
Automated Variability Analysis and Testing of an
E-Commerce Site. An Experience Report

Sergio Segura, Ana B. Sánchez and Antonio Ruiz-Cortés
Department of Computer Languages and Systems

University of Seville, Spain
{sergiosegura,anabsanchez,aruiz}@us.es

ABSTRACT

In this paper, we report on our experience on the devel-
opment of La Hilandera, an e-commerce site selling haber-
dashery products and craft supplies in Europe. The store has 
a huge input space where customers can place almost three 
millions of different orders which made testing an ex-tremely 
difficult task. To address the challenge, we explored the 
applicability of some of the practices for variability man-
agement in software product lines. First, we used a feature 
model to represent the store input space which provided us 
with a variability view easy to understand, share and discuss 
with all the stakeholders. Second, we used techniques for the 
automated analysis of feature models for the detection and 
repair of inconsistent and missing configuration settings. Fi-
nally, we used test selection and prioritization techniques for 
the generation of a manageable and effective set of test cases. 
Our findings, summarized in a set of lessons learnt, suggest 
that variability techniques could successfully address many 
of the challenges found when developing e-commerce sites.

Keywords

Variability; automated testing; experience report; feature 
modelling; e-commerce

1. INTRODUCTION

Variability is a pervasive feature of modern software ap-
plications that determines their ability to be configured and 
customized. Software applications exposing a high–degree of 
variability are usually referred to as variability–intensive 
systems. Operating systems as Linux [2], development tools 
as Eclipse [16] or even cloud applications as the Amazon 
elastic compute service [10] have been reported as examples 
of variability–intensive systems.

Software Product Line (SPL) engineering focuses on the
development of families of software products by systemati-
cally managing variability. Feature models are the de–facto
standard for variability modelling in SPLs. A feature model
is a visual and compact representation of all the configura-
tions (a.k.a. products) of an SPL in terms of features and
relations among them [17]. Feature models are also used to
enable the interactive configuration of variability–intensive
systems by selecting and deselecting features [1, 24].

The automated analysis of feature models deals with the
computer–aided extraction of information from feature mod-
els. Catalogues with up to 30 different analysis operations on
feature models have been reported [1]. Among others, these
operations allow to know what is the number of configura-
tions represented by a feature model or whether a feature
model contains any dead features, i.e. features that cannot
be part of any configuration. Also, a recent trend on the
automated analysis of feature models focus on reducing the
potentially huge testing space of SPLs. These operations
take a feature model as input and return a manageable sub-
set of configurations to be tested using test case selection [7,
21, 23, 27, 31] and test case prioritization techniques [6, 9,
12, 30].

Online shopping systems (a.k.a e–commerce sites or on-
line stores) have also been proposed as a good example of
variability–intensive systems [4, 19]. A standard e–commerce
site might be composed of tons of modules providing func-
tionality such as shipping management, product rating, user
wish list, product search, etc. In turn, each module com-
monly has numerous setting options leading to millions of
potential configurations of the store. E–commerce sites are
usually developed on top of off–the–shelf e–commerce solu-
tions such as Magento [22] or Prestashop [29]. Prestashop is
an open source e–commerce platform written in PHP for the
development of online shopping systems. It offers over 3,500
modules and visual templates powering more than 150,000
online stores worldwide.

In this paper, we report our experience in the develop-
ment of La Hilandera e–commerce site1. La Hilandera (here-
inafter the client) is a small Spanish company selling hab-
erdashery products and craft materials. Their main target
is the Spanish market although they also sell their products
in English to another nine European countries. Founded in
2013, the company currently has three employees managing
a company blog, several social profiles and both a physical
and online store. Some of their direct competitors are I do
proyect [14], TricotPlus [33] and we are knitters [34].

1http://www.lahilandera.com/en



The online store was developed using Prestashop v1.5 in
three main steps. First, the requirements were gathered
from the client. Second, a visual template and a set of Pres-
tashop modules providing the required functionality were
collected, installed and slightly customized. In total, the
functionality of the store is currently supported by 54 Pres-
tashop modules. Finally, the numerous setting options of
each module were adjusted to meet the requirements. This
involved setting hundreds of parameters related to shipping,
payment, product catalogue, languages, taxes, cache, im-
ages, Search–Engine Optimization (SEO) and many others.
Also, a number of configuration constraints were defined,
e.g. certain carriers only ship packages of certain weight to
certain zones. The final configuration of Prestashop deter-
mines the input space of the store, this is, the input parame-
ters (e.g. payment method), their possible values (e.g. bank
wire, credit card and PayPal) and the constraints among
them (e.g. free shipping is restricted to Spain).

1.1 Challenges
During the development of the store we found a number

of challenges listed below.

1. Configuration view. Configuration options and con-
straints in Prestashop are scattered through a plethora
of menus and wizards. The lack of a common view of
the configuration hindered the communication among
the stakeholders and the traceability between the re-
quirements and the configuration settings.

2. Detection of inconsistent configuration settings. The
numerous configuration options of Prestashop made
easy to make mistakes resulting in inconsistent or con-
tradictory configurations settings. For instance, we
could set carriers that can never be selected or weight
ranges served by no carriers. We found no modules
supporting the automated detection and repair of in-
consistent configuration values in Prestashop.

3. Detection of missing configuration settings. Checking
if a certain input combination was allowed by the cur-
rent configuration of the store required either laborious
tests or diving into a number of menus. For instance,
we may want to check whether the current configura-
tion allows a certain carrier to ship orders under 0.5kg
to Luxembourg. We found no automated support for
this.

