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1. Introduction

A Banach space is said to have the fixed point property (FPP) if every nonexpansive
mapping defined from a closed convex bounded subset into itself has a fixed point.
Recall that a mapping defined on a subset of a Banach space is nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y in the domain of T . It is well-known that the
geometry of the Banach space plays a fundamental role to assure the FPP (see the
monographs [8], [10] and the references therein). It is also classical that the sequence
Banach spaces `1 and c0 fail to have the FPP. In 1997, P. Dowling, C. Lennard and
B. Turett [2] proved that a Banach space fails to have the FPP whenever this space
contains a sequence which generates either an asymptotically isometric copy of c0

or an asymptotically isometric copy of `1 (see also Chapter 9 in [10]). In the last
years, asymptotically isometric copies of c0 and `1 have become very helpful in the
development of the fixed point theory for nonexpansive mappings. Actually, many
classes of nonreflexive Banach spaces are known to fail the FPP because it is proved
that they contain one of such copies (see for instance [3], [5], [6] or [13]).

It is noteworthy that the non-expansiveness condition strongly depends on the
given norm in the Banach space X. If T is nonexpansive for a norm ‖ · ‖, T may fail
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to be nonexpansive for another equivalent norm |·| in X. In fact, it was proved by P.K.
Lin [12] that `1 can be renormed to have the fixed point property for nonexpansive
mappings and it is still an open problem whether there exists an equivalent norm in c0

satisfying such condition. On the other hand, not all equivalent norms in c0 contain
an asymptotically isometric copy of c0 [2]. In fact, in [9] a dense family of equivalent
norms in c0 failing to have an asymptotically isometric copy of c0 is given. In [1] T.
Domı́nguez-Benavides proved that the set of all equivalent norms in c0 which fail to
have the FPP is also dense in the set of all renormings of c0. The main object of this
paper is to unify these two results. That is, we will prove that for every equivalent
norm in c0, we can obtain a renorming of c0 as close as the first one and we like and
which fails both, to have the FPP and to have an asymptotically isometric copy of
c0, which improves the density results given for the Banach space c0 in [1] and [9].

2. Preliminaries

In this section we introduce the definitions, notation and the known results that
we will use in the proof of the main theorem.

Definition 2.1. A Banach space (X, ‖·‖) is said to have an asymptotically isometric
copy of c0 if there are a null sequence (εn) in (0, 1) and a sequence (xn) in X so that

sup
n∈N

(1− εn)|tn| ≤

∥∥∥∥∥
∞∑

n=1

tnxn

∥∥∥∥∥ ≤ sup
n∈N

|tn|,

for all (tn) ∈ c0. In this case we say that X contains a c0-a.i. copy.

Given (X, ‖ · ‖) a Banach space we define by P(X) the set of all equivalent norms
on X endowed with the metric [7]:

ρ(p, q) = sup{|p(x)− q(x)| : ‖x‖ ≤ 1}, if p, q ∈ P(X).

We consider the Banach space c0 endowed with its usual norm given by ‖x‖∞ =
supn |tn| whenever x = (tn)n ∈ c0.

Similarly to [9], we set:

PFPP (c0) := {p ∈ P(c0) : (c0, p) has the FPP },
and

P0(c0) := {p ∈ P(c0) : (c0, p) fails to have a c0-a.i. copy }.

We know that PFPP (c0) ⊂ P0(c0) [2] although it is an open problem whether
PFPP (c0) could be nonempty. On the other hand, P0(c0) \ PFPP (c0) 6= ∅. Indeed,
let us consider the following equivalent norm on c0:

|x|∞ := sup
n

|tn|+
∞∑

n=1

|tn|
2n

if x = (tn)n ∈ c0. It can be proved that (c0, |·|∞) fails to have both, an asymptotically
isometric copy of c0 [2], and the FPP [5].

We recall James’ Lemma:
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Lemma 2.2. [11] Let (X, ‖ · ‖) be a Banach space which contains a subspace isomor-
phic to c0. Then for any positive number δ > 0 there is a sequence (yn) in X such
that

(1− δ) sup
n

|tn| <

∥∥∥∥∥∑
n

tnyn

∥∥∥∥∥ ≤ sup
n

|tn|

for all sequences (tn) ∈ c0.

In [1] T. Domı́nguez-Benavides proved that P(c0) \ PFPP (c0) is dense in P(c0).
The main object of this manuscript is to prove that P0(c0) \ PFPP (c0) is also dense
in P(c0), that is, that for every equivalent norm p in c0 we are able to find another
equivalent norm q as close as p as we like in the ρ metric such that q fails to have
both, the FPP and to have an asymptotically isometric copy of c0. Notice that
P0(c0) \ PFPP (c0) is a set of equivalent norms of c0 which is strictly contained in
P(c0) \ PFPP (c0).

3. Main result

Theorem 3.1. The set P0(c0) \ PFPP (c0) is dense in P(c0).

