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Abstract 
 
 
Fully dense 3 mol% Y2O3-ZrO2 (3YTZP) composites with low single wall carbon 

nanotube content (0.5, 1 and 1.5 vol% SWNT) were prepared by colloidal processing 

and Spark Plasma Sintering. SWNT were distributed at ceramic grain boundaries and 

also into agglomerates. Characterization of SWNT agglomerates indicated that increase 

in SWNT vol% does not imply an increase in agglomeration. SWNT agglomerate 

density was related to the evolution of hardness and fracture toughness with SWNT 

vol%. Electrical properties of the composites were characterized in a wide temperature 

range, and percolation threshold was estimated. A model allowing separation of the 

individual SWNT bundles contribution to resistance from the resistance due to junctions 

between bundles was proposed for composites with a percolating SWNT network. 
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 2

Introduction   

Within the past 20 years, the scientific and engineering communities have paid 

great attention to carbon nanotubes (CNTs) due to their attractive properties. CNTs can 

show a Young’s modulus up to 1.2 TPa, a tensile strength around a hundred times 

higher than steel and an elevated resilience. They also possess tunable surface 

properties, well-defined hollow interiors, and can be either metallic or semiconducting 

depending on diameter and chirality.1,2 Based on these fascinating properties, many 

potential applications such as scanning probe tips, drug delivery systems, electronic 

devices, sensors and actuators, high-strength composites, catalyst support, field 

emission displays, transparent conducting films, and so on were proposed.3,4 In these 

years, both the research articles and patents on this area increased rapidly. Recently, 

Zhang et al.5 analyzed the publications topic tendency from 2001 to 2011, showing the 

study of composites with CNTs to be one of the emerging areas, with an increase from 

13 to 27% of the total publications. Interest in these composites is based on the 

possibility of transferring some of the attractive properties of CNTs to the resulting 

composites6. 

Among advanced ceramics, yttria-doped zirconia is considered a technologically 

interesting material due to its superior mechanical properties and good ionic 

conductivity.7,8 In recent years, several works were devoted to the study of 

zirconia/CNTs composites, pursuing an enhancement of the mechanical properties. 

However, up to date, this enhancement has not been clearly demonstrated. A decrease of 

Vickers hardness when increasing CNT content was reported by different authors,9-13 

even for composites with low CNT vol%.14-16 Although some authors related this effect 

to the observed decrease in composite density when increasing CNT content,9,11 it has 

been also reported for fully densified composites with SWNT contents up to 10 vol%.13 
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 3

The decreasing trend was also linked to higher presence of agglomerated CNTs17 in 

composites with high amount of nanotubes, since it is assumed that agglomeration 

becomes more relevant due to dispersion difficulties during processing.18 However, 

recent investigations on Al2O3/SWNT composites have pointed out that the presence of 

agglomerates does not play a fundamental role on the decrease in hardness.19  On the 

contrary, it was rather explained by the presence of higher SWNT quantities at the grain 

boundaries. The detachment between SWNTs within thick bundles has been pointed out 

as the origin of the lower fracture toughness obtained for high SWNT content 

3YTZP/SWNT composites when compared to monolithic ceramic.13 In this context, the 

study of low SWNT vol% composites, in order to asses whether a lower SWNT content 

at the grain boundaries results in an enhancement of the mechanical properties, appears 

as a challenge. 

The study of the electrical properties of ceramic/CNT composites has recently 

also come into focus, as adding CNTs to a ceramic matrix also modify the electrical 

conductivity of the resulting composite. Most of the studies have focused on the 

analysis of the electrical percolative behaviour,11,16,20-26 since a step raise in electrical 

conductivity is the common trend observed in composites once percolation of the CNT 

network is achieved. Percolation thresholds from 0.64 to 5.5 vol% have been published 

for composites with alumina or zirconia matrix.11,16,21-25 This wide range of reported 

values can be related to the different processing techniques used to prepare the 

materials. Shin and Liang22,23 and Fonseca et al.24 reported percolation thresholds of 5.5 

and 3 vol% CNTs for 3 mol% Y2O3-ZrO2/MWNT and 8 mol% Y2O3-ZrO2/SWNT 

composites, respectively. In these studies, composite powders were processed by ball 

milling the mixture of CNTs and ceramic powder. Recently, composites obtained from 

powders prepared in a similar way have been shown to present a high amount of CNT 
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agglomerates,27 which would result in a lower CNT content at the ceramic grain 

boundaries than the nominal one. Thus, a higher amount of CNT would be required in 

order to achieve a percolating network, resulting in an overestimated percolation 

threshold. These results highlight the need to correlate the CNT agglomerate density 

and the percolation threshold in ceramic/CNT composites. 

