al. [2015] enhanced the first approach of Sayyad et al. [2013d] by using
the core encoding and also a SAT solver to implement new mutation and replacement
operators used in an EMO algorithm. This removed the need to produce a seed, but it
did introduce more complicated mutation and replacement operators and the need to
set the values of additional parameters that state how often these new operators are
used. The results were promising, with valid products being returned for the examples,
with up to 6,888 features, used by Sayyad et al. [2013c]. Henard et al. thus showed
that it is not necessary to seed the search. However, their method did require the use
of additional parameters, and there is the potential for the use of these operators to
slow down the search. Although the authors did not state exactly how long it took to
apply their new operators, they did say that this took less than 6 seconds, suggesting
that the use of these operators should be limited. Compared to their work, the 1 +
n approach does not require sophisticated, computationally more expensive, replace-
ment and mutation operators. Note that for the model with 10,000 features, the 1 + n
approach was able to find valid products in a search that took, on average, less than 4
minutes. Henard et al. and Sayyad et al. gave their search 30 minutes.

Tan et al. proposed a novel feedback-directed mechanism to improve the results of
EMO algorithms for optimal product selection in SPLs [Tan et al. 2015]. In particular,
the authors proposed to use the number of constraints violated during the search as
feedback to guide the mutation and crossover operators. The essential idea is that it is
desirable to change the parts of a chromosome that are involved in violated constraints.
For example, such genes were given a higher mutation rate than those that are not in-
volved in constraint violation. Core and dead features were also automatically removed
from the model using a SAT solver. The method was integrated into four different EMO
algorithms and evaluated with six feature models including the Linux kernel model
(6,888 features). As in the works of Sayyad et al. and Hernan et al., searches were
performed with five objectives and randomly generated attribute values. The results
showed that the proposed method was effective in generating substantially more cor-
rect products than unguided EMO algorithms in less time. However, their approach

was unable to generate valid products for the Linux kernel feature model. To overcome
this limitation, they resorted to the seeding strategy proposed by Sayyad et al. [2013c].
Both methods combined generated 50% of valid solutions for the Linux feature model
in 4 seconds. The seed was generated using the IBEA algorithm and their feedback-
directed method with two objectives in about 40 seconds. The approach taken has
similarities to that of Henard et al., in that they focus on adapting the variation opera-
tors used by the EMO algorithm (mutation and crossover). It thus differs significantly
from the SIP method, where the focus is on the encoding and the 1 + n approach. The
focus of the enhancements is on stopping mutation and crossover from converting valid
products into invalid products, but valid products might still be removed by selection.
In contrast, the 1 + n approach ensures that valid products can only be removed by
selection if all products in the population are valid. It would therefore be interesting to
see whether further benefits can be obtained by combining the enhancements in Tan
et al.’s method with those in the SIP method.

Search-based techniques have been extensively used in other SPL development
phases, such as architectural design and testing. For a detailed survey on the use
of search-based techniques in SPLs, we redirect the reader to Harman et al. [2014] and
Lopez-Herrejon et al. [2015].

It is interesting to note that previous approaches have focused on three important
aspects of EMO algorithms: initialization of the population (seeding), individual encod-
ing, and variation (crossover). The 1 + n approach appears to be the first piece of work
that aims to tackle the fourth important component of an EMO algorithm: selection.
Finally, we may remark that this is the first work on optimal SPL product selection
reporting results with realistic attributes rather than synthetically generated values,
which provide more helpful insights on the effectiveness of EMO algorithms. Further-
more, note that it is straightforward to introduce the 1 + n approach into an EMO
algorithm, and it should be possible to use it with most, if not all, EMO algorithms.
It is also noteworthy that the enhancements used in our work are tangential to those
introduced by previous approaches, and so it should be possible to combine these en-
hancements with those previously devised including the feedback-directed approach of
Tan et al.

9. CONCLUSIONS

A feature model describes the set of valid products in a software product line. Previous
work explored the use of evolutionary many-objective optimization (EMO) algorithms
in choosing optimal products from a feature model. This work found that such methods
did not scale and introduced two approaches that addressed this: Sayyad et al. [2013c,
2013d] used an initial search to find a valid product with which to seed the search, and
Henard et al. [2015] introduced new replacement and mutation operators based on a
SAT solver.

