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Abstract 

Interfacial tension of some hydrocarbon/water systems, including a mixture of aliphatic 

and aromatic hydrocarbons, has been estimated on the basis of molecular dynamics 

simulations. The dependence of the interfacial properties on the salinity of the aqueous 

phase and the temperature has been simulated. Different concentrations in NaCl and 

CaCl2 up to 2 M have been used. It is found that, in all considered cases, interfacial 

tension increases with salt concentration. This effect depends on the preference of the 

salt ions for the bulk of the aqueous phase that, in turns, results in an increased 

difficulty for the water molecules to be at the interface. The influence of salinity is 

fundamentally electrostatic in origin and does not depends on the chemical nature of the 

salt cation. Finally, the impact of temperature on the dodecane/brine interfacial tension 

has also been inspected. A decreasing of the values of the interfacial tension is found in 

agreement, both in trend and magnitude, with experimental available data. 
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Introduction 

 Prediction of interfacial properties, especially interfacial tension (IFT) between 

immiscible and partially miscible liquid-liquid mixtures, is of great interest among the 

scientific community. Thermodynamically, the IFT is a measure of the free energy per 

unit area that is required for creating an interface between two condensed phases. It 

plays a key role in a number of applications such as emulsion stability, coating, micelle 

formation and self-assembly process of nanoparticles at liquid-liquid interfaces. It is 

also relevant in pharmaceutical and cosmetic industry. In petroleum industry, interaction 

between oil components, water and rock is a key role in enhanced-oil-recovery process 

(EOR). 

 Experimentally, IFT can be measured by several techniques, as capillary, 

Wilhelmy plates, drop weight, gas bubble, spinning drop, pendant drop and ring 

methods. Alternatively, theoretical methods based on atomistic molecular dynamics 

(MD) simulations have been used for long. MD simulations also using coarse-grained 

approaches or dissipative particle dynamics (DPD) have been reported. [1, 2, 3] 

 Different trends have been reported in the literature regarding the effects of the 

presence of diverse salts on the interfacial tension of water/oil systems. In general, in 

pure hydrocarbon/water systems, an increase of the IFT with salt concentration has been 

described [4,5] with the notable exception of KI, for which a decreasing trend was 

found for dodecane/water systems [6]. The interfacial tension of crude oil/brine systems 

seems to be, however, a complex function of brine composition and concentration. 

Some studies [7,8] have reported an initial decrease with later linear increase of the IFT 

with brine concentration, resulting in the existence of a critical brine concentration that 

minimizes the IFT. However, other studies have reported no significant influence of 

NaCl concentration on the IFT [9] and even a decrease of the IFT with increasing 

salinity of the aqueous phase [10]. 

 Computer simulation techniques have been extensively used in recent years as 

useful complements of experimental studies of the properties of oil/brine interfaces. 

Previous MD works have usually considered pure organic solvents as the oil phase 

[11,12,13,14]. However, more recently, complex mixtures consisting of alkanes, 

cycloalkanes and aromatic molecules [15,16] even including an oil polar fraction [17] 

have been considered, recognizing the importance that the composition has in the 
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properties of crude oils. These theoretical simulations allow us to understand structure 

and properties of the interface. 

 In this research, interfacial tensions (IFT) are estimated for two immiscible 

liquid phases: a water solution and an oil phase, through molecular dynamics 

simulations and dissipative particle dynamics. As oil we have employed dodecane and 

octane (as aliphatic hydrocarbons) and benzene and toluene (as aromatic hydrocarbons). 

The dependence of the interfacial properties on both physical and chemical variables 

constitutes one of the most appealing aspects of these interfaces. To examine this 

dependence, the effects of different water salinities and temperature have also been 

analyzed. 

 

Computational details. 