Regarding the ac conductivity on ceramic/CNT composites, the published 

studies are scarce.24-26 Only Fonseca et al.24 and González-Julián et al.26 reported 

electrical properties in ac conditions in a wide temperature range. A mixed ionic-

electronic conductivity was described for 8 mol% Y2O3-ZrO2/SWNT composites.24 

Charge transport along the nanotube shells and hopping conduction across nanotube-

nanotube junctions were suggested as the two contributions to electrical conductivity in 

Si3N4/MWNT composites.26 To the best of our knowledge, studies on ac conductivity 

and charge transport contributions in 3YTZP/SWNT composites have not been 

published up to date. 

In this paper, 3 mol% yttria doped zirconia composites containing low SWNT 

content (0.5, 1 and 1.5 vol%) were prepared by a combination of aqueous colloidal 

processing and Spark Plasma Sintering, with the aim of obtaining a homogeneous 

SWNT distribution throughout the ceramic matrix and minimizing the presence of 

agglomerates. The SWNT agglomerate density was characterized and related to the 

evolution of hardness and fracture toughness with SWNT vol%. Electrical properties of 

the composites were characterized in a wide temperature range. Conductivity 

measurements at room temperature allowed determination of the percolation threshold. 

Modelling of the impedance properties of the composite with a percolating SWNT 

network was carried out, and an equivalent circuit which separates the individual 
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SWNT bundles resistance contribution from the resistance due to junctions between 

bundles was proposed. 

 

2. Experimental procedure  

Raw materials and processing 

Monolithic polycrystalline 3YTZP and SWNT/3YTZP composites with different 

carbon nanotube content (0.5, 1 and 1.5 vol%) were prepared from 3 mol% yttria 

stabilized tetragonal zirconia powder (3YTZP, 40 nm particle size and 99% purity) 

supplied by Nanostructured and Amorphous Materials Inc.  (Houston, TX) and HIP-co 

purified SWNTs provided by Carbon Solutions Inc. (Riverside, CA). Acid treatment of 

the SWNTs was carried out using a mixture of concentrated sulfuric acid (98%) and 

nitric acid (70%) in the ratio 3:1, with the aim of disentangle and cut the raw SWNTs 

ropes.28 This treatment also introduces carboxyl groups on the walls and ends of 

SWNTs enabling their dispersion in basic medium. SWNTs were suspended in the acid 

mixture for 24 h at room temperature and the suspension was sonicated for 8 h. SWNTs 

were collected on ∼20 nm pore alumina filter membranes, washed in high purity ethanol 

for several times and freeze-dried in order to avoid possible re-agglomeration. 

Colloidal processing of composite powders with the different SWNT contents 

was carried out using ammonia solution as a basic medium.28 Ceramic powder and acid-

treated SWNT suspensions were subjected to ultrasonic agitation using a sonication 

bath before and after mixing. Composite powder blends were dried on a hot plate 

assisted by stirring, and pH and homogeneity were controlled during the process. 

Finally, composite powders were homogenized in an agate mortar. 

 

Ceramic sintering 
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SPS (Model 515S, SPS Dr Sinter Inc., Kanagawa, Japan) was used to sinter the 

materials in a 15-mm diameter cylindrical graphite die/punch setup in vacuum 

atmosphere. The sintering processes were carried out at 1250 ºC with a hold time at 

peak temperature of 5 min, under uniaxial pressure of 75 MPa. Heating and cooling 

rates were 300 and 50 °C/min, respectively. Bulk densities were measured using 

Archimedes’ method, with distilled water as immersion medium. Theoretical density 

values for composites were calculated by the rule of mixtures assuming density values 

of 6.10 g·cm-3 for 3YTZP and 1.80 g·cm-3 for SWNTs. 

