A ZERO OF A PROPER MAPPING

J. M. SORIANO* AND V. G. ANGELOV**

* Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Aptdo. 1160, Sevilla 41080, Spain E-mail address: soriano @us.es

** Department of Mathematics, University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, Bulgaria $E\text{-}mail\ address:}$ angelov@staff.mgu.bg

Abstract. Sufficient conditions are given to assert that a differentiable proper Fredholm mapping between Banach spaces over K = R or K = C has a zero. The proof of the result is constructive and is based upon continuation methods.

Keywords: zero point, continuation methods, frontier condition, Banach Fixed Point Theorem, C^1 -homotopy, proper mapping, compact mapping, Fredholm mapping

AMS Subject Classification: 58C30, 65H10, 47H10

1. Preliminaries

Throughout this paper we assume that Y and Z are Banach spaces both, being over K = R or K = C. If $f: Y \to Z$ is a continuous mapping, then one way of solving the equation

$$f(y) = 0$$

is the continuation method with respect to a specific parameter. It consists of finding a homotopy

$$H(t,y)$$
 $t \in [0,1],$

which, when t = 0, verifies H(t, y) = f(y). This method is feasible if there is a known solution of H(t, y) = 0 which can be continued to a zero of H(0, y)

This work is partially supported by D.G.E.S. Pb 96-1338-CO 2-01 and the Junta de Andalucia.

[1-5,18-21]. A comprehensive exposition of the continuation method and its applications can be found in [22]-[24].

An existence of zero points in finite dimensional case is proved in [7-17]. In the present paper sufficient conditions implying an existence of zeros for Fredholm mappings in general Banach spaces have been formulated. The proof is based on the classical continuation method [1-6] and Banach fixed point theorem.

We briefly recall some concepts to be used. Direct sum. If Y_1 and Y_2 are linear subspaces of linear space Y, we write $Y = Y_1 \bigoplus Y_2$ if and only if every $y \in Y$ can be represented uniquely as $y = y_1 + y_2$, where $y_1 \in Y_1$ and $y_2 \in Y_2$. If Y is a Banach space and the above split is verified and Y_1 and Y_2 are closed linear subspaces of Y, we say $Y = Y_1 \bigoplus Y_2$ is a topological direct sum. If there is a continuous linear operator $p_i : Y \to Y$, $p_i y = y_i, i = 1$ or i = 2, then the split is a direct sum. We say Y_1 is the topological complement of Y_2 . Let $f, g : U \subset Y \to Z$ be continuous mappings, where Y, Z are Banach spaces. g is said to be compact whenever the image g(B) is relatively compact (i.e. its closure is compact in Z) for every bounded subset $B \subset U$. f is said to be proper whenever the pre-image $f^{-1}(C)$ of every compact subset $C \subset Z$ is also a compact subset of U.

We recall some known propositions.

Proposition 1. If $a \in U$, U is open, $g : U \subset Y \to Z$ is compact and the derivative g'(a) exists, then $g'(a) \in L(Y, Z)$ is also compact (see [18, p. 296]).

If U is open, then $F: U \subset Y \to Z$ is said to be a Fredholm mapping if and only if F is a C^1 -mapping, and if and only if $F'(y): Y \to Z$ is a linear Fredholm operator for all $y \in U$. That $L: Y \to Z$ is a linear Fredholm operator means that L is linear and continuous and both the numbers $\dim(\ker(L))$ and $\operatorname{codim}(L(Y))$ are finite. Therefore $\ker(L) = Y_1$ is a Banach space and has topological complement Y_2 , since $\dim(Y_1)$ is finite. The number

$$\operatorname{ind}(L) = \dim(\ker(L)) - \operatorname{codim}(L(X))$$

is called the *index* of L. From the continuity of $y \mapsto ||F'(y)||$ we find that $\operatorname{ind}(F'(x))$ is constant on U if U is connected.

Proposition 2. For a linear Fredholm operator $L: Y \to Z$, the following is true: the perturbed operator L+C is also a Fredholm operator with ind(L+C) = ind(L), if $C \in L(Y, Z)$ and C is compact (see [18, p 366])

2. A ZERO OF A PROPER MAPPING

By $B_a(y^*)$ we mean a ball with center $y^* \in Y$ and radius a > 0, that is, $B_a(y^*) = \{y \in Y : ||y - y^*|| < a\}$. As usually by $\partial B_a(y^*)$ we denote the boundary of $B_a(y^*)$. The main result of the paper is:

Theorem. Let $f: Y \to Z$ be a C^1 - proper Fredholm mapping and $g: Y \to Z$ be a C^1 - compact mapping. Suppose:

- i) there is $y^* \in Y$ such that $f(y^*) = g(y^*)$;
- ii) there is a > 0 such that $f(y) \neq tg(y)$ for $t \in [0,1]$ and $y \in \partial B_a(y^*)$;
- iii) for $t \in [0,1]$ and $y \in B_a(y^*)$ f'(y) tg'(y) is surjective.

