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Abstract

A graph is crossing-critical if its crossing number de-
creases when we remove any of its edges. Recently
it was proved that if a non-planar graph G is ob-
tained by adding an edge to a cubic polyhedral (pla-
nar 3-connected) graph, then G can be made crossing-
critical by a suitable multiplication of its edges. Here
we show: (i) a new family of graphs that can be trans-
formed into crossing-critical graphs by a suitable mul-
tiplication of its edges, and (ii) a family of graphs that
cannot be made crossing-critical by any multiplication
of its edges.

Introduction

This work is motivated by the following question set-
tled by Beaudou et al. in [1]: to what extent is
crossing-criticality a property that is inherent to the
structure of a graph, and to what extent can it be
induced on a non crossing-critical graph by multiply-
ing (all or some of) its edges? In [1] a family of non
crossing-critical graphs are transformed into crossing-
critical graphs by multiplying (adding parallel) edges.

The use of parallel edges has been essential in many
other important results on crossing number. For ex-
ample, in [2] was proved that for every a > b > 0,
there exist a graph G with crossing number a in the
plane, crossing number b in the torus, and crossing
number 0 in the double torus. This is called the ori-
entable crossing sequence of a graph G. In [4] was
reported a conjecture of R. B. Richter which states
that crossing-critical graphs have bounded maximum
degree. This conjecture was disproved by Dvofak and
Mohar [3], who exhibited crossing-critical graphs with
large maximum degree. In all these papers the use of
weighted (also called “thick”) edges is essential.

No simple graph that satisfies the properties as de-
fined in [2] and [3] are not known. On the other
hand there exist simple non crossing-critical graphs
such that if we multiply its edges (or equivalently,
assign weights on them) then they become crossing-
critical, as in [1]. Thus, important questions remain:
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What makes a graph crossing-critical? Does every
non-planar graph become crossing-critical by a weight
assignment to its edge set?

In this paper we give two infinite families G and
G’ of graphs such that (i) every graph in G remains
non crossing-critical even after any multiplications of
its edges, and (ii) every graph in G’ is not crossing-
critical, but after a suitable multiplication of its edges,
it is transformed into a crossing-critical graph. Let us
proceed to define these families.

Let W, be the wheel with n + 1 vertices, n > 5,
and let vy be the degree n vertex. The remaining n
vertices are labeled vy, vs, ..., v, in the order in which
they appear in the n-cycle. We add a new vertex u
to W, which is joined to vertices vg,v; and vs and
denote by G,, the resulting graph. Let G!, be the
graph that results by removing the edges vov; and
vovs from G,. We define G := {G,, : n > 5} and
G = {G), : n > 5}. See Figure 1. Note that each
graph of G U G’ is 3-connected.

It is not difficult to find non-planar graphs which
cannot be made crossing-critical by any multiplica-
tion of its edges. For example, if G is a non-planar
graph and e is a cut edge of GG, then G cannot be made
crossing-critical by any multiplication of its edges be-
cause e cannot be made critical. Thus, some con-
nectivity assumption is needed in order to guarantee
that a non-planar graph can be made crossing-critical.
In [1], for example, the graphs under consideration are
assumed to be internally 3—connected and such an as-
sumption plays a central role in its work. On the
other hand, as we will see in Theorem 1, the family
G is interesting because shows that 3-connectedness
property by itself is not sufficient to ensure that a
non-planar graph can be made crossing-critical.

Our main results are the following.

Theorem 1 Any graph G, € G is not crossing-
critical.  Moreover, G, cannot be made crossing-
critical by any multiplication of its edges.

Theorem 2 Every graph G, € G’ is not crossing-
critical, but there exists a suitable multiplication of
its edges such that the resulting graph G, is crossing-
critical.
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An edge e of a graph G is a Kuratowski edge if there
is a subgraph H of G which is isomorphic to a subdi-
vision of a K5 or K33 and e lies on H. In [1] was con-
jectured that a graph whose edges are all Kuratowski
becomes crossing-critical after a suitable multiplica-
tion of its edges. In this sense, note that the graphs
in G’ are consistent with this conjecture because any
edge in G}, is a Kuratowski edge (unlike the edges
vov1 and vous in Gy,).