 

Microstructural, mechanical and electrical characterization 

Structural integrity of SWNTs in the composites after SPS sintering was 

assessed by Raman spectroscopy on fracture surfaces using a dispersive microscope 

(Horiba Jobin Yvon LabRam HR800, Kyoto, Japan) equipped with a 20 mW He-Ne 

green laser (532.14 nm). The microscope used a 100x objective and a confocal pinhole 

of 100 µm. The Raman spectrometer was calibrated using a silicon wafer. 

Microstructural studies of composites fracture and polished surfaces were 

performed by high-resolution scanning electron microscopy (HR-SEM), using a Hitachi 

S5200 microscope (Hitachi High-Technologies America Inc., USA), to analyze the 

distribution of SWNTs in the 3YTZP matrix, and to characterize the ceramic grains 

morphology. Distribution and morphology of SWNT agglomerates were characterized 

by low magnification conventional SEM (Model JEOL 6460LV, JEOL USA Inc., MA, 

USA). Cross section slices, i.e. surfaces parallel to the SPS pressing direction were 

polished with diamond paste up to 1 µm for morphological studies. Additionally, 

polished surfaces devoted to characterize the 3YTZP grains were thermally etched at 

1200 °C for 20 min in air to reveal grain boundaries. The morphology characterization 
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was made measuring 200 grains or agglomerates, respectively, to obtain the equivalent 

planar diameter as size parameter, d (or D)=2(area/π)1/2, and the shape factor, f (or 

F)=(4π·area)/(perimeter)2. Standard deviation of distributions was also evaluated. 

Hereafter, lowercase letters will refer to 3YTZP grains parameters and uppercase letters 

to agglomerates ones. Agglomerate surface density was evaluated from the area fraction 

covered by them in low magnification SEM micrographs. ImageJ software was used for 

morphological analysis. 

Vickers indentation tests were carried out to evaluate the hardness and fracture 

toughness of sintered 3YTZP and composites at room temperature. Tests were 

performed on sample surfaces polished to 1 µm diamond paste using a Vickers indenter 

with a range of loads up to 2 kgf (Duramin Struers, Germany). Twelve indents were 

made on each sample avoiding boundary effects (i.e. keeping the appropriate distance 

from sample edges and between indentations marks) and were analyzed using a 

confocal microscope LEICA DCM 3D. Vickers hardness, Hv, was calculated from the 

indentation load, P, and the diagonal of Vickers imprints, a: Hv=1.854(P/a2).  

Fracture toughness, KIC, was calculated by using the equation given by Anstis et 

al.29 where c is the crack length measured from the centre of the imprint and E the 

elastic modulus. The crack length was measured 24 h after the indentation, once the 

cracks were fully developed. 

















=

2/3

2/1

016.0
c

P

H

E
K

v
IC

       (1)
 

Electrical characterization was carried out by Impedance Spectroscopy using an 

Agilent 4294A analyzer in the frequency range from 100 to 2x106
 Hz, at temperatures 

from 25 to 450 °C. Measurements were carried out in argon atmosphere to avoid 

oxidation of the samples and subsequent degradation of the SWNTs during the process. 
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Colloidal silver paste was applied on both sides of the samples and electrodes were fired 

at 600 °C for 30 min under argon flow. Equivalent circuit approach was adopted for the 

data analysis with fitted curve using Z-view software and equivalent circuit model. 

 

3. Results and discussion 

3.1 Microstructural characterization 

Table 1 displays the density values together with the global results of 

morphological parameters of as-sintered samples. A full densification was obtained in 

all the sintered materials. Similar mean grain size (~230 nm) and shape factor (~0.75) 

were measured in the different composites and no significant differences were observed 

compared to monolithic zirconia grains, except for slightly narrower size distributions 

(smaller σ<d>).  

Fig. 1 shows the Raman spectra measured in the composites, monolithic 3YTZP 

ceramic and as-received SWNTs. The composites spectra show SWNT characteristic 

radial breathing mode (RBM) band near 150–200 cm−1 and G-band near 1500–1600 

cm−1. In the G-band it can be observed the lower-frequency broad shoulder 

centred around 1570 cm−1 (Breit-Wigner-Fano or BWF lineshape), which is 

characteristic of metallic SWNT28. The composites spectra are very similar to the 