 In this work different types of simulations such as atomistic molecular dynamics 

(MD) and dissipative particle dynamics (DPD) have been used to compute the IFT of 

different aqueous solution-hydrocarbon systems. All calculations were performed at a 

pressure of 1 atm and T=295.15 K, unless otherwise indicated, using three dimensional 

periodic boundary conditions. The pressure tensor method was used to compute the 

interfacial tension. With the interface located perpendicular to the z-axis, as in our case, 

the interfacial tension, 𝛾, can be obtained from the diagonal components of the pressure 

tensor, 𝑃𝑖𝑖, as: [18] 

𝛾 =
𝐿𝑧
2
�𝑃𝑧𝑧 −

𝑃𝑥𝑥 + 𝑃𝑦𝑦
2

� 
(1) 

where 𝐿𝑧 is the length of the simulation box along the z-axis, and the ½ factor is 

included to account for the two interfaces in the simulation box. 

 Atomistic molecular dynamics (MD) simulations were performed with the Large 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) package [19]. The 

consistent valence force field (CVFF) [20], which is known to correctly describe the 

interactions between different organic molecules, was used for all the systems. A cutoff 

distance of 1.4 nm for the Lennard-Jones potential was employed together with a van 

der Waals tail correction. It was checked that lower cutoff distances resulted in wrong 

densities for the isolated organic or water phases (vide infra) and, as result, lower values 
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for the IFT were obtained. In example, a cutoff distance of 0.8 nm produces IFT values 

10% lower than those obtained with the much tight cutoff of 1.4 nm employed. The 

long range electrostatic interactions were handled with the particle-particle-particle-

mesh (PPPM) method with an accuracy of 1 part in 105 [21]. To integrate the Newton's 

equations of motion a time step of 1.0 fs was used unless stated otherwise. All the 

production simulations were carried out in the NVT ensemble using a Nosé-Hoover 

thermostat set at a temperature of T=295.15 K [22]. 

The simulation box is an orthorhombic cell of dimensions 7𝑥7𝑥10 nm3 for 

systems where the organic phase is a pure component and 8.5𝑥8.5𝑥16.0 nm3 for 

systems where the organic phase is 87/13%wt dodecane/toluene (DodTol) (Fig. 1a). The 

organic phase is always situated at the center and the remaining volume is filled with 

the aqueous phase, either pure water or the saline solution (NaCl or CaCl2). In the case 

of the DodTol/NaCl 2.0 M brine, for example, this results in 1375 dodecane and 375 

toluene molecules on the oil phase, and 19444 water molecules, 700 Na+ and 700 Cl- 

ions on the aqueous phase. The models were built using the Packmol code [23]. In order 

to validate the simulation box size, force field and general setup simulation parameters a 

preliminary set of simulations were performed to obtain physical properties of water 

and isolated hydrocarbons. In these preliminary calculations, the systems were first 

equilibrated in a 2 ns NPT simulation and, later, a second production run of 4 ns was 

used to average the system properties. This way, we were able to compare the computed 

isolated phase density with reported experimental data and adjust the simulation setup. 

A similar procedure was used to compute the IFT of the two phase systems. First, the 

two phase system was equilibrated on a 2 ns NPT run. Later, in a 10 ns NVT production 

run, the system properties were obtained as average magnitudes each 1 ns by sampling 

the trajectories every 1 fs. After checking that the IFT has reached a stable value, the 

final IFT value is obtained as the average of the last 3 ns and the standard deviation of 

this average (±0.2 mN m-1) gave us an estimation of the precision in the calculated IFT.  

 DPD simulations were carried out with Material Studio 8.0 [24] using the 

Mesocite-DPD module [25, 26]. The box size and the number of beads taken to 

represent the organic and water phases are reported in Table 1. Cell compositions were 

fixed to be mixture 50:50 binary components. Several properties such as density, 

isothermal compressibility, and solubility parameters of an individual component are 
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taken from Martini et al. [27] and Rezaei et al. [28]. An equilibration period of 50000 

steps was used and followed by a production run of 50000 steps. 