This article took a different approach, which is to find ways of directly enhancing
the search. We had two main enhancements. The first was a new representation that
enforces a number of the constraints in a feature model. As a result of this encoding,
all elements of the search space satisfy the enforced constraints, potentially making
it easier to find valid products. The second enhancement was to introduce the 1 + n
approach in which EMO algorithms first optimize on the number of constraints that
fail and only then on the other objectives. The motivation for the second enhancement
was that invalid products are of no value to the software engineer. This led to the SIP
method that used the novel encoding and the 1 + n approach.

We carried out experiments to evaluate several combinations: two approaches (the
(n + 1) approach in which all objectives are considered to be equal or using the 1 +
n approach) and three encodings (the direct encoding, the core encoding introduced

by Sayyad et al. [2013c] and also used by Henard et al., or the proposed novel encod-
ing). The experimental subjects were previously used feature models, two new feature
models (Amazon and Drupal), and a larger (10,000 feature) randomly generated fea-
ture model. Previous work has used randomly generated attributes, but for Amazon
and Drupal, we had realistic attribute values. For the Drupal model, the attribute
values were obtained by repository mining, while for the Amazon model, we had real
attributes and constraints on these (we randomly generated values that satisfied the
constraints).

The results of the experiments were promising, with the SIP method always out-
performing the other combinations. In contrast to previous work, there was no clear
pattern when comparing the different EMO algorithms, and even the Pareto-based
approach, NSGA-II, was often effective. Instead, the results suggest that the overall
approach has much more impact than the choice of EMO algorithm. When using the
SIP method, almost all experiments returned populations that contained only valid
products. The main exception was the larger randomly generated model, where every
EMO algorithm had some searches that failed to find valid products. Note, however,
that several EMO algorithms returned valid products in the majority of experiments
with this combination. In addition, for this larger model, the only experiments that re-
turned valid products were those that used the SIP method. Thus, these experiments
provide evidence that the SIP method leads to several EMO algorithms scaling to larger
feature models.

There are several lines of future work. First, Henard et al. [2015] and Tan et al. [2015]
introduced novel mutation and replacement operators that use a SAT solver; it would
be interesting to see whether these would further improve the SIP method. It should
also be possible to further enhance our representation so that additional constraints
are enforced. The experiments fixed the number of evaluations used, and it would be
interesting to see whether the results change significantly if one instead fixes the time
taken. However, the SIP method (novel encoding and 1 + n approach) was found to
be faster than the previously proposed method (core encoding and (n + 1) approach),
and so this would not affect the overall conclusions. The results were poorer with the
models with realistic attribute values, and we require additional studies to determine
whether this is a result of the values used (and so randomly generated values are not
representative) or the number of objectives. If the former is the case, then it would
be interesting to explore the characteristics of attribute values for real models. There
might also be value in using multiple techniques and forming a final set of products
from the resultant populations. Finally, it would be interesting to evaluate the methods
on additional examples and, in particular, on other feature models.

APPENDIX

Table XXV. E-Shop, 500,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000031 30 1.53% 0.114196 15 100%
IBEA 0.209585 3 31.63% 0.145794 19 100%

MOEA/D-WS 0.068365 30 19.38% 0.212465 4 100%
MOEA/D-TCH 0.000000 0 0.00% 0.200243 2 100%
MOEA/D-PBI 0.066717 17 26.60% 0.182576 6 100%
SPEA2+SDE 0.000000 0 0.00% 0.163580 17 100%

Table XXVI. E-Shop, 500,000 Evaluations, Hierarchical Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000165 30 3.13% 0.227710 3 100%
IBEA 0.262434 6 34.86% 0.229755 5 100%

MOEA/D-WS 0.089034 30 26.43% 0.212465 4 100%
MOEA/D-TCH 0.000000 0 0.00% 0.200243 2 100%
MOEA/D-PBI 0.074348 2 27.34% 0.182576 6 100%
SPEA2+SDE 0.000000 0 0.00% 0.163580 17 100%

Table XXVII. E-Shop, 500,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000157 30 3.00% 0.183741 30 100%
IBEA 0.290457 30 32.51% 0.202537 30 100%

MOEA/D-WS 0.114511 30 24.91% 0.243644 30 100%
MOEA/D-TCH 0.000000 0 0.00% 0.218663 30 100%
MOEA/D-PBI 0.112882 30 30.27% 0.148149 30 100%
SPEA2+SDE 0.139973 1 1.00% 0.175895 30 100%