SWNT spectrum before processing of the composites, clearly confirming the absence of 

significant damage to SWNTs during powder processing and sintering. A G-band shift 

towards higher frequencies, by ∼∼∼∼20 cm−1, is observed in the three composites, 

which can be attributed to residual stresses in the SWNTs imposed by the 

constraining ceramic matrix28. D-band (centred on 1350 cm−1), associated to 

disordered graphite and crystalline defects, is also observed. ID/IG ratio calculations give 

similar values for the three composites (6.6, 6.5 and 7.2% for 0.5, 1 and 1.5 vol% 
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SWNT, respectively) pointing to a similar amount of crystalline defects in the 

nanotubes. On the other hand, peaks at 165, 260, 320, 465, 610, and 643 cm−1 are 

observed in the spectra acquired in the composites, corresponding to the six Raman 

bands theoretically predicted for tetragonal zirconia.30 

HR-SEM micrographs of characteristic fracture surfaces of the composites are 

presented in Fig. 2. SWNT bundles are located at the ceramic grain boundaries and 

debonded CNTs from the matrix can also be observed. Whereas the 3YTZP grains 

surrounded by SWNT bundles are scarce in the composite with 0.5 vol% SWNT (fig 

2(a)), the amount of SWNT bundles at the grain boundaries increases in the composites 

with higher SWNT vol% (figures 2(b) and 2(c)). CNTs are mainly well distributed on 

the 3YTZP matrix; however, some agglomerates are also found in these high-resolution 

observations. The presence of these agglomerates or clusters has been previously 

reported in CNT/ceramic matrix composites.13,19,27,31,32  

Low-magnification SEM micrographs (Fig. 3) illustrate the arrangement and 

morphology of SWNT agglomerates in the studied composites. The maximum 

agglomerate size ranges from 30 to 60 µm (Table 2), which is similar to previously 

published values for Al2O3/MWNT composites also prepared by colloidal processing32. 

Although it is assumed that the tendency of forming agglomerates is due to Van der 

Waals interactions between nanotubes, they are not expected to lead to such important 

agglomerate sizes in composites with a rather low SWNT content32 as in this study. 

Other forces that might play a key role in the behaviour of the 3YTZP/SWNT powder 

mixtures have been suggested, and it was shown from thermodynamic considerations 

that long, thin rods mixed with spheres can induce phase separation and demixion32. 

Similar mean agglomerate size, about 7–9 µm, and a marked elongation (F ~ 

0.45) are found for the three composites. These morphological characteristics are similar 
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 10

to those reported by Morales-Rodríguez et al.19 for Al2O3/SWNT composites prepared 

by a similar processing route. These authors showed that SWNT agglomerates are 

flattened structures strongly aligned on the direction perpendicular to the SPS 

compression axis. 

An increase in the agglomerate surface density ρs is observed when increasing 

SWNT vol% (Table 2). Nevertheless, this fact does not imply an increase of the 

percentage of the total SWNT content that is agglomerated, A%. Assuming that the area 

fraction covered by agglomerates in SEM micrographs is equal to its volume fraction in 

composites (ρs=ρv, Delesse´s principle of stereology), this percentage can be estimated 

as: 

A% = 100 ρv/SWNT vol%       (2) 

Despite the increase in agglomerate volume fraction for higher SWNT vol%, 

similar percentages of agglomerated SWNTs (~ 30%) from the total SWNT content 

have been found in the three composites. So an increase in SWNT content does not 

imply an increase in agglomeration. 

The SWNT vol% contained in the agglomerates (A-SWNT) and distributed at 

the grain boundaries (GB-SWNT) can be directly inferred from agglomerate volume 

density as: 

A-SWNT = ρv         (3) 

GB-SWNT = SWNT vol% - A-SWNT     (4) 

As it is shown in Table 2, after colloidal processing and sintering, the real 

content of nanotubes at the grain boundaries are estimated to be 0.32, 0.74 and 1.1 

SWNT vol% for composites with 0.5, 1, and 1.5 nominal SWNT vol%, respectively.  

It is interesting to note that lower A-SWNT vol% has been achieved in these 

materials in comparison with Al2O3/SWNT composites with similar SWNT content.19 
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Whereas 60% of the SWNT are contained in agglomerates in Al2O3/1 vol% SWNT 

composites,19 only 26% of SWNT are agglomerated in our 3YTZP composites with the 

same SWNT content. Although similar processing routines were used in both studies, 

SWNT freeze-drying after acid-treatment was introduced in the present work with the 

aim of obtaining a more homogeneous SWNT distribution.16,33  It is clear that, although 

it is not possible to reduce the maximum or the mean agglomerate size by freeze-drying 

the nanotubes instead of drying on a hot plate, a decrease of the percentage of the CNT 

content that are agglomerated is achieved.  