Then f has at least one zero in $B_a(y^*)$.

Proof. First step.

We prove an existence of a compact set V'' containing all the solutions of f(y) - tg(y) = 0, when $y \in B_a(y^*), t \in [0, 1]$. We put

$$V = g(B),$$

where $B = \{y \in B_a(y^*) : \text{ such that } f(y) = tg(y) \text{ for some } t = t(y) \in [0.1]\}$. B is not empty, because $f(y^*) = 1.g(y^*)$.

Since g is a compact mapping, $g(B_a(y^*))$ is a relatively compact set, and $V = g(B) \subset g(B_a)$, implies V is also a relatively compact.

The set $[0,1] \times \overline{V}$ is a compact in $[0,1] \times Y$ and $V' = \{ty: (t,y) \in [0,1] \times \overline{V}\},$

is a compact in Y, since it is the image of $[0,1] \times \overline{V}$ under the continuous mapping

$$(t,y) \in [0,1] \times \overline{V} \mapsto ty \in Y.$$

But f is proper and therefore $V'' = f^{-1}(V') \subset Y$ is also a compact set.

Second step. Let us construct the following homotopy

$$H: [0,1] \times Y \to Z, H(t,y) = f(y) - tg(y).$$

By Proposition 1 g'(y) is compact, and so is $tg'(y), \forall t \in [0,1]$. Since f is a Fredholm mapping, then $f'(y) \in L(Y,Z)$ is a Fredholm linear operator. By Proposition 2 f'(y) - tg'(y) is also a Fredholm operator, with $\operatorname{ind}(f'(y) - tg'(y)) = \operatorname{ind}(f'(y))$. Therefore H(t,y) is a Fredholm mapping, and it is an homotopy between f and f - g. As noted in Section 1, $\operatorname{ind}(f'(y))$ is constant for all g in g. Hence

$$\operatorname{ind}(f'(y) - tg'(y)) = \operatorname{const.}$$

for all $(t, y) \in [0, 1] \times V''$.

(a). We prove that if $H(t_0, y_0) = 0$, $(t_0, y) \in [0, 1] \times B_a(y^*)$, then H(t, y) = 0 has a solution for t near t_0 . To this end we will transform this problem into a fixed point problem.

Henceforth, partial derivatives will generally denoted by writing initial spaces as subindices of mappings. Let $t_0 \in [0,1]$ and $y_0 \in B_a(y^*)$. We consider the partial derivative

$$H_Y(t_0, y_0) \in L(Y, Z),$$

which is surjective from hypothesis (iii). Since $H'(t_0, y_0) \in L([0, 1] \times Y, Z)$ is a linear Fredholm operator, we can conclude that $\ker H'(t_0, y_0)$ is a closed finite subspace of $[0, 1] \times Y$, and so

$$\ker H_Y(t_0, y_0) := Y_1$$

is also a closed finite subspace of Y, since

$$\ker H_Y(t_0, y_0) = \ker H'(t_0, y_0) \circ u$$

$$u: Y \to [0,1] \times Y, u(y) = (0,y).$$

Therefore Y_1 splits Y in the sense that Y is the topological direct sum $Y = Y_1 \oplus Y_2$, with Y_2 the topological complement of Y_1 .

By A we denote the restriction of the surjective mapping $H_Y(t_0, y_0)$ to Y_2 . It is an isomorphism: Indeed $A(y_2) = 0$, with $y_2 \in Y_2$, the definition of Y_1 implies that $y_2 \in Y_1$. Hence $y_2 = 0$, since $Y = Y_1 \oplus Y_2$, and so, A being linear, we conclude that A is injective. By hypothesis (iii) it is surjective, and therefore it is an isomorphism.