4. Test case selection. Tests were manually performed
introducing GUI input actions (e.g. placing orders)
and searching for unexpected behaviour such as wrong
or missing configuration settings, wrong translations,
CSS incompatibilities, PDF generation problems, etc.
However, the high number of input combinations made
exhaustive testing impractical. We found no auto-
mated means for the selection of a manageable set of
test cases with a good coverage of the input space.

5. Test case prioritization. Our testing resources were
limited and so we needed to run first those test cases
that could reveal bugs in the most frequent settings.
For instance, our client mainly expected orders un-
der 1Kg from Spain paid with credit card. Thus, we
needed to design test cases giving priority to those val-
ues while still keeping a reasonable coverage of the rest

of the input space. Again, we did not find any Presta-
shop module supporting test case prioritization.

Previous challenges were manually faced during the de-
velopment of the online store. This was a time–consuming
and unreliable process where the detection of faults mainly
depended on our ability to select effective test cases. After
a thorough search in the literature and the Web2, we found
that this was the usual process in Prestashop were develop-
ers have no automated support for testing their stores.

1.2 Experience report
Based on our research background, we hypothesized that

previous challenges could be automatically addressed using
variability management techniques. To test our hypothesis,
we revisited the main milestones of the development explor-
ing the applicability of well–established techniques for vari-
ability management in SPLs. In this paper, we report such
experience. To keep our work manageable, we focused only
on the functionality related to order placing since that was
the most challenging part of the development in terms of
testing.

First, we designed a feature model including the main
input parameters of the store and their possible values ac-
cording to the current configuration. Roughly speaking, the
model represents all the distinct orders that can be placed
in the store. This model provided us with a visual and com-
mon view of the store configuration and its input space easy
to understand, share and discuss with all the stakeholders
(challenge 1).

Next, we automatically analysed the feature model to ex-
tract information from the store. Among other data, we
found that we were facing an input space of three millions
of potential input combinations. Also, we automatically de-
tected several configuration problems, i.e. input values that
could never be selected (challenge 2). Besides this, config-
uration tools made straightforward to check the validity of
a given input combination by simply selecting and deselect-
ing features. We found that this was a simple and highly
automated mechanism to search for missing configuration
settings (challenge 3).

Next, we automatically analysed the feature model to se-
lect a manageable and effective subset of input combinations
to be tested, i.e. test cases. In particular, the test space was
reduced from three millions to 91 test cases including all
the valid pairs of inputs, i.e. pairwise suite. This means a
reduction of more than 99.9% in the number of test cases
(challenge 4). Then, we applied a weighted prioritization al-
gorithm reordering the test cases according to the expected
frequency of use of each input value. This was a natural ap-
proach to accelerate the detection of critical faults affecting
to the core functionality of the store (challenge 5).

As a result of our experience, we present a set of lessons
learnt for researchers and practitioners in the field of soft-
ware variability. We also share or vision of how the proposed
variability techniques could be integrated into a hypotheti-
cal Prestashop module supporting the generalizability of the
approach. Although further research is needed, our findings
suggest that SPL techniques could successfully address many
of the variability challenges found during the development
of an e–commerce site. To the best of our knowledge, this

2This included inquiries in Prestashop forums.



is one of the few applications putting into practice the tech-
niques for the automated analysis of feature models in a real
scenario.

The rest of the paper is structured as follows. In Sec-
tion 2, feature models and SPL testing are introduced. The
feature model used to represent the variability of the store
input space is presented in Section 3. Section 4 details how
the analysis of feature models could contribute to the early
detection and repair of faults caused by wrong configuration
settings. Section 5 illustrates how the SPL techniques for
test case selection and prioritization could be used to sup-
port the automated generation of test cases. A set of lessons
learnt are presented in Section 6. We share our vision of how
the approach could be generalized in Section 7. The related
work is reviewed in Section 8. Finally, we summarize our
conclusions in Section 9.

2. BACKGROUND

2.1 Feature models and their analyses
Feature models (FMs) are commonly used as a compact

representation of all the valid configurations of an SPL [17].
An FM is visually represented as a tree–like structure in
which nodes represent features and connections illustrate the
relationships between them. These relationships constrain
the way in which features can be combined to form valid
configurations, a.k.a. products. For example, the FM in
Fig. 1(a) (taken from [1]) illustrates how features are used to
specify and build software for mobile phones. The software
loaded in the phone is determined by the features that it
supports. The hierarchical relationships among features can
be divided into:

• Mandatory. If a feature has a mandatory relation-
ship with its parent feature, it must be included in all
the configurations in which its parent feature appears.
In Fig. 1(a), all mobile phones must provide support
for Calls.

• Optional. If a feature has an optional relationship
with its parent feature, it can be optionally included
in all the configurations including its parent feature.
For instance, GPS is defined as an optional feature of
mobile phones in the example.

• Set relationship. A set relationship relates a parent
feature with a set of child features using group car-
dinalities. A group cardinality is an interval such as
〈n..m〉 limiting the number of different child features
that can be present in a configuration in which their
parent feature appears. The symbol ‘*’ is often used
to denote the maximum number of children in the set.
In Fig. 1(a), software for mobile phones can provide
support for Camera, MP3 or both of them in the same
configuration.

In addition to hierarchical relationships, FMs can also con-
tain Cross–Tree Constraints (CTCs) between features typ-
ically represented using first order logic formulas. For in-
stance, suppose the following CTC is the context of the ex-
ample, Camera → Colour ∨ HD i.e. mobile phones including
a camera require a colour or a high definition screen.