 

3.2 Mechanical properties 

Similar Vickers hardness, Hv, values within the experimental error are obtained 

for the three composites and the monolithic 3YTZP ceramic (Table 3). To the best of 

our knowledge, absence of decrease or increase of hardness with increasing CNT 

content in ceramic matrix composites has only been reported for Al2O3 with 1 vol% 

SWNT composites,34 since most of the authors report a decrease of hardness, even for 

composites with low CNT content.11,14-16 The decreasing trend reported by previous 

authors for 3YTZP/CNT composites is shown in Figure 4(a). This tendency is usually 

linked to a decrease in the composite density,11 an increase in nanotube agglomeration17 

or a weakening of interfacial bonding when the grains are wrapped by CNT and, 

therefore, the direct contact area and bonding force among grains decrease with 

increasing CNT content.12,13 In this study, fully densified composites have been 

obtained, and the increase in the surface density of agglomerates (Table 2) does not play 

a fundamental role in the evolution of hardness when increasing SWNT content. Thus, 

it is clear that the incorporation of low SWNT content in the ceramic matrix minimizes 
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the SWNT weakening effect on interfacial cohesion between ceramic grains observed in 

composites with high SWNT content.13  

 
Regarding the fracture toughness values, in recent years, there have been 

different arguments about the validity of the Vickers indentation technique to 

characterize fracture toughness of CNT-ceramic matrix composites, and it has 

been suggested that it should be measured by the single-edge notched beam 

(SENB) method6,10,35,36. Some authors have compared the results obtained in 

ceramic matrix composites using the indentation method with the ones obtained 

with the SENB test and, although the absolute values of KIC measured by both 

tests differ (higher values obtained from indentation measurements), a similar 

trend was observed when measuring using the two techniques35,36. Taking this 

result into account, and considering also the simplicity of the indentation test and 

the difficulty of obtaining bars for SEBN test from SPS disks in several studies, it 

has been proposed that, although the KIC values obtained from indentation tests 

are not fully quantitative, they can be used to compare different compositions 

tested in a same study, or for comparison purpose with previous works. 

Figure 4(b) shows that the obtained KIC data follow a increasing trend for 

the composites with increasing SWNT vol.%. These values are similar 11,14,15 to 

previously published results (also obtained from Vickers indentation tests) for 

3YTZP composites with low SWNT content. This slight enhancement is consequence 

of toughening mechanisms present in the composites, such as CNT crack bridging and 

pull out, and CNT ropes debundling and uncoiling, as described by previous authors.6 

 

3.3 Electrical properties 
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A room temperature conductivity of 6x10-6 S·cm-1 was measured on the 

composite with 1.5 vol% SWNT (Table 3). On the contrary, monolithic 3YTZP ceramic 

and composites with 0.5 and 1 vol% SWNT were found to be electrically isolating with 

a very high room temperature resistivity. The percolation threshold of the carbon 

nanotubes in the 3YTZP matrix is therefore between 1 and 1.5 vol%. Nevertheless, 

considering the agglomerates characterization presented above (Table 2), the real 

percolation threshold would be between 0.74 and 1.1 vol% SWNT (real SWNT content 

at grain boundaries), values that are comparable to those published in literature for 

Al2O3/MWNT composites (0.64-1 vol%).20,21,25,32  

The percolation threshold obtained in this study is lower than the published one 

by Shin and Liang22,23 for 3YTZP/MWNT composites (~5.5 vol%). This is probably 

consequence of the processing efforts devoted in this study to minimize the presence of 

SWNT agglomerates in the composites, which lead to a higher amount of SWNT 

distributed in the ceramic grain boundaries. 

Impedance complex plane plots corresponding to the composite with 1.5 vol% 

SWNT from room temperature up to 180 ºC, are shown in Fig. 5(a). A single impedance 

arc can be observed until 180 ºC, when a second arc appears at lower frequency. 