Table XXVIII. E-Shop, 500,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000522 30 4.31% 0.209032 30 100%
IBEA 0.297780 30 81.10% 0.234368 30 100%

MOEA/D-WS 0.262634 30 45.66% 0.255900 30 100%
MOEA/D-TCH 0.165437 25 17.16% 0.252809 30 100%
MOEA/D-PBI 0.249707 30 55.57% 0.229405 30 100%
SPEA2+SDE 0.237403 30 19.47% 0.194677 30 100%

Table XXIX. E-shop, 500,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 0.531/0.7959 0.000/0.8589 0.000/0.8589 0.000/0.8589 0.000/0.8589
MOEA/D-PBI 0.039/0.8302 1.000/0.3359 0.000/0.8322 0.000/0.8131
MOEA/D-TCH 0.000/0.8589 0.006/0.8379 1.000/0.2996
MOEA/D-WS 0.000/0.8589 0.000/0.8589

IBEA 0.002/0.8589

Table XXX. Amazon, 50,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000000 0 0.00% 0.129914 28 100%
IBEA 0.144944 30 8.11% 0.132120 22 100%

MOEA/D-WS 0.119316 1 5.56% 0.112178 22 100%
MOEA/D-TCH 0.000000 0 0.00% 0.109089 14 100%
MOEA/D-PBI 0.107419 2 8.81% 0.106987 7 100%
SPEA2+SDE 0.116526 2 1.00% 0.128739 25 100%

Table XXXI. Amazon, 50,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000000 0 0.00% 0.133433 26 100%
IBEA 0.151427 30 12.58% 0.134244 26 100%

MOEA/D-WS 0.127254 2 8.97% 0.112202 21 100%
MOEA/D-TCH 0.099013 1 2.38% 0.109077 20 100%
MOEA/D-PBI 0.107979 9 6.77% 0.110211 7 100%
SPEA2+SDE 0.115566 8 1.00% 0.131327 26 100%

Table XXXII. Amazon, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.110013 30 1.89% 0.160488 30 100%
IBEA 0.163411 30 25.18% 0.157962 30 100%

MOEA/D-WS 0.164305 30 32.26% 0.158237 30 100%
MOEA/D-TCH 0.118666 24 5.96% 0.155518 30 100%
MOEA/D-PBI 0.165420 30 32.32% 0.140233 30 100%
SPEA2+SDE 0.126991 30 1.93% 0.161408 30 100%

Table XXXIII. Amazon, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 1.000/0.0191 0.141/0.4848 1.000/0.0363 0.026/0.5191 0.000/0.8189
MOEA/D-PBI 0.000/0.8302 0.000/0.8302 0.000/0.6871 0.000/0.7444
MOEA/D-TCH 0.070/0.4428 1.000/0.0687 0.585/0.2520
MOEA/D-WS 1.000/0.0515 1.000/0.2004

IBEA 0.331/0.3359

Table XXXIV. Berkeley, 50,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.091832 30 12.38% 0.180725 30 100%
IBEA 0.178069 30 38.02% 0.180511 30 100%

MOEA/D-WS 0.156807 30 39.24% 0.165982 30 100%
MOEA/D-TCH 0.154944 30 18.75% 0.177966 30 100%
MOEA/D-PBI 0.155631 30 33.14% 0.171807 30 100%
SPEA2+SDE 0.175910 30 20.17% 0.181689 30 100%

Table XXXV. Berkeley, 50,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.143163 30 22.47% 0.180552 30 100%
IBEA 0.178476 30 49.42% 0.179754 30 100%

MOEA/D-WS 0.157743 30 45.63% 0.166099 30 100%
MOEA/D-TCH 0.164103 30 31.07% 0.176773 30 100%
MOEA/D-PBI 0.156345 30 40.85% 0.170947 30 100%
SPEA2+SDE 0.179584 30 32.00% 0.181689 30 100%

Table XXXVI. Berkeley, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.176215 30 50.97% 0.180645 30 100%
IBEA 0.179804 30 99.74% 0.180814 30 100%

MOEA/D-WS 0.160527 30 56.89% 0.166096 30 100%
MOEA/D-TCH 0.175297 30 76.25% 0.177354 30 100%
MOEA/D-PBI 0.162768 30 56.29% 0.180148 30 100%
SPEA2+SDE 0.181372 30 49.00% 0.181689 30 100%