1 Multigraphs and
weighted graphs

We recall that the crossing number cr(G) of a graph
G is the minimum number of pairwise intersections of
edges in a drawing of G in the plane. An edge e of G is
crossing-critical if cr(G — e) < cr(G), and say that G
is crossing-critical if all its edges are crossing-critical.

Recall that a weighted graph is a pair (G, w) where
G is a graph and w is a function (the weight assign-
ment) that assigns to each edge e of G a number w(e)
(the weight). The weight assignment is positive (re-
spectively, integer) if w(e) is a positive (respectively,
integer) number for any edge e of G. We only consider
positive integer weight assignments.

We extend the concept of crossing number to
weighted graphs (G, w) in an analogous way, just tak-
ing to account that a crossing between the edges e and
e’ contributes w(e) - w(e') to cr (G,w). A drawing D
of (G,w) is optimal if cr(D) = cr(G,w).

We now proceed to define what a crossing-critical
edge is in a weighted graph. Let (G, w) be a weighted
graph, an edge e of (G,w) is crossing-critical if
cr (G,we) < cr(G,w), where the weight assignment
we is defined by,

w.(f) = Jwl) if f#e,
(/) {w(f)—l if f=e.

As usual, (G,w) is crossing-critical if all its edges
are crossing-critical.

Let G* be a multigraph, and let G be its underly-
ing simple graph. We define the associated weighted
graph (G, w*) of G* as follows: for every edge e of G,
we define w*(e) as the multiplicity of e in G*. The
following observation is straightforward.

Remark 1 Let G* be a multigraph and let (G, w*) be
its associated weighted graph. Then G* is crossing-
critical if and only if (G,w*) is crossing-critical.

2 Proofs of Theorems 1 and 2

For brevity, let (i) g := vou and «a; := vou;,i =
1,...,n; (i) B == vivip1, i =1,...,nwith v, = vy;
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Figure 1: A drawing D of G¢ (above), and a drawing
D’ of G (below).

and (iii) 71 := wv; and 2 := wvs. Under this nota-
tion, observe that G), = G, — {a1,a3}. See Figure 1.

Lemma 3 Let w' be a positive integer weight assign-
ment on G',. Then there exists an optimal drawing of
(Gh,,w'") in which we can add both edges oy and as
without increasing the crossing number.

Proof. Let D' be an optimal drawing of (G, w’).
We divide the proof according to the edges that are
involved in a crossing in D’.

(A) Suppose that g is crossed in D’ (analogously for
042).

Since D’ is an optimal drawing, oy does not cross
with adjacent edges, therefore o crosses with a (-
edge, say 3;. Let D* be the drawing defined as fol-
lows. Draw a simple regular n-polygon such that
v1,V2,...,0, (in that order) are its vertices, place vg
in the center of such a polygon and add the «;-edge,
1=2,4,5,...,n, as straight line segments. Now draw
ap as an straight line segment crossing the edge §;.
Finally the edges v, and v, can be added around the
n-polygon boundary without introducing new cross-
ings. So D* has just one crossing and therefore
cr(D*) < cr(D’). But since D’ is an optimal drawing,
we must have that cr(D*) = cr(G’, w’). Moreover, we
can add the edges oy and ag as straight line segments
without adding a new crossing, as required.

(B) Both edges in any of {51, B2}, {71,72}s {8172}
{71, B2} are not crossed in D’.
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Figure 2: Drawing of G§ where v1, v2, 81, B2, ap and
o form a plane K 3

We only analyze the case in which both edges of
{B1,72} are not crossed in D’ (the rest of the cases can
be verified similarly). By (A) we can assume that nei-
ther ag nor as are crossed in D’. Because none of 31
and 72 has a cross in D', we can add «; (respectively
a3) following the uncrossed path asB; (respectively
p7y2) without introducing new crossings.

(C) Suppose (1 crosses 72 in D’ (analogously, fo
crosses 71).