According to Garrett et al.37 the impedance properties of a SWNT percolating network 

can be modelled with an equivalent circuit consisting of two R-C elements in series. It 

has been published that the resistance of the carbon nanotube bundles and the resistance 

of the junctions between these bundles are the two major contributions to SWNT 

network resistance,26,38,39 and it is well established that the resistance across junctions is 

higher than the resistance through the bundles themselves.38,39,40 Thus, the lower 

resistance element in the equivalent circuit model can be assigned to the CNT bundles 

whereas the higher resistance one can be assigned to the junctions.  
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In this context, we have modelled the single impedance arc obtained from room 

temperature to 160 ºC (arc not shown) using an equivalent circuit model (inset in Fig. 

5(a)) similar to the described one by previous authors,37,41 consisting of a R-C element 

connected in series with a R-CPE (constant phase element). The CPE is generally used 

to represent a distribution of relaxation times.42 Fitting parameters are displayed in 

Table 4. Capacitance values similar to the reported ones for single wall carbon nanotube 

networks37 were obtained.  

Fig 5(b) shows the evolution of SWNT bundles and junctions resistivities with 

temperature from room temperature to 160 ºC. A significant difference between them in 

the whole range of temperatures, with quite higher resistivity values for the junctions, is 

observed. It has been shown that the junction resistance is strongly dependent on the 

size of the interconnecting bundles, with the smallest values associated with individual 

tubes.39 Thus, the high junction resistivity observed in this study is clearly pointing to 

junctions involving large diameter bundles or SWNT agglomerates, which will control 

the overall conductivity properties of the composite, as remarked by previous authors.39 

Decreasing the bundle diameter will reduce the junction resistivity, and will increase the 

composite conductivity. Future works will be devoted to further SWNT debundling.  

It is also observed that whereas the SWNT bundles resistivity is almost constant 

with temperature, a remarkable decrease of junctions’ resistivity is observed with 

increasing temperature. This behaviour is in good agreement with Sheng’s theory of 

fluctuation-induced electron tunnelling,43 model that has been successfully applied to 

describe the primary conduction mechanism across nanotube-nanotube junctions in 

CNT composites.23,24  Briefly, a system of SWNTs, such a rope or mat, can be 

considered as containing many conducting regions separated by small insulating 

barriers. In such a system, these tiny barriers will be very susceptible to charge 
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fluctuations, resulting in electric field fluctuations across the tunneling junctions. These 

fluctuations increase with increasing temperature, and the system conductivity can be 

described by Sheng’s formula 










+
−=

0

1
0 exp

TT

Tσσ         (5) 

where σ0 is a preexponential constant, and T0 and T1 are the tunneling parameters, 

which has previously been used to explain conductivity behaviour for carbon nanotube 

systems.23,24 

Figure 6 shows impedance complex plane plots corresponding to the composite 

with 1.5 vol% SWNT from 200 to 400 ºC. Two impedance arcs can be observed, which 

behave surprisingly in a very different way. Whereas the arc at higher frequency 

decreases monotonously with temperature, the arc at lower frequency increases up to 

350 ºC (arc not shown) and decreases for higher temperatures.  

Two impedance arcs were also obtained when characterizing the monolithic 

3YTZP ceramic and the composites with 0.5 and 1 vol% SWNT (not shown), the higher 

frequency one corresponding to conductivity through the ceramic bulk and the lower 

frequency one corresponding to conductivity through the grain boundaries. However, in 

these two composites the conductivity evolution with temperature is the typical of an 

ionic conductor, and both arcs decrease monotonously when increasing temperature, 

resulting in an increase of conductivity both through the bulk and through the grain 

boundaries. 

In the case of the composite with 1.5 vol% SWNT, the arc at higher frequency 

would contain the ionic contribution to conductivity through the ceramic bulk and also 

the electronic one through the SWNT network. The second arc would be related to the 

ionic conductivity through the grain boundaries, but in this case the fact that a great 
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fraction of the grain boundaries is covered by SWNTs reduces the ionic conductivity 

resulting in an increase of the grain boundary resistivity for temperatures up to 350 ºC, 

and thus, an increase of the arc. For higher temperatures this effect is overcome and the 

grain boundary conductivity increases with temperature. Equivalent circuit approach of 

these data in order to obtain conductivity values for the different contributions presents 

a high complexity and will be addressed in future studies. 