We now set

$$G(t, y_1, y_2) := H(t, y_0 + y_1 + y_2),$$

and we solve the equation

$$G(t, 0, y_2) = 0, (1)$$

for y_2 . Obviously we have

$$G(t_0, 0, 0) = H(t_0, y_0) = 0,$$

and $G_Y(t_0, 0, 0) \in L(Y_2, Z)$ is verified to be the same as the bijective mapping A.

We now define the two following mappings

$$h(t, 0, y_2) := A(y_2) - G(t, 0, y_2),$$

 $T_t(y_2) := A^{-1}(h(t, 0, y_2)).$

In this case t is an index of the mapping T_t .

Equation (1) is equivalent to the following "key equation"

$$y_2 = T_t(y_2). (2)$$

The problem (1) is transformed into the fixed point problem (2), which we are going to study. Let

$$|t - t_0|, ||y_2'|, ||y_2|| \le r, \quad |t - t_0| \le r_0',$$

with r, r'_0 which we will fix later. Since

 $h_Y(t, 0, y_2) = A - G_Y(t, 0, y_2)$, then $h_Y(t_0, 0, 0) = 0 \in L(Y_2, Z)$. This together with the fact that h_Y is continuous owing to f and g being C^1 -mappings, and the application of the mean value theorem implies:

$$||h(t,0,y_2)-h(t,0,y_2')|| \le \sup\{||h_Y(t,0,y-2+\theta(y_2'-y_2)|| : \theta \in (0,1)\}.||y_2'-y_2||$$

$$= o(1) \|y_2' - y_2\|, \quad o(1) \to 0 \quad \text{as} \quad r \to 0.$$
 (3)

Since $h(t_0, 0, 0) = 0$, and h is continuous, and given equation (3), we also conclude:

$$||h(t,0,y_2)|| \le ||h(t,0,y_2 - h(t,0,0))|| + ||h(t,0,0)||$$

= $o(1)||y_2|| + o'(1)$, $o(1) \to 0$ as $r \to 0$, $o'(1) \to 0$ as $r'_0 \to 0$. (

From equations (3) and (4) and the definition of T_t we can write

$$||T_t(y_2)|| \le ||A^{-1}|| ||h(t, 0, y_2)|| = ||A^{-1}|| (o(1)||y_2|| + o'(1))$$

 $o(1) \to 0$ while $r \to 0$, $o'(1) \to 0$ while $r'_0 \to 0$.

We fix r so that $o(1) < \frac{1}{2\|A^{-1}\|}$, and we construct the closed and non-empty set

$$M = \{ y_2 \in Y_2 : ||y_2|| \le r \}.$$

Now we fix r'_0 so that $o'(1) < \frac{r}{2||A^{-1}||}$, and we introduce the set

$$M' = \{(t,0) \in [0,1] \times Y_1 : |t - t_0| \le \min\{r, r_0'\} = r_0\}.$$

For any $(t,0) \in M'$ $T_t: M \to M$, and T_t is $\frac{1}{2}$ – contractive, are verified since

$$\forall y_2 \in M, ||T_t(y_2)|| \le r \Rightarrow T_t(y_2) \in M,$$

and

$$\forall y_2, y_2' \in M \|T_t(y_2) - T_t(y_2')\| \le \|A^{-1}\| \frac{1}{2\|A^{-1}\| \|y_2 - y_2'\|}.$$

Then T_t has a unique fixed point $y_2 \in M$ $T_t(y_2(t,0)) = y_2(t,0)$, or equivalently $H(t, y_0 + 0 + y_2(t,0)) = 0$.

(b). We prove here that f has a zero $y^{**} \in B_a(y^*)$ by repeating a narrower version of section (a). Let (t_0, y_0) be any point such that $H(t_0, y_0) = 0$, with $t_0 \in [0, 1], y_0 \in V''$.

In section (a) we took r > 0 so that

$$o(1) < \frac{1}{2||A(t_0, y_0)^{-1}||}.$$

Given the continuity of $H(\cdot, \cdot)$ and $H_Y(\cdot, \cdot)$ with the compactness of $[0, 1] \times V''$, we can fix r so that

$$o(1) < \frac{1}{2 \cdot \max\{\|A(t_0, y_0)^{-1}\| : (t, y) \in [0, 1] \times V''\}} = \frac{1}{2c}$$

