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Abstract

Given a set P of points in Rd, a convex hole (alterna-
tively, empty convex polytope) of P is a convex poly-
tope with vertices in P , containing no points of P
in its interior. Let R be a bounded convex region in
Rd. We show that if P is a set of n random points
chosen independently and uniformly over R, then the
expected number of vertices of the largest hole of P
is Θ(log n/(log logn)), regardless of the shape of R.
This generalizes the analogous result proved for the
case d = 2 by Balogh, González-Aguilar, and Salazar.

Introduction

Given a set P of points in Rd, a convex hole (alterna-
tively, empty convex polytope) of P is a convex poly-
tope with vertices in P , containing no points of P in
its interior.
Recently, we showed that the expected size of the

largest convex hole in a random n-point set in the
plane is Θ(log n/ log log n) [3]. One anonymous ref-
eree of this paper asked if this could be generalized
to d > 2 dimensions. Joe O’Rourke asked the same
question in MathOverflow, and Douglas Zare replied
that the Ω(log n/ log logn) lower bound carries over
easily to the d-dimensional case [10]. At the end of
his reply, Zare wrote: “I don’t know whether their
harder upper bound of the same form also extends to
higher dimensions, but I suspect that it does.”
Our aim in this note is to show that, indeed, the

upper bound also holds for higher dimensions. Thus,
our main result is:

Theorem 1 Let d ≥ 2 be an integer, and let R be a
bounded convex region in Rd. Let Rn be a set of n
points chosen independently and uniformly at random
from R, and let Hol(Rn) denote the random variable
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that measures the number of vertices of the largest
convex hole in Rn. Then

E(Hol(Rn)) = Θ

(
log n

log logn

)
.

Moreover, a.a.s.

Hol(Rn) = Θ

(
log n

log logn

)
.

The proof, which is an immediate consequence of
Theorems 2 and 3 below, follows very closely the main
ideas of the proof of [3, Theorem 3]. Indeed, the strat-
egy and the main ideas are so close that it seems best
to follow as closely as possible the structure of [3]. As
we shall see below, some of the results proved in [3]
follow without any modification to arbitrary dimen-
sions. The main adaptations needed are:

1. a generalization of the results in [3, Section 2] to
d > 2 dimensions, to approximate convex sets in
Rd with lattice polytopes; and

2. an adaptation to d > 2 dimensions of the re-
sults on the probability that a random n-point
set is in convex position, from the exact results
of Valtr [11, 12] in R2 to the asymptotic results
of Bárány [6] in Rd, for any d ≥ 2.

The workhorse for the proof of Theorem 1 for ar-
bitrary regions R is the following statement, which
takes care of the particular case in which R is a par-
allelotope.

Theorem 2 Let R be a parallelotope in Rd. Let Rn

be a set of n points chosen independently and uni-
formly at random from R, and let Hol(Rn) denote
the random variable that measures the number of ver-
tices of the largest convex hole in Rn. Then

E(Hol(Rn)) = Θ

(
log n

log logn

)
.

Moreover, a.a.s.

Hol(Rn) = Θ

(
log n

log logn

)
.
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The other essential fact is that the order of magni-
tude of the expected number of vertices of the largest
convex hole is independent of the shape of R:

Theorem 3 There exist absolute constants b, b′ with
the following property. Let R and S be bounded convex
regions in Rd. Let Rn (respectively, Sn) be a set of n
points chosen independently and uniformly at random
from R (respectively, S). Let Hol(Rn) (respectively,
Hol(Sn)) denote the random variable that measures
the number of vertices of the largest convex hole in Rn

(respectively, Sn). Then, for all sufficiently large n,

b ≤ E(Hol(Rn))

E(Hol(Sn))
≤ b′.

Moreover, there exist absolute constants c, c′ such that
a.a.s.

c ≤ Hol(Rn)

Hol(Sn)
≤ c′.

We remark that Theorem 3 is in line with the fol-
lowing result proved by Bárány and Füredi [5]: the ex-
pected number of empty simplices in a set of n points
chosen uniformly and independently at random from
a convex set A with non-empty interior in Rd is Θ(nd),
regardless of the shape of A.

Remark (Proof of Theorem 1). Theorem 1 is an
immediate consequence of Theorems 2 and 3.

The proof of Theorem 2 is in Section 1. As we
explain in Section 2, the proof of Theorem 3 is totally
analogous to the proof of [3, Theorem 2].
We make a few final remarks before we move on to

the proofs. For the rest of the paper we let Vol(U)
denote the volume of a region U in Rd. We also note
that, throughout the paper, by log x we mean the nat-
ural logarithm of x. Finally, since we only consider
sets of points chosen independently and uniformly at
random from a region, for brevity we simply say that
such point sets are chosen at random from this region.