Table XXXVII. Berkeley, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 0.000/0.9182 0.023/0.9194 0.000/0.9329 0.000/0.9182 0.000/0.9182
MOEA/D-PBI 1.000/0.4409 0.095/0.6478 0.000/0.8709 0.037/0.8493
MOEA/D-TCH 0.000/0.8589 0.000/0.8599 0.368/0.8709
MOEA/D-WS 0.000/0.8709 0.000/0.8721

IBEA 1.000/0.3535

Table XXXVIII. Drupal, 50,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000389 30 3.37% 0.246052 30 100%
IBEA 0.265727 30 54.19% 0.276827 30 100%

MOEA/D-WS 0.043566 30 18.75% 0.227422 30 100%
MOEA/D-TCH 0.098523 1 2.04% 0.265018 30 100%
MOEA/D-PBI 0.048361 30 27.19% 0.268241 30 100%
SPEA2+SDE 0.202298 30 12.93% 0.265182 30 100%

Table XXXIX. Drupal, 50,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.000860 30 4.61% 0.254493 30 100%
IBEA 0.275768 30 67.76% 0.280267 30 100%

MOEA/D-WS 0.190881 30 28.65% 0.232008 30 100%
MOEA/D-TCH 0.169133 30 9.47% 0.253550 30 100%
MOEA/D-PBI 0.198277 30 38.79% 0.254135 30 100%
SPEA2+SDE 0.244092 30 21.43% 0.268569 30 100%

Table XL. Drupal, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.129260 30 8.05% 0.253853 30 100%
IBEA 0.281322 30 93.63% 0.280415 30 100%

MOEA/D-WS 0.227704 30 53.19% 0.231898 30 100%
MOEA/D-TCH 0.219116 30 31.34% 0.262656 30 100%
MOEA/D-PBI 0.227913 30 57.59% 0.273876 30 100%
SPEA2+SDE 0.256962 30 43.30% 0.269118 30 100%

Table XLI. Drupal, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 0.000/0.8550 0.000/0.8589 0.000/0.8589 0.640/0.6527 1.000/0.5669
MOEA/D-PBI 0.000/0.8589 0.109/0.8474 0.000/0.8589 0.003/0.7787
MOEA/D-TCH 0.201/0.8111 0.000/0.8589 0.000/0.8589
MOEA/D-WS 0.324/0.8589 0.000/0.8589

IBEA 0.000/0.8589

Table XLII. ERS, 50,000 Evaluations, Direct Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.033958 1 1.03% 0.079792 30 100%
IBEA 0.070791 30 6.51% 0.077870 30 100%

MOEA/D-WS 0.044121 13 6.16% 0.078050 27 100%
MOEA/D-TCH 0.000000 0 0.00% 0.069301 30 100%
MOEA/D-PBI 0.044723 17 6.66% 0.038985 30 100%
SPEA2+SDE 0.347087 30 48.83% 0.078671 30 100%

Table XLIII. ERS, 50,000 Evaluations, Core Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.038090 26 1.07% 0.082308 30 100%
IBEA 0.075840 30 8.60% 0.079331 30 100%

MOEA/D-WS 0.056119 30 10.86% 0.082215 30 100%
MOEA/D-TCH 0.030018 6 1.98% 0.067155 30 100%
MOEA/D-PBI 0.056045 30 10.80% 0.039005 30 100%
SPEA2+SDE 0.045583 14 1.50% 0.080126 30 100%

Table XLIV. ERS, 50,000 Evaluations, Novel Encoding

Algorithm (n + 1) Approach 1 + n Approach
HV VN (/30) VR HV VN (/30) VR

NSGA-II 0.049091 30 2.05% 0.082716 30 100%
IBEA 0.080182 30 16.46% 0.079453 30 100%

MOEA/D-WS 0.074869 30 20.39% 0.082129 30 100%
MOEA/D-TCH 0.043524 16 2.12% 0.080916 30 100%
MOEA/D-PBI 0.075265 30 20.28% 0.040918 30 100%
SPEA2+SDE 0.075718 30 7.53% 0.080945 30 100%

Table XLV. ERS, 50,000 Evaluations, Novel Encoding: Statistical Tests

NSGA-II IBEA MOEA/D-WS MOEA/D-TCH MOEA/D-PBI
SPEA2+SDE 0.029/0.4339 0.183/0.4453 0.494/0.4067 1.000/0.0229 0.000/0.8634
MOEA/D-PBI 0.000/0.8661 0.004/0.8642 0.000/0.8634 0.000/0.8634
MOEA/D-TCH 0.028/0.4978 0.192/0.4060 0.473/0.3626
MOEA/D-WS 1.000/0.2949 0.000/0.7508

IBEA 0.000/0.7494

ACKNOWLEDGMENTS

We would like to thank the referees for their many helpful suggestions.