FMs can be automatically analysed to extract information
from them. Catalogues with up to 30 analysis operations

on FMs have been published [1]. Typical analysis opera-
tions allow us to know whether an FM is consistent (i.e. it
represents at least one configuration), what is the number
of configurations represented by an FM or whether an FM
contains any errors. Also, FMs are commonly used to derive
configurations by selecting or deselecting features according
to user’s preferences. This process is supported by so–called
product configurators. These tools usually support decision
propagation such that whenever a decision is taken (i.e. a
feature is selected or deselected) the configuration engine
propagates those decisions to enforce their consistency au-
tomatically selecting or deselecting the remaining features.
In the example, selecting Basic screen would implies the
automated deselection of the features Colour and HD (due
to the set relationship) and the feature Camera (due to the
CTC defined above).

The automated management of FMs is supported by a
number of commercial and open source tools including the
FaMa framework [8], and SPLOT [24]. In this paper, we
used the SPLOT online tool suite which includes an FM
editor (Fig 1(b)), an FM analysis engine and a product con-
figurator (Fig 1(c)).

2.2 SPL testing
A SPL test case can be defined as a configuration of the

product line to be tested [27], i.e. a set of features. Ideally,
all the configurations of the SPL should be tested although
that is often impractical due to the potentially huge number
of configurations under test. For instance, As an example,
Debian Wheezy [5] has more than 37,000 packages that can
be combined (with restrictions) to form millions of different
configurations of the operating system which makes exhaus-
tive testing infeasible. To address this challenge, many ap-
proaches follow a model–based strategy in which the SPL
feature model is used as input to derive a subset configura-
tions to be tested, i.e. a SPL test suite. In particular, two
main strategies have been adopted: test case selection and
test case prioritization.

Test case selection [21, 23, 27, 31] aims at reducing the
test space by selecting an effective and manageable subset
of configurations to be tested. Most common test selection
approaches are those based on combinatorial testing [18, 21,
23, 27]. In these approaches test cases are selected in a
way that guarantees that all combinations of t features are
tested, this is called t–wise testing [27]. One of the best–
known variants of combinatorial testing is the 2–wise (or
pairwise) testing approach [13, 21, 23, 27]. This proposal
generates all the possible combinations of pairs of features
based on the observation that the most of faults originate
from a single feature or by the interaction of two features
[27].

Test case prioritization [6, 12, 30] schedules test cases for
execution in an order that attempts to increase their effec-
tiveness at meeting some performance goal, e.g. detecting
faults as soon as possible. There are many possible goals
of prioritization [30]. For example, testers may wish to or-
der their test cases in order to achieve code coverage at the
fastest rate possible or increase the rate of fault detection
of test cases. Also, test cases may be prioritized accord-
ing to the user preferences or non–functional properties by
assigning weights to the features [9, 16].



(a) Graphical view (b) SPLOT tree view (c) SPLOT Product Configurator

Figure 1: A sample feature model

3. VARIABILITY MODELLING
Fig. 2 depicts a feature model representing the variability

in the input space of La Hilandera online store. The model is
shown using the SPLOT tree view due to space constraints.
It was manually designed to reflect the current configuration
of the store. Roughly speaking, the model represents all the
possible orders that can be placed in the system. Non–leaf
features represent the input parameters introduced by the
user when placing an order, e.g. payment method. Anal-
ogously, child features represent the possible input values
of the parameter represented by their parent feature, e.g.
bank wire, credit card, PayPal. Both, input parameters and
values were modelled according to the current configuration
settings of the e–shop. When the input space of a parameter
was not restricted to a specific set of values, we divided the
domain into so–called equivalence partitions [3, 25] where
the store is expected to behave in the same way, e.g. config-
urable vs. non–configurable products. A valid configuration
is composed of a set of features (i.e. input parameters and
their respective values) that do not violate any of the con-
straints of the model. Each valid configuration of the model
represents an input combination with distinct implications
on how the orders are placed and processed.

The model tree is divided into five main branches resem-
bling the five–step checkout process in Prestashop 1.5, i.e.
Login→Shopping cart→Address→Delivery→Payment. Ad-
ditionally, an extra branch is used to model the Language

settings. In particular, the user interface is available in two
languages, English and Spanish. Each language has an ob-
vious impact in the text translations but also in some of the
banners and menus displayed. For instance, the links to the
blog of the company (in Spanish) are omitted in the English
version of the store.

The Login branch refers to the status of the user who place
the order, Guest or Customer. A guest is an anonymous
user that must provide contact and shipping information for
each order while a customer is a registered user of the site.
In turn, Registered customers can log in with their user
name and password before placing an order or, if they are
not customers, they can create a New account which requires
a different authentication flow.

The Shopping cart branch groups the mains choices re-
garding the type, price and weight of the purchased prod-
ucts. Regarding the product type, products can be classified
as Configurable and Non-configurable products. Config-

urable products are derived from a so–called base product by
assigning different values to its configuration attributes such
as colour or size. We distinguish between configurable prod-
ucts with the Same price as the base product and those
with Different price than the base product. Regard-
ing the product price, it can be classified as Normal price,
Special price, Price discount and Quantity discount.
Special prices are those marked as such in the adminis-
tration panel and displayed with a specific format in the
store. Discounts are temporal price reductions created us-
ing the Prestashop price rules. Quantity discounts estab-
lish price reductions for buying a number of items greater
than a certain value. We distinguish between product pur-
chases where the quantity discount is Granted and those
where it is Not Granted. The cart Weight range affect
to the selection of the shipping carrier and shipping rates.
As requested by the client, we created five weight ranges,
namely: From 0 to 2Kg, From 0 to 5Kg, From 0 to 10Kg,
From 2 to 10Kg and From 5 to 10Kg. Note that some of
the weight ranges overlap. This was necessary in Prestashop
where each carrier must be associated to one or more specific
weight ranges. Finally, the Total to pay can be Greater

than the FREE_SHIPPING_PRICE (currently 90e), getting a
free shipping, or Less than the FREE_SHIPPING_PRICE.