1 Proof of Theorem 2
We start by noting that if Q,Q′ are two regions such
that Q′ is obtained from Q by an affine transforma-
tion, then Hol(Qn) = Hol(Q′n). Thus we may as-
sume without loss of generality that R is the isothetic
unit area square centered at the origin.
We prove the lower and upper bounds separately.

More specifically, we prove that for all sufficiently
large n:

Pr

(
Hol(Rn) ≥ 1

2

log n

log logn

)
≥ 1− n−2. (1)

Pr

(
Hol(Rn) ≤ d(2 + 2d2)

log n

log log n

)
≥ 1−n−1. (2)

We note that (1) and (2) imply immediately the
a.a.s. part of Theorem 2. Now the Ω(log n/ log logn)
part of the theorem follows from (1), since Hol(Rn)
is a non-negative random variable, whereas the
O(log n/ log logn) part follows from (2), since
Hol(Rn) is bounded by above by n.
Thus we complete the proof by showing (1) and (2).

Proof of (1)

Let Rn be a set of n points chosen at random from
R. We prove that a.a.s. Rn has an empty convex
polytope of size at least logn

2 log logn .
Consider the 2-dimensional projection π :

Rd → R2 defined by (x1, x2, x3, x4, . . . , xd) →
(x1, x2, 0, 0, . . . , 0). Note that π(Rn) is a set of n
points chosen (independently and uniformly) at ran-
dom from the unit square. Thus it follows from Eq. (1)
in [3] that a.a.s. π(Rn) has a convex hole H of size at
least logn

2 log logn . Clearly, π−1(H) is an empty convex
polytope of Rn of size at least logn

2 log logn . �

Proof of (2)

Let Rn be a set of n points chosen at random from
R. We remark that throughout the proof we always
implicitly assume that n is sufficiently large.
We shall use the following easy consequence of

Chernoff’s bound. This is derived immediately, for
instance, from Theorem A.1.11 in [1].

Lemma 4 Let Y1, . . . , Ym be mutually independent
random variables with Pr(Yi = 1) = p and Pr(Yi =
0) = 1− p, for i = 1, . . . ,m. Let Y := Y1 + . . .+ Ym.
Then

Pr
(
Y ≥ (3/2)pm

)
< e−pm/16. �

Let S be the isothetic d-cube of volume 3d, also (as
R) centered at the origin.
We need the following result on approximating con-

vex sets by lattice parallelotopes.

Claim A. For each positive integer d > 0 there ex-
ist integers f1(d) and f2(d) with the following prop-
erty. Let H be a convex set in Rd. Then there ex-
ists a lattice parallelotope Q1 such that H ⊆ Q1 and
Vol(Q1) ≤ (f1(d)+1)Vol(H). Moreover, if Vol(H) ≥
2d−1 · 1000/n, then there is a lattice parallelotope Q0

such that Q0 ⊆ H and Vol(Q0) ≥ (f2(d)− 1)Vol(H).

Sketch of Proof. By a the theorem of M. Balla [2],
for every convex compact set H ⊂ Rd there exists a
parallelotope P such that P ⊂ H ⊂ dP = P̂ where
dP is the image of P under a homothety with ratio d.
This implies that d−d Vol(P ) ≤ Vol(H) ≤ dd Vol(P ).
For each vertex vi, i = 0, . . . , 2d, of P̂ , let us denote

by Qvi
the parallelotope with side length 2/n with
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facets parallel to the facets of P̂ that has vi as one of
its vertices and P̂∩Qvi = {vi}. Observe that each Qvi

contains a d-ball of diameter 2/n and for that, there
is a lattice point v′i in the interior of each Qvi

. Let Q1

be the convex hull of the points v′1, . . . , v′2d . Note that
d(vi, v

′
i) ≤ 2

n

√
d for each i = 1, . . . , 2d, this implies

that %(P̂ , Q1) ≤ 2
n

√
d where %(·, ·) is the Hausdorff

metric. Then

Vol(Q1) ≤ Vol(P̂ ) +
2

n

√
d · Surf(P̂ ) + Vol(B)

≤ dd Vol(H) +
2

n

√
d · Surf(P̂ ) + Vol(B)