REFERENCES

Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler. 2009. Theory of the hypervolume indicator:
Optimal μ-distributions and the choice of the reference point. In Proceedings of the 10th ACM SIGEVO
Workshop on Foundations of Genetic Algorithms (FOGA’09). 87–102.

Johannes Bader and Eckart Zitzler. 2011. HypE: An algorithm for fast hypervolume-based many-objective
optimization. Evolutionary Computation 19, 1 (2011), 45–76.

Don Batory, David Benavides, and Antonio Ruiz-Cortés. 2006. Automated analysis of feature mod-
els: Challenges ahead. Communications of the ACM December (2006), 45–47. DOI:http://dx.doi.
org/10.1145/1183236.1183264

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated analysis of feature mod-
els 20 years later: A literature review. Information Systems 35, 6 (2010), 615–636. DOI:http://dx.doi.
org/10.1016/j.is.2010.01.001

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. 2007. FAMA: Tooling a framework
for the automated analysis of feature models. In Proceedings of the 1st International Workshop on
Variability Modelling of Software-Intensive Systems (VAMOS’07). 129–134.

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated reasoning on feature models.
In Advanced Information Systems Engineering. Lecture Notes in Computer Science, Vol. 3520. Springer,
Berlin, 491–503. DOI:http://dx.doi.org/10.1007/11431855_34

Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and Patterns. Addison–Wesley.
Jonathas Cruz, Pedro Santos Neto, Ricardo Britto, Ricardo Rabelo, Werney Ayala, Thiago Soares,

and Mauricio Mota. 2013. Toward a hybrid approach to generate software product line portfo-
lios. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13). 2229–2236.
DOI:http://dx.doi.org/10.1109/CEC.2013.6557834

Kalyanmoy Deb. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, New York.
Kalyanmoy Deb and Himanshu Jain. 2014. An evolutionary many-objective optimization algorithm using

reference-point-based nondominated sorting approach, part I: Solving problems with box constraints.
IEEE Transactions on Evolutionary Computation 18, 4 (2014), 577–601.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182–
197.

Juan J. Durillo, Antonio J. Nebro, Francisco Luna, and Enrique Alba. 2009. On the effect of the
steady-state selection scheme in multi-objective genetic algorithms. In Proceedings of the 5th Inter-
national Conference on Evolutionary Multi-Criterion Optimization (EMO’09). Nantes, France, 183–
197.

Naeem Esfahani, Sam Malek, and Kaveh Razavi. 2013. GuideArch: Guiding the exploration of ar-
chitectural solution space under uncertainty. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE’13). IEEE Press, Piscataway, NJ, 43–52. http://dl.acm.org/citation.
cfm?id=2486788.2486795

Tobias Friedrich, Christian Horoba, and Frank Neumann. 2009. Multiplicative approximations and the
hypervolume indicator. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation Conference (GECCO’09). 571–578.

Jesús Garcı́a-Galán, Pablo Trinidad, Omer F. Rana, and Antonio Ruiz-Cortés. 2016. Automated configuration
support for infrastructure migration to the cloud. Future Generation Computer Systems 55 (2016), 200–
212. DOI:http://dx.doi.org/10.1016/j.future.2015.03.006

Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. 2011. A genetic algorithm for
optimized feature selection with resource constraints in software product lines. Journal of Systems and
Software 84, 12 (2011), 2208–2221. DOI:http://dx.doi.org/10.1016/j.jss.2011.06.026

Jianmei Guo, Edward Zulkoski, Rafael Olaechea, Derek Rayside, Krzysztof Czarnecki, Sven Apel, and
Joanne M. Atlee. 2014. Scaling exact multi-objective combinatorial optimization by parallelization.
In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering
(ASE’14). ACM, New York, NY, 409–420. DOI:http://dx.doi.org/10.1145/2642937.2642971

David Hadka and Patrick Reed. 2012. Diagnostic assessment of search controls and failure modes in many-
objective evolutionary optimization. Evolutionary Computation 20, 3 (2012), 423–452.