The Address branch includes two main choices, the Des-

tination country and the selection of the Billing and ship-

ping addresses. The destination country has obvious impli-
cations in the shipping rates applied. It is noteworthy that
the shipping configuration of some European countries was
similar and so we grouped them under the Europe feature
to simplify CTCs. We may remark, however, that the selec-
tion of each country still has different implications in how
the orders are processed, e.g. postal code format. Beside
this, the selection of a single address or two different ad-
dresses for billing and shipping has also an impact on the
views and logic code exercised in the online store e.g. new
address form.

The Delivery branch includes the choices regarding the
Carrier as well as some other options as Gift wrapping and
Customer note. Each choice have effects on the processing
of the order. For instance, the selected carrier3 determines
the shipping rate as well as the URL for package tracking
sent to the user. The free shipping feature has an obvious
impact on the shipping rate that should be reflected in the

3Carrier names are omitted for confidentiality reasons.



Figure 2: Feature model representing the input vari-
ability in La Hilandera online store

generated invoice. Similarly, the gift wrapping option has an
extra cost of 0.50e and so it must be reflected in the final
price, the invoice and the delivery slip. Finally, customer
notes should appear in the order management dashboard.

The Payment branch groups the choices related to the Pay-
ment method, namely, Bank wire, Credit card or Paypal.
Also, this branch includes the options related to vouchers.
A voucher is a promotional benefit offered to a Single cus-
tomer or a Group of customers. As requested by the client,
the system supports three types of vouchers, Discount, Free
shipping and Free gift.

In addition to the hierarchical relationships among fea-
tures, we identified a number of CTCs listed in Table 1.
These constraints are used to restrict the countries and weight
ranges managed by each carrier. Also, they restrict free ship-
ping to Spain, i.e. Free shipping → Spain.

4. VARIABILITY ANALYSIS
In this section, we show how the analysis of feature models

could contribute to i) extract information about the input
space of the store, ii) early detection of inconsistencies or
missing configuration settings, iii) assist the user in fixing
configuration errors, and iv) perform queries about the con-
figuration of the store.



Balearic Islands → Carrier4
Europe → Carrier3
Portugal → Carrier1
Spain → Carrier2 ∨ Free shipping ∨ Store pickup
Carrier1 → From 0 to 5kg ∨ From 5 to 10kg
Carrier2 → From 0 to 10kg
Carrier3 → From 0 to 5kg ∨ From 5 to 10kg
Carrier4 → From 0 to 2kg ∨ From 2 to 10kg
Free shipping → Greater than FREE SHIPPING PRICE
Free shipping → Spain
Free shipping voucher → Spain

Table 1: Cross–tree constraints

Regarding the extraction of information, Table 2 depicts
some of the statistics obtained from the feature model using
the SPLOT analysis tool. As illustrated, the model has 76
features which places it among 3% of the largest models cur-
rently stored in the SPLOT feature model repository (out
of 527 models). Also, the model has 11 extra CTCs and a
CTC Ratio (CTCR) of 22%, being 10% the average value of
the models in SPLOT. The CTCR is the ratio of the num-
ber of features involved in the CTCs to the total number
of features in the model [1]. This gives an idea of how con-
strained is the input space of the store. Most features (57)
are in OR/XOR groups representing the possible values of
the input parameters. Analogously, parameters are mainly
modelled as mandatory (15) and optional features (3). The
model represents 2,985,840 valid configurations, i.e. distinct
orders.

Features 76
- Mandatory 15
- Optional 3
- Grouped 57

XOR groups 17
OR groups 1
Tree depth 5
CTCs 11
CTC ratio 22%
Configurations 2,985,840

Table 2: Feature model statistics

Among other operations, the automated analysis of fea-
ture models enables the detection of inconsistencies. As an
example, the manual tests of the store revealed a dead car-
rier, that is, a carrier that could not be selected due to wrong
configuration settings. The problem was caused by a change
in the original requirements. Initially, the client wanted
Carrier3 to ship all orders to European countries (exclud-
ing Spain). However, the client later decided that orders to
Portugal would be shipped by Carrier1 which offers cheaper
rates. Although Carrier1 had been added to the system it
had not been associated to Portugal causing the problem.
Fig. 3 depicts how the dead feature would have been auto-
matically detected using the SPLOT Feature Model Editor.
This could be complemented by tools as FaMa which im-
plements error diagnosis techniques to identify the causes of
inconsistencies, so–called explanations [1], e.g.“Carrier1 has
no destination countries associated”. Thus, we could get in-
formation about why the carrier cannot be selected assisting
the user on repairing the problem, i.e. defining Portugal as

an independent destination and making Carrier1 its default
carrier (Portugal → Carrier1). This would have allowed
us to detect and fix the problem during the configuration
stage saving costly testing and debugging resources.