Figure 7 shows the Arrhenius plots for total conductivity in the studied 

composites, together with monolithic zirconia. Total resistivity was calculated from 

resistance values obtained from intercepts on the real, Z’, axis. The slope of these 

diagrams was used to calculate the activation energy of the conducting species (Table 

3). For composites with 0.5 and 1 vol% SWNT, as well as monolithic zirconia, a value 

close to 0.8 eV was obtained. This result is consistent with the activation energy for 

oxygen vacancy conduction in zirconia-based ceramic oxides.44,45,46 Thus, these two 

composites behave as ionic conductors without SWNT percolation. For the composite 

with 1.5 vol% SWNT, a completely different behaviour was observed, with activation 

energy of 65 meV, revealing that SWNT contribution to charge transport dominates for 

temperatures up to 350 ºC. In this case, an ionic-electronic mixed conductor is obtained 

due to the percolated SWNT network. A similar result was reported for composites of 8 

mol% Y2O3/ZrO2 with SWNTs24, with activation energy of 30 meV. 

 
4. Conclusions 
 

Fully dense 3 mol% yttria doped zirconia matrix composites containing 0.5, 1 

and 1.5 vol% SWNT, with equiaxed grain microstructure and almost analogous ceramic 

grain size (250 nm), were prepared by colloidal processing and SPS. SWNTs were 

homogeneously distributed at grain boundaries and also into large SWNT agglomerates. 

Similar agglomerate mean size and shape were found for the three composites. 
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Increasing SWNT vol% leads to similar percentage of the total SWNT content 

contained in agglomerates (~30%), and an increasing SWNT content at the grain 

boundaries. 

Similar Vickers hardness and slightly enhanced fracture toughness were 

obtained for the composites in comparison with the monolithic 3YTZP ceramic. The 

increase in the surface density of agglomerates does not play a fundamental role in their 

evolution when increasing SWNT content.  

Percolation threshold of the carbon nanotubes in the 3YTZP matrix was 

estimated to be between 0.74 and 1.1 vol% SWNT corresponding to nominal contents 

of 1 and 1.5 vol%, respectively. Composites with 0.5 and 1 vol% SWNT behaved as 

ionic conductors without SWNT percolation, with ~0.8 eV activation energy.  

Room temperature conductivity in the composite with 1.5 vol% SWNT revealed 

the existence of a percolated SWNT network in this material, which presented a mixed 

ionic-electronic conduction with 65 meV activation energy. Modelling of impedance 

properties in this composite using an equivalent circuit allowed separation of the 

individual SWNT bundles contribution to resistance from the resistance due to junctions 

between bundles. The existence of junctions involving large diameter bundles or SWNT 

agglomerates resulted in higher junction resistivity in comparison with the SWNT 

bundles resistivity. The remarkable decrease of junctions’ resistivity with increasing 

temperature up to 160 ºC was successfully described in terms of the fluctuation-induced 

electron tunnelling across nanotube-nanotube junctions. 

 

Acknowledgements 

The authors acknowledge the financial support provided by the Spanish Ministry 

of Science and Innovation (MAT2012-34217) and Junta de Andalucía (P12-FQM-



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 18

1079). Microscopy studies have been performed in facilities belonging to the CITIUS 

(Universidad de Sevilla). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 19

Figure captions 

 

Figure 1: Raman spectra measured in the composites including the RBM frequency 

range and the D and G-Bands frequency range. Raman spectra measured in the 

monolithic 3YTZP ceramic and in the SWNTs have been included for comparison. 

 

Figure 2: HRSEM micrographs of fracture surface of the composites with different 

SWNT contents (a) 0.5 vol%, (b) 1 vol%, and (c) 1.5 vol%. 

 

Figure 3: SEM micrographs showing the SWNT agglomerate distribution on the cross-

sections of composites with different SWNT contents (a) 0.5 vol%, (b) 1 vol%, and (c) 

1.5 vol%. 

 

Figure 4: (a) Vickers Hardness and (b) fracture toughness for monolithic 3YTZP and 

SWNT/3YTZP composites and comparisons with the bibliography values. 

 

Figure 5: (a) Impedance plots acquired in the composite with 1.5 vol% SWNT from 

room temperature to 180 ºC and (b) SWNT bundles and junctions resistivity in this 

temperature range. The inset in (a) shows the equivalent circuit used to fit the 

impedance data. 