Mark Harman, Yue Jia, Jens Krinke, Bill Langdon, Justyna Petke, and Yuanyuan Zhang. 2014. Search based
software engineering for software product line engineering: A survey and directions for future work. In

http://dx.doi.org/10.1145/1183236.1183264
http://dx.doi.org/10.1145/1183236.1183264
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1109/CEC.2013.6557834
http://dl.acm.org/citation.cfm?id=2486788.2486795
http://dl.acm.org/citation.cfm?id=2486788.2486795
http://dx.doi.org/10.1016/j.future.2015.03.006
http://dx.doi.org/10.1016/j.jss.2011.06.026
http://dx.doi.org/10.1145/2642937.2642971

Proceedings of the 18th International Software Product Line Conference - Volume 1 (SPLC’14). ACM,
New York, NY, 5–18. DOI:http://dx.doi.org/10.1145/2648511.2648513

Christopher Henard, Mike Papdakis, Mark Harman, and Yves Le Traon. 2015. Combining multi-objective
search and constraint solving for configuring large software product lines. In Proceedings of the 2015
International Conference on Software Engineering (ICSE’15). IEEE Press.

Peter Hofman, Tobias Stenzel, Thomas Pohley, Michael Kircher, and Andreas Bermann. 2012. Domain
specific feature modeling for software product lines. In Proceedings of the 16th International Soft-
ware Product Line Conference - Volume 1 (SPLC’12). ACM, New York, NY, 229–238. DOI:http://dx.doi.
org/10.1145/2362536.2362568

Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima. 2015. Behavior of multi-objective evolutionary algo-
rithms on many-objective knapsack problems. IEEE Transactions on Evolutionary Computation 19, 2
(2015), 264–283.

Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. 2008. Evolutionary many-objective optimization:
A short review. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’08). 2419–
2426.

Kyo C. Kang, Sholom Cohen, James Hess, William Novak, and Spencer Peterson. 1990. Feature–Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21. SEI.

Ahmet Serkan Karatas, Halit Oguztüzün, and Ali Dogru. 2013. From extended feature models
to constraint logic programming. Science of Computer Programming 78, 12 (2013), 2295–2312.
DOI:http://dx.doi.org/10.1016/j.scico.2012.06.004 Special Section on International Software Product Line
Conference 2010 and Fundamentals of Software Engineering (selected papers of {FSEN} 2011).

Sean Quan Lau. 2006. Domain Analysis of E-Commerce Systems Using Feature-Based Model Templates.
Master’s thesis. University of Waterloo, Waterloo.

Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. 2014. An improved two archive algorithm for many-objective
optimization. In IEEE Congress on Evolutionary Computation (CEC’14). IEEE, 2869–2876.

Jian Li, Xijuan Liu, Yinglin Wang, and Jianmei Guo. 2012. Formalizing feature selection problem in software
product lines using 0-1 programming. In Practical Applications of Intelligent Systems, Yinglin Wang
and Tianrui Li (Eds.). Advances in Intelligent and Soft Computing, Vol. 124. Springer, Berlin, 459–465.
DOI:http://dx.doi.org/10.1007/978-3-642-25658-5_55

Miqing Li, Shengxiang Yang, and Xiaohui Liu. 2014a. Shift-based density estimation for Pareto-based algo-
rithms in many-objective optimization. IEEE Transactions on Evolutionary Computation 18, 3 (2014),
348–365.

Miqing Li, Shengxiang Yang, and Xiaohui Liu. 2014b. A test problem for visual investigation of high-
dimensional multi-objective search. In Proceedings of the IEEE Congress on Evolutionary Computation
(CEC’14). 2140–2147.

Miqing Li, Shengxiang Yang, Xiaohui Liu, and Ruimin Shen. 2013. A comparative study on evolutionary
algorithms for many-objective optimization. In Proceedings of the 7th International Conference on Evo-
lutionary Multi-Criterion Optimization (EMO’13). 261–275.