 

Results and discussion  

Calculated interfacial tension values for the organic phase/water systems are 

summarized in Table 2 and Fig. 2, both at the MD (Table 2 and Fig. 2a) and DPD 

(Table 2 and Fig. 2b) approaches. Molecular dynamics results show a sharp interface in 

all cases, as can be deduced from the representation of the water and organic phase 

molecular density along the direction perpendicular to the interface (see Fig. 3). This 

observation is consistent with the experimental insolubility of these organic phases and 

water. Calculated interfacial tension for the aliphatic phase/water systems is 

significantly higher than for the aromatic phases/water systems reflecting, again, the 

low water solubility of these compounds and that some favorable interaction builds up 

in the case of the aromatics/water interface. The MD calculated interfacial tensions are 

systematically lower than the experimental values reported in the literature by about 4% 

for the aliphatic/water systems. However, for the aromatics/water systems the computed 

IFTs are, now, slightly larger (by about 5%) than the available experimental data that 

have, themselves, a dispersion of 2-3% on the reported figures. These errors are similar 

to those of other theoretical MD calculations reported in the literature and have to be 

traced to the force field parameters, as we have checked that our quite tight MD setup 

consistently results in a dispersion of the average IFT calculated values of only 

±0.2 mN·m-1 (vide supra). The DPD results show a similar behavior: the organic 

phases/water interfaces are quite sharp in agreement with the low miscibility of these 

systems. The computed interfacial tension data are, now, in better agreement with the 

experimental values and show a much better agreement that previously reported DPD 

results [27, 28, 29] 

 Regarding our DodTol/water system, the computed IFT is 49.9 mN·m-1 (MD) 

and 46.0 mN·m-1 (DPD). In this case, we have not found any previous experimental 

data, but given that the interfacial tension is directly related to the free energy required 

to the interface creation and considering the dodecane/toluene mix an ideal system, we 

estimated the value for the DodTol /water system from experimental values for the 

Dod/water and Tol/water systems as 
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𝛾𝐷𝑜𝑑𝑇𝑜𝑙/𝑤 =  𝑥𝐷 𝛾𝐷/𝑤 + 𝑥𝑇 𝛾𝑇/𝑤 (2) 

where γD/W and γT/W are the interfacial tension of pure dodecane/water and pure 

toluene/water interfaces, and xD and xT are the dodecane and toluene molar fractions, 

resulting in a value of 48.5 mN·m-1 for this interface. Our calculated MD and DPD 

values show deviations from this value that are within the errors bars previously 

analyzed. However, we found noteworthy that the error for the MD calculated value has 

decreased while for the computed DPD value has increased. For this reason, we 

analyzed in detail the structure of the dodecane-toluene/water interface by plotting the 

molecular density for the different components along the direction perpendicular to the 

interface (Fig. 3). This plot shows, as expected, a sharp interface, but it also shows an 

increase of the toluene molecular density at the interface region with respect to the bulk 

organic phase, with the molecular toluene density at the interface nearly duplicating the 

bulk value. This means that the dodecane-toluene system does not behaves totally as an 

ideal system, and explains the behavior observed in the computed MD and DPD 

interfacial tension values. As toluene accumulates at the interface, the DodTol/water 

IFT is lower than what the ideal mixture formula (2) could predict, explaining the 

apparent behavior of the errors of the calculated IFT values. This accumulation of 

toluene at the organic phase/water interface has been already observed in other 

aromatics+aliphatics/water systems and has been traced to the presence of weak 

hydrogen bonds between the water molecules and the aromatics [15]. 

 The computed IFTs between the oil phase (both pure organic solvents and 

dodecane-toluene mixture) and an aqueous solution as a function of salt composition 

and concentration are summarized in Table 3 and Fig. 4. The brine concentration was 

changed between 0.0-2.0 M for both NaCl and CaCl2 and we examined the oil/water 

IFT for dodecane, toluene and the dodecane-toluene mixture. In all systems studied, the 

IFT increased with salt concentration in contrast with the recent results of Moeini et al. 