and we construct M with this r, therefore r'_0 is selected sot that

$$o'(1) < \frac{r}{2c}.$$

Then we construct M' with $r_0 < \min\{r, r'_0\}$. One can define a path $\Gamma = \{(t, y) \in [0, 1] \times B_a(y^*)\}$ with beginning at $(1, y^*)$. Let us consider the set $\{(t, y) \in [0, 1] \times V''$: such that $H(t, y) = 0\}$, and let $[0, 1] \times V''$ be covered by balls of centres (t, y) and radii r_0 . There is a finite subcovering of $[0, 1] \times V''$ by these balls. The path starting at the point $(1, y^*)$ can enter and leave one of the balls of this subcovering at most once and it can always be prolongued

in $[0,1] \times V''$ while t decreases. Then (ii) implies that Γ ends at $(0, y^{**})$ for some $y^{**} \in B_a(y^*)$, that is

$$H(0, y^{**}) = 0.$$

Thus $f(y^{**}) = 0$, which proves the Theorem.

References

- J. C. Alexander and J. A. York, Homotopy continuation method: numerically implementable topological procedures, Trans. Amer. Math. Soc. 242 (1978), 271-284.
- [2] E. L. Allgower, A survey of homotopy methods for smooth mappings, Allgower, Glashoff, and Peitgen (eds.) Springer-Verlag, Berlin (1981), 2-29.
- [3] E. L. Allgower and K. Georg, *Numerical Continuation Methods*, Springer Series in Computational Mathematics 13, Springer-Verlag, New York, 1990.
- [4] E. Allgower, K. Glashoff, and H. Peitgen (eds.), Proceeding of the Conference on Numerical Solution of Nonlinear Equations, Bremen, July 1980, Lecture Notes in Math. 878. Springer-Verlag, Berlin, 1981.
- [5] S. Bernstein, Sur la generalisation du problème de Dirichlet I Math. Anal. 62 (1906), 253-27.
- [6] S. Bernstein, Sur la generalisation du problème de Dirichlet II Math. Anal. 69 (1910), 82-136.
- [7] Y. G. Borisovich, V.G. Zwiagin, Y.I. Sapronov, Nonlinear Fredholm mapping and Leray-Schander theory Uspekhi Mat. Nank, v. XXXII, No 4. (196), (1977), 3-54 (in Russian).
- [8] F. Browder, Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc., v. 9, No 1, (1983), 1-39.
- [9] F. Browder, Topological methods for non-linear elliptic equations of arbitrary order Pac.
 J. Math. v. 17, No 1, (1966), 17-31.
- [10] C. B. Garcia and T. Y. Li, On the Number of solutions to polynomial Systems of non-linear equations, SIAM J. Numer. Anal. 17 (1980), 540-546.
- [11] C. B. Garcia and W.I. Zangwill, Determining all solutions to certain systems of non-linear equations, Math. Operations Research 4 (1979), 1-14.
- [12] K. Goebel, A coincidence theorem. Bull. Acad. Pol. Sci., v. 16, (1968), 733-735.
- [13] J. Leray, and J. Shauder, *Topologie et equations fonctionalles*, Ann. Sci. Ecole Norm. Sup. **51** (1934), 45-78.
- [14] J. M. Soriano, Existence of zeros for bounded perturbations of proper mappings, Appl. Math. Comput. 99(1999), 255-259.
- [15] J. M. Soriano, Global Minimum Point of a Convex Function, Appl. Math. Comput. 55, 2-3 (1993), 213-218.
- [16] J. M. Soriano, Extremum Points of a convex Function, Appl. Math. Comput. 80 (1994), 1-6.
- [17] J. M. Soriano, On the existence of Zero Points, Appl. Math. Comput. 79 (1996), 99-104.

- [18] J. M. Soriano, On the Number of Zeros of a Mapping, Appl. Math. Comput.88 (1997), 287-291.
- [19] J. M. Soriano, Mappings sharing a value on finite-dimensional spaces, Appl. Math. Comput. Pending publication.
- [20] J. M. Soriano, On the Bezout Thorem Real Case, Appl. Nonlinear. Anal.2-4 (1995), 59-66.
- $[21]\,$ J. M. Soriano, $On\ the\ Bezout\ Thorem$, Appl. Nonlinear. Anal.
- [22] J. M. Soriano, Zeros of Compact Perturbations of Proper Mappings, Appl. Nonlinear. Anal.7-4 (2000), 31-37.
- [23] J. M. Soriano, Fredholm and Compact Mappings Sharing a Value, Appl. Math. Mech. Pending Publication.
- [24] J. M. Soriano, Compact Mapping and Proper Mapping Between Banach Spaces that Share a Value, Math. Balkanica 14,1-2 (2000).
- [25] E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1985.