Roberto E. Lopez-Herrejon, Lukas Linsbauer, and Alexander Egyed. 2015. A systematic mapping study of
search-based software engineering for software product lines. Information and Software Technology 61
(2015), 33–51. DOI:http://dx.doi.org/10.1016/j.infsof.2015.01.008

Shinsuke Matsumoto, Yasutaka Kamei, Akito Monden, Ken-ichi Matsumoto, and Masahide Nakamura. 2010.
An analysis of developer metrics for fault prediction. In Proceedings of the 6th International Conference
on Predictive Models in Software Engineering (PROMISE’10). ACM, 18.

Yoshihiro Matsumoto. 2007. A guide for management and financial controls of product lines. In Proceedings
of the 11th International Software Product Line Conference. 162–170.

Marcilio Mendonca, Thiago Tonelli Bartolomei, and Donald Cowan. 2008. Decision-making coordination in
collaborative product configuration. In Proceedings of the 2008 ACM Symposium on Applied Computing
(SAC’08). ACM, New York, NY, 108–113. DOI:http://dx.doi.org/10.1145/1363686.1363715

Marcilio Mendonca, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Software product lines online
tools. In Companion to the 24th ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’09). ACM, 761–762. DOI:http://dx.doi.org/10.
1145/1639950.1640002

Johannes Muller. 2011. Value-based portfolio optimization for software product lines. In Proceedings of
the 2011 15th International Software Product Line Conference (SPLC’11). 15–24. DOI:http://dx.doi.
org/10.1109/SPLC.2011.18

Rafael Olaechea, Derek Rayside, Jianmei Guo, and Krzysztof Czarnecki. 2014. Comparison of exact
and approximate multi-objective optimization for software product lines. In Proceedings of the 18th

http://dx.doi.org/10.1145/2648511.2648513
http://dx.doi.org/10.1145/2362536.2362568
http://dx.doi.org/10.1145/2362536.2362568
http://dx.doi.org/10.1016/j.scico.2012.06.004
http://dx.doi.org/10.1007/978-3-642-25658-5_55
http://dx.doi.org/10.1016/j.infsof.2015.01.008
http://dx.doi.org/10.1145/1363686.1363715
http://dx.doi.org/10.1145/1639950.1640002
http://dx.doi.org/10.1145/1639950.1640002
http://dx.doi.org/10.1109/SPLC.2011.18
http://dx.doi.org/10.1109/SPLC.2011.18

International Software Product Line Conference - Volume 1 (SPLC’14). ACM, New York, NY, 92–101.
DOI:http://dx.doi.org/10.1145/2648511.2648521

Abdel Salam Sayyad. 2014. Evolutionary Search Techniques with Strong Heuristics for Multi-Objective
Feature Selection in Software Product Lines. Ph.D. Dissertation. West Virginia University.

Abdel Salam Sayyad, Katerina Goseva-Popstojanova, Tim Menzies, and Hany Ammar. 2013a. On parameter
tuning in search based software engineering: A replicated empirical study. In Proceedings of the 2013
3rd International Workshop on Replication in Empirical Software Engineering Research (RESER’13).
IEEE Computer Society, Washington, DC, 84–90. DOI:http://dx.doi.org/10.1109/RESER.2013.6

Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. 2013b. Optimum feature selection in
software product lines: Let your model and values guide your search. In Proceedings of the 2013 1st In-
ternational Workshop on Combining Modelling and Search-Based Software Engineering (CMSBSE’13).
22–27. DOI:http://dx.doi.org/10.1109/CMSBSE.2013.6604432

Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. 2013c. Scalable product line config-
uration: A straw to break the camel’s back. In Proceedings of the 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE’13). 465–474. DOI:http://dx.doi.org/10.1109/ASE.
2013.6693104

Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. 2013d. On the value of user preferences in search-
based software engineering: A case study in software product lines. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering (ICSE’13). IEEE Press, 492–501.

David C. Sharp. 1998. Reducing avionics software cost through component based product line development.
In Proceedings of the 17th Digital Avionics Systems Conference. IEEE.

Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven Apel, and Gunter
Saake. 2012. SPL conqueror: Toward optimization of non-functional properties in software product lines.
Software Quality Journal 20, 3–4 (2012), 487–517. DOI:http://dx.doi.org/10.1007/s11219-011-9152-9

Ana B. Sánchez, Sergio Segura, José A. Parejo, and Antonio Ruiz-Cortés. 2015. Variability testing in
the wild: The drupal case study. Software & Systems Modeling (2015), 1–22. DOI:http://dx.doi.org/10.
1007/s10270-015-0459-z.