[8] that found a moderate decrease of the IFT of heavy crude oil and brine up to ~40000 

ppm for both NaCl and CaCl2 brine then, the IFT increased linearly with further 

addition of salt. This can be ascribed to the presence in their systems of a polar 

component, asphaltene, in the organic phase that accumulates at the interface and 

interacts favorably with the ions at low salt concentration. In our case, the aromatic 

component (toluene) accumulates at the interface (see Fig. 3) and influences the 
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behavior of the IFT in the DodTol/brine systems. From the evolution of the IFT with 

NaCl concentration represented in Fig. 4 for isolated components, we can observe that 

the increase of IFT with molar concentration is large for dodecane/brine than for 

toluene/brine systems. For the DodTol/brine system, the slope of the IFT vs NaCl 

concentration curve is quite close to that of pure toluene/brine. This is a consequence of 

the above discussed accumulation of toluene at the interface in DodTol/water systems 

that is related to the formation of weak hydrogen bonds between the water molecules 

and the π-systems of the toluene molecules. The much higher concentration of the 

aromatic component at the interface results in a strong relationship of the DodTol/brine 

interface properties to those of the isolated toluene/brine systems. The slope of the IFT 

vs CaCl2 concentration is notably higher for both systems tested in this work: pure 

dodecane and dodecane-toluene/brine. The only experimental work that, to the best of 

our knowledge, has examined the individual effects of monovalent and divalent salt ions 

on oil/brine interfacial tension is the already mentioned study of Moeini et al. They 

found similar trends for both NaCl and CaCl2 solutions: IFT decreasing at low salt 

concentrations and then increasing at higher concentrations, but higher IFT values at all 

concentration were found when using CaCl2. 

 Our MD simulations allow us to further delve into the interface structure and 

analyze this behavior in terms of the lack of cation affinity for the interface. The 

normalized molecular density profiles along the perpendicular direction to the interface 

for the dodecane-toluene/NaCl 2.0 M system, shown in Fig. 3, show that the Na+ cations 

are, effectively, not present at the interface but prefer to be fully solvated by water 

molecules at the bulk of the aqueous solution. This results, in parallel, in a less 

favorable situation for water molecules at the interface, where they weakly interact with 

toluene molecules. At the same time, in the bulk of the aqueous solution they interact 

much strongly with the salt cations. This interpretation allows us to understand the 

higher effect of the Ca2+ cations as they interact much strongly with the water molecules 

and they also have a larger coordination sphere. 

 We can, thus, assign to purely electrostatic interactions the apparent differential 

effect of the CaCl2 compared to the NaCl. If the computed IFT is represented versus the 

ionic strength, as shown in Fig. 4b, data from both NaCl and CaCl2 aqueous solutions 

and dodecane or dodecane-toluene mixture fit in the same straight line. The slope of the 

fitting is, nonetheless, lower for the mixture than for the pure dodecane organic phase. 
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This indicates that there is an effect related to the accumulation of toluene at the 

interface that has to be analyzed in detail in a future work. In fact, the effect of brine 

concentration that we observe is much lower than the data shown by Moieini et al. [8], 

something that is probably related to the presence of polar components in their organic 

phase that are polarized by the reorganization of the interface induced by the cations of 

the aqueous phase. 

The effect of temperature has been investigated on the dodecane/brine interface 

at 323.15 K and concentrations of 0.0, 0.2, 1.0, and 2.0 M of NaCl (Fig. 5). It is found 

that increasing the temperature decreases the interfacial tension by 1-3 mN·m-1. This is 

in agreement, both in trend and magnitude, with previous experimental work [31, 29, 8] 

as several authors have reported this same behavior. This is relevant, as the 

measurement of the IFT at high temperature is quite cumbersome and also because the 

high temperatures present of the crude reservoirs strongly influence the interaction 

between oil components, water and rock. Thus, we show that molecular dynamics 

techniques offer a competitive means of obtaining an understanding of the interfacial 

tension behavior in hydrocarbon/brine systems at high temperatures. 