Figure 3: Dead carrier detected during variability
analysis

Interactive product configuration may also be handy way
to detect missing configuration settings. For instance, dur-
ing the tests of the store we found that the free shipping
vouchers were not restricted to orders in Spain, as requested
in the requirements. Fig. 4(a) shows how a product con-
figurator could have been used to detect the problem. As
illustrated, once the Free shipping voucher is selected, all
destinations are still enabled, revealing the bug. Fig. 4(b)
shows the configuration view once the missing CTC is added,
i.e. Free shipping voucher → Spain. Note than only
Spain remains enabled after selecting the free shipping voucher
feature. This approach could be used to perform preliminary
tests during the modelling stage by simply selecting and de-
selecting features instead of diving into tons of menus and
wizards.

Finally, product configurators could also be used to per-
form queries about the current configuration of the store.
To that purpose, the user may select or deselect features
checking the input combinations allowed by the current con-
figuration settings. For instance, the user could find out if
Carrier1 can ship orders to Germany by checking if both
features can be selected simultaneously.

5. VARIABILITY TESTING
In this section, we show how the techniques for variability

testing in SPLs could contribute to automate the selection
and prioritization of test cases for the e–commerce site. We
define a test case in our domain as a valid configuration of
the feature model, i.e. a set of features.

To reduce the test space, we used the SPLCAT tool for
pairwise SPL test case selection [15]. This tool takes a fea-
ture model as input and returns a pairwise test suite, i.e.
a set of configurations containing all the possible pairs of
features. Using the feature model in Fig 2 as input, the tool
generated a pairwise suite composed of 91 test cases (out
of 2,985,840) which means a reduction over 99.9% in the
number of configurations under test. More importantly, the
pairwise suite is not only manageable but also effective ac-
cording to the combinatorial testing theory which state that
the most faults are triggered by one feature or the interac-
tion between two features [27]. As an example, see below
one of the test cases included in the pairwise suite.



(a) Missing configuration con-
straint

(b) Correct configuration

Figure 4: Using a feature model configurator to detect missing configuration settings

TC: {Language, English, Login, Customer, Registered, Shopping
cart, Products, Non-configurable, Non-conf Quantity discount,

Non-conf Not granted, Configurable, Conf Price discount, Dif-

ferent price as base product, Weight range, From 5 to 10Kg,

Total to pay, More than FREE_SHIPPING_PRICE, Address, Des-

tination, Europe, Austria, Billing and shipping, Different

addresses, Delivery, Carrier, Carrier3, Gift wrapping, Cus-

tomer note, Payment, Method, Paypal, Voucher, Recipient, Sin-

gle, Type, Free gift}

The test case is composed of the set of features (i.e. input
parameters and values) that should be exercised when plac-
ing an order in the store under test. Note that presenting a
test case as a list of features to be tested would have little
or no meaning at all for most Prestashop users. Thus, each
leaf feature could be mapped to a sentence in natural lan-
guage creating step–by–step instructions easy to understand
and follow by non–expert users. Not only that, the Presta-
shop database could be automatically inspected to suggest
products that fulfil the criteria defined in the test case, e.g.
non–configurable products with price discount under 2Kg.
This would make the test case reproducible. Table 3 illus-
trates a sample user–oriented test case derived from the test
case shown above.

Once generated, test cases could be automatically pri-
oritized to meet certain performance goals. To illustrate
this, we applied a plain weighted prioritization algorithm.
This algorithm receives a test suite where each feature has a
weight indicating its importance ranging from 0 (irrelevant)
to 1 (critical). The algorithm sorts test cases according to
the normalized sum of the weights of its features. Accord-
ing to the expected frequency of use of each feature, we set
a weight of 0.9 for features Guest, From 0 to 10Kg, Spain
and Credit card and a default weight of 0.5 for the rest of

1. Select English language.
2. Log-in as a registered user.
3. Add the following products to the cart:

- 5 x Knitting loom.
- 1 x Nylon Zippers (Colour: 304, Size: 25cm)

4. Set Austria as destination country.
5. Introduce different shipping and billing addresses.
6. Select Carrier3.
7. Add a customer note.
8. Request gift wrapping.
9. Introduce voucher code for free gift.
10. Select payment with PayPal.
11. Confirm purchase.

Table 3: Sample user–oriented test case

features. Then, we ran the algorithm with the suite gener-
ated by SPLCAT obtaining a prioritized pairwise suite. As a
result, those test cases exercising the high–priority features
would be performed first accelerating the detection of criti-
cal faults. This would also guarantee that the most relevant
test cases have been exercised in the case that the testing
resources are exhausted before running the whole suite. Fi-
nally, we may remark that the weights could be adjusted
and the algorithm run as many times as needed supporting
future changes in the client’s priorities.

6. LESSONS LEARNT
Our experience exploring the applicability of variability

analysis and testing techniques to the development of La
Hilandera online store can be summarized in the following
lessons learnt:



Lesson 1. Feature models are suitable to represent
input variability. Feature models are typically used at
the problem level to represent requirement variability in a
SPL. In this paper, however, we used a feature model at the
solution level to represent the input variability of a single
store with a specific configuration. Our experience confirms
that feature models are expressive enough to capture the
variability of the store input space in terms of their input
parameters and their possible values and constraints. In this
sense, the model can also be regarded as a compact and in-
tuitive view of the configuration settings of the store. More
importantly, using a feature model allows using off–the–shelf
tools for the automated detection of configuration inconsis-
tencies as well as the generation of test cases.