Proof. Let p be any norm in P(c0) and ε > 0. Take a constant b such that p(x) ≤
b‖x‖∞ for all x ∈ c0 and δ a positive number such that

b
δ

1− δ
<

ε

2
Using Lemma 2.2 we obtain a sequence (yn) in c0 such that

(1− δ) sup
n

|tn| ≤ p

(∑
n

tnyn

)
≤ sup

n
|tn|

for all (tn) ∈ c0.
Moreover, following James’ proof (see [11], Lemma 2.2) se can achieve that the

sequence (yn)n is finitely supported and that supp(yn) ∩ supp(ym) = ∅ si n 6= m,
where by supp(y) we denote the support of the vector y. Moreover, from the proof of
Lemma 2.2 in [11] we can also deduce that ‖yn‖∞ = ‖ym‖∞ if n, m ∈ N.

Let us define Y := span〈yn〉 which is a subspace of c0. We define in the subspace Y

the equivalent norm |y| := supn |tn| whenever y =
∑

n

tnyn. According to the above

inequalities we have
(1− δ)|y| ≤ p(y) ≤ |y|

for all y ∈ Y .
Since Y is a closed subspace of c0, applying Lemma 2.2 in [1], we can extend the

norm | · | to the whole Banach space c0 keeping the same equivalent constants, that
is, there exists a norm q in c0 such that q(y) = |y| whenever y ∈ Y and

(1− δ)q(x) ≤ p(x) ≤ q(x),

for all x ∈ c0.



56 A. BARRERA-CUEVAS AND M. A. JAPÓN

Using now Theorem 4.1 in [9], for every λ > 0, the norm q + λ| · |∞ fails to have
an asymptotically isometric copy of c0, where | · |∞ was defined in Section 2. Let us
prove that (c0, q + λ| · |∞) also fails to have the FPP for every λ > 0:

For x =
∑

n

tnen ∈ c0, we set

η(x) :=
∑

n

|tn|
2n

.

With this notation |x|∞ = ‖x‖∞ + η(x) for all x ∈ c0. Notice that η(ax + by) =
|a|η(x)+ |b|η(y) if x, y are two vectors in c0 with disjoint supports and a, b ∈ R. Since
the sequence (yn) is bounded and disjointly supported, we can check that limn η(yn) =
0. Hence, without loss of generality, we can extract a subsequence(ynk

)k ⊂ (yn)n such
that η(yn(k+1)) ≤ η(ynk

) for all k ∈ N.

Define the set

C := {
∞∑

k=1

tkynk
: 0 ≤ tk ≤ 1},

which is a closed convex bounded subset of c0 and it is contained in Y . Let us consider
the mapping T : C → C given by

T (
∞∑

k=1

tkynk
) = y1 +

∞∑
k=1

tnyn(k+1)

It is easy to check that T is fixed point free since (ynk
)k is a basic sequence. Let us

prove that T is nonexpansive for the norm q + λ| · |∞.

Firstly, T is nonexpansive for the q norm: set x =
∞∑

k=1

tkynk
, y =

∞∑
k=1

skynk
two

vectors in C.

q(Tx− Ty) = |Tx− Ty| = sup
k
|tk − sk| = |x− y| = q(x− y).

On the other hand, T is also nonexpansive for the | · |∞ norm. Indeed:

|Tx− Ty|∞ =

∣∣∣∣∣
∞∑

k=1

(tk − sk)yn(k+1)

∣∣∣∣∣
∞

=

∥∥∥∥∥
∞∑

k=1

(tk − sk)yn(k+1)

∥∥∥∥∥
∞

+ η

( ∞∑
k=1

(tk − sk)yn(k+1)

)

= sup
k
|tk − sk|‖yn(k+1)‖∞ +

∞∑
k=1

|tk − sk|η(yn(k+1))

≤ sup
k
|tk − sk|‖ynk

‖∞ +
∞∑

k=1

|tk − sk|η(ynk
)

=

∥∥∥∥∥
∞∑

k=1

(tk − sk)ynk

∥∥∥∥∥
∞

+ η

( ∞∑
k=1

(tk − sk)ynk

)
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=

∣∣∣∣∣
∞∑

k=1

(tk − sk)ynk

∣∣∣∣∣
∞

= |x− y|∞.

The above shows that T is nonexpansive for the norm q + λ| · |∞ for every λ > 0.
Consider 0 < λ < ε/4 and take x ∈ c0 with ‖x‖∞ ≤ 1:

|p(x)− q(x)− λ|x|∞| ≤ |p(x)− q(x)|+ λ|x|∞
≤ 1

1−δ p(x)− p(x) + λ|x|∞
≤ δ

1−δ b‖x‖∞ + 2λ‖x‖∞
< ε

which implies that ρ(p, q + λ| · |∞) < ε and this finishes the proof.

Remark 3.2. A classical way to measure the distance between two isomorphic Ba-
nach spaces is to consider the Banach-Mazur distance defined by

d(X, Y ) = inf{‖T‖‖T−1‖ : T : X → Y isomorphism }.
From the proof of Theorem 3.1 and by using the identity operator between c0 endowed
with two equivalent norms, we can derive that for every renorming of c0 we can find an
isomorphic Banach space without the FPP, failing to have an asymptotically isometric
copy of c0 and whose Banach-Mazur distance is as close to one as we like.
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