 

Conclusions 

 In this work we conducted a series of theoretical simulations based on molecular 

dynamics and dissipative particle dynamics to investigate the effect of salinity and 

temperature on the interfacial tension of various hydrocarbon/aqueous phase systems. 

We considered both pure hydrocarbons and a mixture of aliphatic and aromatic 

components and NaCl and CaCl2 as saline components to investigate the effect of 

cation valence on IFT. The interfacial tension of the different hydrocarbon/brine 

systems is found to rise with increasing salt concentration. This behavior is analyzed in 

terms of the electrolyte preference for the bulk aqueous phase, which, of course is 

related with its strong interaction with water molecules. The Ca2+ cation, that has a 

larger charge and coordination sphere, is found to have a superior effect on the IFT. 

However, the influence of the brine concentration, for the systems studied and at the salt 

concentrations examined, can be traced to a purely electrostatic influence, as the IFT 

increases linearly with the ionic strength on these systems. Rising the system 

temperature is found to decrease the computed dodecane/brine IFT, a trend that is in 
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agreement with experimental findings, showing that computational techniques are a 

competitive way to estimate the IFT at the high temperature conditions present on oil 

reservoirs. 
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Table 1 Coarse graining in the DPD simulations. 
 

Oil phase 
Beads 

/hydrocarbon 
molecule 

Water 
molecules/bead Cell size* Total beads  

Octane 3 3 19x12x12 2880 
Dodecane 3 4 19x12x12 2880 
Benzene 1 5 19x9x9 1620 
Toluene 1 6 19x12x12 2880 
*Reduced units 
 

Table 2 IFT (mN·m-1) MD and DPD results for the hydrocarbon/water systems and 

literature data. 

Oil phase 

MD DPD 
Experimental This work Literature This work Literature 

Octane 48.4 52.72a; 53.3b 52.8 45.37c; 50.12c; 
51.8d; 49.2e 

51.45 f;52.4g; 
50.8h 

Dodecane 50.5  53.5 45.15c; 56.6d 52.74f; 53.7g; 
52.8h 

Benzene 36.8 34.42a; 39.2b; 38.5b 35.4 34.7c; 31.42c; 
34.2d; 34.7e 33.8 h; 35.0i 

Toluene 38.3 37.69a; 41.2b; 40.4b 37.1 32.65c; 36.22c 35.4h; 36.1i 

DodTol 49.9  46.0  49.0j 
a)[15] b)[30]c) [28] d) [29] e) [27] f)[31] g) [32] h) [33] i) [34] j) [35] 

 
Table 3 IFT values (mN·m-1) for hydrocarbon/water vs brine concentration estimated 

from MD simulations. 

Oil phase C / M 
0.0 0.2 1.0 2.0 

 NaCl 
Dodecane 50.5  50.7 54.3 56.0 

Dodecane (T=323.15K) 48.4 49.5 52.5 53.1 
Toluene 38.8 39.5 40.8 42.3 
DodTol 49.9 50.3 50.8 53.0 

 CaCl2 
Dodecane 50.5 53.1 56.9 60.3 
DodTol 49.9 50.9 55.4 57.2 
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Fig. 1 Model of dodecane-toluene/water MD, left, and DPD, right. Color code: (left) O, 
red; H, white; C-dodecane, grey; C-toluene, black; (right) water, red; toluene, blue; 

dodecane, green. 
 

 
Fig. 2 IFT hydrocarbons/water using a) MD and b) DPD. 
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Fig. 3 Distribution function along z axis of dodecane-toluene/water model. 

 

 
Fig. 4 a) IFT values of hydrocarbon/water vs brine concentration: NaCl (red) and CaCl2 

(blue) b) IFT values vs ionic strength: NaCl (red) and CaCl2 (blue). 
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Fig. 5 IFT values for dodecane/water vs brine concentration NaCl at different 

temperatures. 
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