Lesson 2. Configuration faults are a key target. We
distinguish between software and configuration faults. The
former are caused by bugs in the code. The latter are caused
by wrong configuration settings. Hence, a module could
work correctly but still not meet the requirements of the
client due to a wrong configuration, e.g. dead carrier. From
a Prestashop user perspective, we found that detecting con-
figuration faults is a key challenge. Every single Prestashop
store is likely to have different configuration settings which
makes configuration faults a widespread problem with no
one–for–all solution. Also, the configuration of stores is of-
ten performed by final users with no testing knowledge which
reinforces the need for automated tool support. To the best
of our knowledge, this is the first approach pointing at the
problem of configuration faults in e–commerce platforms.

Lesson 3. Feature model analysis for early testing.
Our experience suggests that the analysis of feature models
is a handy approach for the automated detection of inconsis-
tencies such as contradictory or missing configurations val-
ues. Additionally, the available techniques for error diagno-
sis in feature models could provide helpful information about
the sources of the inconsistencies guiding the user toward
quick fixes. These analyses would contribute to the early
detection (and repair) of configuration faults in e–commerce
sites that otherwise would require costly testing and debug-
ging resources.

Lesson 4. Priorities emerge naturally. Performing
each test case took us between 5 and 15 minutes on av-
erage, much more if a failure was revealed and we had to
debug the code to fix it. Besides this, we were pressed by
the client to release the online store in a specific date pre-
viously announced through the social networks. Thus, we
naturally felt the need to prioritize our efforts. To that pur-
pose, we intuitively performed first those tests exercising the
most common input parameters and values. The goal was to
accelerate the detection of those bugs affecting to the core
functionality of the store and therefore those likely to gen-
erate more losses. Although multiple prioritization criteria
could be used, we found that assigning priorities to features
according to their expected frequency of use is a quite nat-
ural approach for an e–commerce site.

Lesson 5. Integration faults are frequent. This is be-
cause new versions of the platform are frequently released
creating incompatibilities with previous versions, e.g. mod-
ules for Prestashop v1.5 are not backward compatible with

Prestashop v1.4. Beside this, the modules and the templates
must be compatible with the specific version of Prestashop,
but they are often not. In our project, we found that the
purchased template had been developed for Prestashop v1.4
and patched to work with Prestashop v1.5 without an ex-
haustive validation, revealing bugs. Among others, we found
that disabling the product comparison module triggered a
CSS bug that spoiled the appearance of the list of products.

Lesson 6. Four main types of faults. The faults de-
tected in the store can be classified in four main groups: i)
translation faults, ii) CSS faults, iii) workflow faults, and iv)
configuration faults. Translation faults were by far the most
common problems. In many cases, the Spanish translation of
certain strings was wrong (e.g. spelling mistakes) or simply
missing. Also, we found that the Spanish translation of Pres-
tashop uses different ontologies referring to the same term
with different synonyms, e.g. shopping cart. CSS faults were
mainly related to wrong positioning of the UI elements that
required modifying the stylesheet. Workflows faults caused
unexpected redirections while browsing the store. Finally,
as previously mentioned, configuration faults were caused
by wrong settings of the store parameters. Among others,
we detected configuration faults related to carriers, shipping
and wrapping rates, SEO sitemap files, email notifications
and invoice PDF generation. This required several itera-
tions of testing and debugging until gaining confidence in
the correctness of the system.

Lesson 7. Full automation is tough. In this paper,
we focus on test case generation while the execution of the
test cases is out of the scope. Tests were manually per-
formed introducing GUI input actions (e.g. placing orders)
and searching for unexpected behaviour such as wrong trans-
lations, positioning problems, error messages, wrong naviga-
tion workflow, missing images, etc. This involved not only
manually checking the front–end user interface but many
others artefacts such as the generated PDF documents, or-
der dashboard, customer list, product stock, e-mail alerts,
etc. According to our experience, automating the execu-
tion of test cases, and in turn the whole testing process, is
a daunting challenge. We remark, however, that tools such
as PHPUnit [28] and Selenium [32] would be helpful to au-
tomated regression tests once the test suite is designed and
recorded.

Lesson 8. Poor support for implementing variabil-
ity. During the development, we received multiple requests
from the client to show different information in the Spanish
and English versions of the store. This included header and
footer links, banners and even products. For instance, the
company sells some self–manufactured products (e.g. “do it
yourself kits”) with Spanish patterns which the client wished
to exclude from the English version of the store. Similarly,
the client requested that the information about their on–
site workshops should be in Spanish only since they are
only available for people leaving in the area. Surprisingly,
we found no built–in support for this kind of variability in
Prestashop. Pressed by time, we were forced to hard code it
using basic if/else statements, i.e. if (lang_iso == ‘en’)
{...} else {...}



(a) Analysis view (b) Testing view

Figure 5: User interface of an hypothetical Prestashop module for variability analysis and testing

7. OUR VISION
In this section, we share our vision of how the proposed

variability techniques could be integrated into Prestashop
generalizing the benefits of our approach. As an example,
Figure 5 depicts the user interface prototype of an hypothet-
ical Prestashop module integrating the techniques for vari-
ability analysis and testing described in this paper. Note
that the target users would be Prestashop users with no ex-
pected knowledge about variability or testing. Thus, infor-
mation should be presented in an intuitive and user–friendly
way. Figure 5(a) depicts the analysis view where the user
would interact with the feature model by selecting or dese-
lecting features. This could be presented either as a feature
tree or simply as a list of leaf features with on/off controls.
On the right side, a panel would show an analysis report with
information about the detected inconsistencies (e.g. dead
carrier) as well as their explanations. Figure 5(b) shows the
testing view where the user should set priorities for each
feature (e.g. low, default or high) and the number of test
cases to be created. Once generated, test cases would be
shown in an additional panel as sequences of steps that the
user should perform to detect potential faults in the store.
The development of such module would require overcoming
several challenges, among others:

1. Feature model generation. The feature model should
be automatically generated to make the approach gen-
eralizable. To that purpose, a feature tree template
could be used and populated with the configuration
values extracted from the Prestashop database. Such
feature tree template should be version–dependent and
extensible as new modules are installed.