Draw a plane wheel with vertices v1, . .., v, forming
a n-cycle and the vertex vy as the center. All edges ay,
1 # 1,3 are the spokes of this wheel. Then draw the
path agv1 as a spoke. Finally add the edge v, only
crossing the edge ;. Since the number of crossings
of such a drawing is less than or equal to the number
of crossings of D’, it is optimal. In this new drawing
we can add oy and a3 without increasing the crossing
number.

By (A) and (C) we can assume that neither ~q,
Y2, B1, B2, ag nor ag cross each other. Thus v, 9,
B1, B2, ap and o form a plane Ky 3. Without any
loss of generality, we may assume that vy is in the
bounded region defined by the cycle v;818272. Let
R,S and @ denote the disjoint regions bounded by
the cycles agaz 8171, apy2f202 and y1v282/31, respec-
tively. (See Figure 2)

Let P be the path 83084 ...08,. Let u, v, and p be
the element of {f1,71}, {B2,72}, and {B1, B2, 71,72}
with less weight, respectively.

Now we proceed according to the interior vertices
of P that are in each of R, S and Q.

(D) No interior vertices of P are in Q.

Then, all the interior vertices of P are in R, S, or
both of them.

(D.i) All interior vertices of P are in R (analogously
for S). Since D’ is optimal, B3 is the only edge that
cross the cycle agasB1v1. By (A), 83 does not cross
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neither o nor as, thus, by optimality, 53 only crosses
with p. Then this case follows from (B).

(D.ii) Both R and S contain interior vertices of P.
Because @ has no interior vertices of P, at least one (-
edge of P goes from R to S. Moreover, such a S-edge
is neither 83 nor fB,. Let 8; be (i # 3,n), the S-edge
of P with less weight. Thus we can get a drawing D*
where the only crossings are those involving 5; with u
and 3; with v. Since D’ is optimal, cr(D*) = cr(D’).
By (B), we can add the edges a; and a3 without in-
creasing the crossing number.

(E) Some interior vertices of P are in Q.

In this case we have three possibilities.

(E.i) All interior vertices of P are in ). In this case
we can get a drawing with as many crossings as D’
in which every crossing involves p and some «;, with
i1 =4,5,...,n. This case follows from (B).

(E.ii) Each region R, S and @ contains interior ver-
tices of P. Then there must be a (-edge, say 0;
(respectively f3;), crossing the cycle that bounds the
region R (respectively S). By (A), B; (respectively
B;) must cross either v; or 8 (respectively 7y, or f82).
If w'(B8;) < w'(B;), we can get an optimal drawing
D* by putting all vertices v4,vs,...,v; in S, all ver-
tices vijt1,Vit2,-..,U, in R. Thus we are back in
case (D.i). If w'(8;) < w'(B;) we can proceed analo-
gously.

(E.iii) Both R and @ contain (all the) interior vertices
of P (analogously for S and Q). Let v; be the interior
vertex of P in R with the smallest index. If vy is in R,
then the edge B3 crosses the cycle apgasf1y1 and, by
putting all interior vertices of P in R, we can proceed
as in (D.i). Thus vy must be in @ and so ¢ > 5. By
the choice of v;, and (A), 8;_1 crosses either v; or f,
and all vertices vy, vs,...,v;_1 are in Q.

It is easy to get a drawing D* whose only crossings
are: (i) o, j =4,...,4—1 with p, (ii) B;_1 crosses y;
and in D* all the other vertices v;, ..., v, remain in
R. This implies cr(D*) = cr(D’) and satisfies (B).

O

Proof of Theorem 1. Lemma 3 implies that both
a1 and a3 are not crossing-critical in (G, w) for any
weight assignment w on G,. Theorem 1 follows com-
bining this and Remark 1. O

Finally, consider the following weight assignment
w), on G :

, 1 ife=qa;,i=4,...,n;
wy,(e) = .
n —3 otherwise.

Lemma 4 cr(G,,w)) = (n — 3)? and (G, w),) is

n? n
crossing-critical.
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Proof. The proof for the crossing number is essen-
tially that given in Lemma 3. To prove that the graph
is crossing-critical, it is easy to see that for each edge

e there exists an optimal drawing of (G,, w],) where
e is involved in a crossing. ([l
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