 

Figure 6: Impedance plots acquired in the composite with 1.5 vol% SWNT from 200 to 

400 ºC. 
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Figure 7: Arrhenius plots of the electrical conductivity for monolithic 3YTZP and 

3YTZP/SWNT composites. 
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Table 1: Theoretical and relative density and morphological parameters for ceramic 

grains in monolithic 3YTZP and SWNT/3YTZP composites. 

 

SWNT  vol% 
ρρρρth 

(g·cm-3) 

ρρρρr 

 (%) 

<d> 

(nm) 

σσσσ<d> 

(nm) 
f 

0 6.10 100 215 85 0.75±0.08 

0.5 6.08 100 230 80 0.74±0.08 

1 6.06 100 215 75 0.73±0.06 

1.5 6.04 99.4 240 80 0.76±0.05 
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Table 2: Surface density of SWNT agglomerates, percentage of carbon nanotube 

content in agglomerates and at grain boundaries calculated for each composite and 

morphological parameters of agglomerates. 

 
SWNT  

vol%     
ρρρρs (%) A (%) 

A-SWNT 

vol% 

GB-SWNT 

vol% 

<D> 

(µµµµm) 

σσσσ<D> 

(µµµµm) 

Dmáx 

(µµµµm) 
F 

0.5 0.18 ± 0.07 36 0.18 0.32 9 7 60 0.4 ± 0.3 

1 0.26 ± 0.03 26 0.26 0.74 7  4 30 0.5 ± 0.2 

1.5 0.40 ± 0.05 27 0.40 1.10 8  5 40 0.5 ± 0.2 
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Table 3: Mechanical and electrical properties measured for the studied materials. 

 
SWNT  vol% Hv (GPa) K IC (MPa·m1/2) σσσσRT (S·cm-1) Eact (eV) 

0 12.7±0.4 4.3±0.3 ---- 0.86±0.02 

0.5 13.4±0.3 4.2±0.3 ---- 0.84±0.08 

1 12.6±0.2 4.4±0.2 ---- 0.76±0.07 

1.5 12.9±0.3 4.6±0.3 6x10-6 0.065±0.002 
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Table 4: Equivalent circuit values for the fitting of the impedance properties of the 

composite with 1.5 vol% SWNT. 

 
T (ºC) ρρρρJ (kΩΩΩΩ·cm) CJ (pF) ρρρρB (kΩΩΩΩ·cm) CB (pF) 

25 158±13 272±3 10.4±0.9 137±3 

40 135±11 279±3 9.1±0.8 139±4 

60 113±10 293±4 7.8±0.7 139±4 

80 93±7 302±4 6.9±0.5 137±4 

100 83±6 318±4 6.4±0.5 136±4 

120 76±6 340±6 6.5±0.6 132±4 

140 70±5 351±5 6.1±0.4 132±4 

160 66±6 400±8 6.4±0.6 135±4 

180 56±5 475±1 6.6±0.6 128±5 
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Figure 1: Raman spectra measured in the composites including the RBM frequency 

range and the D and G-Bands frequency range. Raman spectra measured in the 

monolithic 3YTZP ceramic and in the SWNTs have been included for comparison. 

 

Figure 2: HRSEM micrographs of fracture surface of the composites with different 

SWNT contents (a) 0.5 vol%, (b) 1 vol%, and (c) 1.5 vol%. 

 

Figure 3: SEM micrographs showing the SWNT agglomerate distribution on the cross-

sections of composites with different SWNT contents (a) 0.5 vol%, (b) 1 vol%, and (c) 

1.5 vol%. 

 

Figure 4: (a) Vickers Hardness and (b) fracture toughness for monolithic 3YTZP and 

SWNT/3YTZP composites and comparisons with the bibliography values. 

 

Figure 5: (a) Impedance plots acquired in the composite with 1.5 vol% SWNT from 

room temperature to 180 ºC and (b) SWNT bundles and junctions resistivity in this 

temperature range. The inset in (a) shows the equivalent circuit used to fit the 

impedance data. 

 

Figure 6: Impedance plots acquired in the composite with 1.5 vol% SWNT from 200 to 

400 ºC. 

 

Figure 7: Arrhenius plots of the electrical conductivity for monolithic 3YTZP and 

3YTZP/SWNT composites. 
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