2. Inconsistency management. Researchers have identi-
fied different types of inconsistencies in feature mod-
els such as dead features, conditionally dead features,
false optional features, etc. [1]. Studying which ones of
those inconsistencies could appear in Prestashop and

how presenting them to the user remains as a chal-
lenge.

3. Generation of user–oriented test cases. Feature–based
test cases should be presented as sequences of steps in
natural language easy to follow by Prestashop users.
To that purpose, the Prestashop database should be
automatically inspected to suggest products that ful-
fil the criteria defined in the test cases making them
reproducible.

8. RELATED WORK
Lau and Czarnecki [19] proposed e–commerce systems as a

motivating case study in the context of model–driven SPLs.
As a part of their work, they constructed a feature model
representing a family of e–commerce systems, so–called e-
shop. The e-shop feature model has 290 features and rep-
resents 4.52 · 1049 configurations, being the second largest
feature model in the SPLOT repository and one of the most
referenced in the literature [1]. Their work supports our
view on e–commerce sites as motivating variability–intensive
systems but with some differences. First, the e-shop model
represents a family of e–commerce sites while our model rep-
resents the input space of a single store. Second, they focus
on variability modelling while we focus on variability anal-
ysis and testing. Finally, are more importantly, the e-shop
model was constructed from the information gathered in the
literature and the Web while our model was derived from a
real e–commerce site.

Regarding variability testing, Wang et al. [35] proposed
an automated test case selection approach and evaluated it
in an industrial case study in Cisco. In [23], the authors
reported the results of applying pairwise test case selection
in an industrial SPL of video conferencing systems. Nguyen
et al. [26] proposed a variability–aware approach to execute
test cases in plugin–based web applications and detected
two bugs in the popular blogging platform Wordpress. Com-



pared to previous works, we explore the applicability of vari-
ability analysis and testing techniques in a novel scenario: a
real e–commerce site. Instead of modelling variability at the
requirement level, we use a feature model to represent the
input space of the store automating the detection of config-
uration bugs and the generation of test cases.

Equivalence partitioning [3, 25] is a testing technique in
which the input domain of the program is divided into parti-
tions (also called equivalence classes) in which the program
is expected to process the set of data input in an equivalent
way. Thus, only an input value of each partition is needed
to evaluate the behaviour of the program in that partition.
This technique is often combined with combinatorial test-
ing [11] to create input combinations (from different parti-
tions) that are likely to reveal faults while keeping a man-
ageable number of test cases. Our work is mostly inspired
by these techniques. The features of the feature model rep-
resents the different partitions of the input space of the store
while the different relationships among features represents
the constraints among the partitions. As reported, this is
not only a natural way of representing the input space of
an e–commerce site, but it also enables the use of multiple
tools for the analysis of variability and combinatorial test
case generation.

Yuan et al. [20] presented a survey on web application
testing since the origin of the World Wide Web over two
decades ago. In their work, authors grouped the testing
techniques used in the context of the Web into graph–based
testing, model–based testing, mutation testing, search–based
testing, random testing, scanning and crawling techniques,
concolic testing and user session–based testing. Although
these techniques have made significant advances in the de-
tection of faults in web applications, they were not conceived
to deal with the specific challenges of variability–intensive
systems. Also, these techniques focus on testing web appli-
cations as a whole while our approach deals with the spe-
cific characteristics of web applications developed on top of
open–source platforms as Prestashop.

9. CONCLUSIONS
In this paper, we reported the main challenges found dur-

ing the development of La Hilandera e–commerce site and
explored how they could be addressed using techniques for
variability management in SPLs. In particular, we used a
feature model to represent all the different orders that can be
placed in the store in terms of their input parameters, values
and constraints. This allowed us to use off–the–shelf tools to
automatically detect configuration bugs and generate effec-
tive and manageable test suites. Our findings are summa-
rized as a set of lessons learned for researchers and practi-
tioners in the field of variability. Among others, we identified
integration and configuration faults as two key targets where
research contribution would be welcome. We also share our
vision of how the proposed variability techniques could be
integrated into e–commerce platforms as Prestashop gener-
alizing the benefits of our approach to thousands of online
stores worldwide. Although further research is needed, this
could become one of the few commercial products making
profit out of putting into practice the techniques for the au-
tomated analysis of feature models. We trust that this work
will be used as a motivating and real case study to evaluate
variability analysis and testing contributions.

Material
The feature model of the store (in SXFM format), the test
suites and the Java implementation of the plain weighted
prioritization algorithm are available at http://www.lsi.

us.es/~segura/files/material/ASE14

Acknowledgments
We would like to thank Dr. Pablo Trinidad whose comments
and suggestions helped us to improve the article substan-
tially. This work has been partially supported by the Euro-
pean Commission (FEDER) and Spanish Government under
CICYT project TAPAS (TIN2012-32273) and the Andalu-
sian Government projects THEOS (TIC-5906) and COPAS
(P12-TIC-1867).