Tian Huat Tan, Yinxing Xue, Manman Chen, Jun Sun, Yang Liu, and Jin Song Dong. 2015. Optimizing
selection of competing features via feedback-directed evolutionary algorithms. In Proceedings of the
2015 International Symposium on Software Testing and Analysis (ISSTA’15). ACM, New York, NY,
246–256. DOI:http://dx.doi.org/10.1145/2771783.2771808

Thomas Thüm, Don Batory, and Christian Kastner. 2009. Reasoning about edits to feature models. In
Proceedings of the 31st International Conference on Software Engineering (ICSE’09). IEEE Computer
Society, Washington, DC, 254–264. DOI:http://dx.doi.org/10.1109/ICSE.2009.5070526

Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and Thomas Leich. 2014.
FeatureIDE: An extensible framework for feature-oriented software development. Science of Computer
Programming 79 (2014), 70–85. DOI:http://dx.doi.org/10.1016/j.scico.2012.06.002 Experimental Software
and Toolkits (EST 4): A special issue of the Workshop on Academic Software Development Tools and
Techniques (WASDeTT-3 2010).

Pablo Trinidad, David Benavides, Antonio Ruiz-Cortés, Sergio Segura, and Alberto Jimenez. 2008. FAMA
framework. In 12th Software Product Lines Conference (SPLC’08). 359. DOI:http://dx.doi.org/10.
1109/SPLC.2008.50

Tobias Wagner, Nicola Beume, and Boris Naujoks. 2007. Pareto-, aggregation-, and indicator-based methods
in many-objective optimization. In Proceedings of the 4th International Conference on Evolutionary
Multi-Criterion Optimization (EMO’07). 742–756.

Ying-lin Wang and Jin-wei Pang. 2014. Ant colony optimization for feature selection in software prod-
uct lines. Journal of Shanghai Jiaotong University (Science) 19, 1 (2014), 50–58. DOI:http://dx.doi.
org/10.1007/s12204-013-1468-0

Jules White, Brian Dougherty, and Douglas C. Schmidt. 2009. Selecting highly optimal architectural feature
sets with filtered cartesian flattening. Journal of Systems and Software 82, 8 (Aug. 2009), 1268–1284.
DOI:http://dx.doi.org/10.1016/j.jss.2009.02.011

Jules White, Brian Doughtery, and Douglas C. Schmidt. 2008. Filtered cartesian flattening: An approximation
technique for optimally selecting features while adhering to resource constraints. In Proceedings of the
12th International Conference on Software Product Lines, (SPLC’08) Second Volume (Workshops). 209–
216.

Shengxiang Yang, Miqing Li, Xiaohui Liu, and Jinhua Zheng. 2013. A grid-based evolutionary algorithm for
many-objective optimization. IEEE Transactions on Evolutionary Computation 17, 5 (2013), 721–736.

Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection and prioritization: A survey.
Software Testing, Verification and Reliability 22, 2 (2012), 67–120.

http://dx.doi.org/10.1145/2648511.2648521
http://dx.doi.org/10.1109/RESER.2013.6
http://dx.doi.org/10.1109/CMSBSE.2013.6604432
http://dx.doi.org/10.1109/ASE.2013.6693104
http://dx.doi.org/10.1109/ASE.2013.6693104
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1007/s10270-015-0459-z
http://dx.doi.org/10.1007/s10270-015-0459-z
http://dx.doi.org/10.1145/2771783.2771808
http://dx.doi.org/10.1109/ICSE.2009.5070526
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://dx.doi.org/10.1109/SPLC.2008.50
http://dx.doi.org/10.1109/SPLC.2008.50
http://dx.doi.org/10.1007/s12204-013-1468-0
http://dx.doi.org/10.1007/s12204-013-1468-0
http://dx.doi.org/10.1016/j.jss.2009.02.011

Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation 11, 6 (2007), 712–731.

Eckart Zitzler and Simon Künzli. 2004. Indicator-based selection in multiobjective search. In Proceedings of
the International Conference on Parallel Problem Solving from Nature (PPSN’04). 832–842.

Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2002. SPEA2: Improving the strength pareto evolution-
ary algorithm for multiobjective optimization. In Evolutionary Methods for Design, Optimisation and
Control. 95–100.

Eckart Zitzler and Lothar Thiele. 1999. Multiobjective evolutionary algorithms: A comparative case study
and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3, 4 (1999), 257–271.