10. REFERENCES
[1] D. Benavides, S. Segura, and A. Ruiz-CortÃ c©s.

Automated analysis of feature models 20 years later:
A literature review. Information Systems, 35(6):615 –
636, 2010.

[2] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. A study of variability models and
languages in the systems software domain. IEEE
Transactions on Software Engineering,
39(12):1611–1640, Dec 2013.

[3] L. Copeland. A Practitioner’s Guide to Software Test
Design. Artech House, Inc., Norwood, MA, USA, 2003.

[4] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In Proceedings of the 4th International
Conference on Generative Programming and
Component Engineering, GPCE’05, pages 422–437,
Berlin, Heidelberg, 2005. Springer-Verlag.

[5] Debian 7.0 wheezy released, May 2013. Accessed
November 2013.

[6] X. Devroey, G. Perrouin, M. Cordy, P.-Y. Schobbens,
A. Legay, and P. Heymans. Towards statistical
prioritization for software product lines testing. In
Eighth International Workshop on Variability
Modelling of Software-Intensive Systems, 2014.

[7] F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary
search-based test generation for software product line
feature models. In Conference on Advanced
Information Systems Engineering (CAiSE’12), 2012.

[8] FaMa Tool Suite. http://www.isa.us.es/fama/,
accessed April 2014.

[9] J. Ferrer, P. KrÃ 1
4
se, F. Chicano, and E. Alba.

Evolutionary algorithm for prioritized pairwise test
data generation. In Proceedings of the 14th annual
conference on Genetic and evolutionary computation,
2012.

[10] J. Garćıa-Galán, O. Rana, P. Trinidad, and A. R.
Cortés. Migrating to the cloud: a software product
line based analysis. In 3rd International Conference on
Cloud Computing and Services Science (CLOSER’13),
2013.

[11] M. Grindal, J. Offutt, and S. Andler. Combination
testing strategies: a survey. Software Testing,
Verification and Reliability, 15(3):167–199, 2005.

[12] C. Henard, M. Papadakis, G. Perrouin, J. Klein,
P. Heymans, and Y. L. Traon. Bypassing the



combinatorial explosion: Using similarity to generate
and prioritize t-wise test suites for large software
product lines. Technical report, 2012.

[13] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. Traon. Multi-objective test generation for software
product lines. In Proceedings of the 17th International
Software Product Line Conference, SPLC ’13, pages
62–71, New York, NY, USA, 2013. ACM.

[14] I do proyect. http://idoproyect.com/, accessed April
2014.

[15] M. F. Johansen, O. Haugen, and F. Fleurey.
Properties of realistic feature models make
combinatorial testing of product lines feasible. In
MODELS, 2011.

[16] M. F. Johansen, O. Haugen, F. Fleurey, A. G.
Eldegard, and T. Syversen. Generating better partial
covering arrays by modeling weights on sub-product
lines. In International Conference MODELS, 2012.

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature–Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, SEI, 1990.

[18] B. P. Lamancha and M. P. Usaola. Testing product
generation in software product lines using pairwise for
feature coverage. In International conference on
Testing Software and Systems, 2010.

[19] S. Lau and K. Czarnecki. Domain analysis of
e-commerce systems using feature-based model
templates. Master’s thesis, University of Waterloo,
Waterloo, 2006.

[20] Y.-F. Li, P. K. Das, and D. L. Dowe. Two decades of
web application testing - a survey of recent advances.
Information Systems, 43:20–54, 2014.

[21] R. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed,
and E. Alba. Multi-objective optimal test suite
computation for software product line pairwise
testing. In Proceedings of the 29th IEEE International
Conference on Software Maintenance, 2013.

[22] Magento. http://magento.com/, accessed April 2014.

[23] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu.
Practical pairwise testing for software product lines.
In Proceedings of the 17th International Software
Product Line Conference, SPLC ’13, pages 227–235,
New York, NY, USA, 2013. ACM.

[24] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.:
Software Product Lines Online Tools. In Companion
to the 24th ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages
761–762, Orlando, Florida, USA, October 2009. ACM.

[25] G. J. Myers and C. Sandler. The Art of Software
Testing. John Wiley & Sons, 2004.

[26] H. Nguyen, C. Kästner, and T. Nguyen. Exploring
variability-aware execution for testing plugin-based
web applications. In Proceedings of the 36th
International Conference on Software Engineering
(ICSE), 6 2014.

[27] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Budry, and
Y. le Traon. Pairwise testing for software product
lines: comparison of two approaches. Software Quality
Journal, 2011.

[28] PHPUnit.http://phpunit.de/, accessed April 2014.

[29] Prestashop. http://www.prestashop.com/, accessed
April 2014.

[30] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. A
comparison of test case prioritization criteria for
software product lines. In IEEE International
Conference on Software Testing, Verification, and
Validation, 2014.

[31] A. Sayyad, T. Menzies, and H. Ammar. On the value
of user preferences in search-based software
engineering: A case study in software product lines. In
Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 492–501,
Piscataway, NJ, USA, 2013. IEEE Press.

[32] Selenium. http://docs.seleniumhq.org/, accessed
April 2014.

[33] Tricotplus. www.tricotplus.com, accessed April 2014.

[34] We are knitters. http://www.weareknitters.com,
accessed April 2014.

[35] S. Wang, A. Gotlieb, S. Ali, and M. Liaaen.
Automated test case selection using feature model: An
industrial case study. In Model-Driven Engineering
Languages and Systems, volume 8107 of Lecture Notes
in Computer Science, pages 237–253. Springer Berlin
Heidelberg, 2013.