≤ (f1(d) + 1)Vol(H)

where B is the d-ball of diameter 2
n

√
d and Surf(·) is

the volume (d− 1)-dimensional.
Now, for each vertex wi, i = 0, . . . , 2d, of P con-

sider the parallelotope Qwi
with side length 2/n with

facets parallel to the facets of P that has wi as one
of its vertices and Qwi ⊂ P . Because each Qwi con-
tains a d-ball of diameter 2

n , then there exists a lattice
point in each Qwi

, let w′i this point. The existence of
these points is guaranteed provided that Vol(H) ≥
2d−1 · 1000/n Let Q0 be the convex hull of the points
w′1, . . . , w

′
2d . Note that d(wi, w

′
i) ≤ 2

n

√
d for each

i = 1, . . . , 2d, this implies that %(P,Q0) ≤ 2
n

√
d. Then

Vol(P )− 2
n

√
d ·Surf(Q0)−Vol(B) ≤ Vol(Q0) This im-

plies

Vol(Q0) ≥ Vol(P )− 2

n

√
d · Surf(Q0)−Vol(B)

≥ Vol(P )− 2

n

√
d · Surf(P )−Vol(B)

≥ d−d Vol(H)− 2

n

√
d · Surf(H)−Vol(B)

≥ (f2(d)− 1)Vol(H). �

For the rest of the proof, for simplicity we define
f3(d) := f3(d), where f1(d) and f2(d) are as in Claim
A.
Since there are (9n + 1)d < (10n)d lattice points,

out of which (n + 1)d are in R, it follows that
there are fewer than

((10n)d
2d

)
< (10n)d2

d

lattice d-
parallelotopes in total, and fewer than

(
nd

2d

)
< nd2

d

lattice d-parallelotopes all of whose vertices are in R.

Claim B. With probability at least 1 − n−10 every
lattice parallelotope Q with Vol(Q) < 20f3(d) log n/n
satisfies that |Rn ∩Q| ≤ (3/2) · 20f3(d) logn.

Proof. We note that, since (f1(d) + 1)/f2(d) > 1,
it follows that 20f3(d) > d2d + 10. Let Q be a lat-
tice parallelotope with Vol(Q) < 20 f3(d) log n/n, and
let Z = Z(Q) ⊆ R be any lattice parallelotope con-
taining Q, with Vol(Z) = 20 f3(d) logn/n. Let XQ

(respectively, XZ) denote the random variable that

measures the number of points of Rn in Q (respec-
tively, Z). We apply Lemma 4 with p = Vol(Z) and
m = n, to obtain Pr(XZ ≥ (3/2) · 20 f3(d) log n) <
e−(3/2)20 f3(d)/24 logn = n−(5/4)f3(d). Since Q ⊆ Z,
it follows that Pr(XQ ≥ (3/2) · 20 f3(d) log n) <
n−(5/4)f3(d). As the number of choices for Q is at
most (10n)d2

d

, with probability at least (1−(10n)d2
d ·

n−(5/4)f3(d)) > 1−n−10, no suchQ contains more than
(3/2) · 20 f3(d) log n points of Rn. �

A polytope is empty if its interior contains no points
of Rn.

Claim C. With probability at least 1−n−10, there is
no empty lattice parallelotope Q ⊆ R with Vol(Q) ≥
20 (d2d + 10) log n/n.

Proof. The probability that a fixed lattice paral-
lelotope Q ⊆ R with Vol(Q) ≥ d2d + 10 log n/n is
empty is (1 − Vol(Q))n < n−d2

d+10. Since there are
fewer than nd2

d

lattice parallelotopes in R, it fol-
lows that the probability that at least one of the lat-
tice parallelotope with area at least (d2d + 10) log n/n
(and hence with area at least 20 (d2d + 10) log n/n) is
empty is less than nd2

d · n−(d2d+10)≤n−10. �

For the rest of the proof, we let H be a maximum
size convex hole of Rn.

Claim D. With probability at least 1− n−10 we have
Vol(Q1)<f3(d) log n/n.

Proof. Suppose first that Vol(H) < 2d−11000/n.
Then Vol(Q1) ≤ 2d−1 · 1000(f1(d) + 1)/n. Since
this is obviously smaller than f3(d) log n/n, in this
case we are done. Now suppose that Vol(H) ≥
2d−1 · 1000/n, so that Q0 (from Claim A) exists.
Moreover, Vol(Q1) ≤ (f1(d) + 1)Vol(H). Since
Q0 ⊆ H, and H is a hole of Rn, it follows that
Q0 is empty. Thus, by Claim C, with probabil-
ity at least 1 − n−10 we have that Vol(Q0) <
(d2d + 10) log n/n. Now since Vol(Q1) < (f1(d) +
1)Vol(H) and Vol(Q0) ≥ f2(d) · Vol(H), it follows
that Vol(Q1) ≤ (f1(d) + 1)Vol(Q0)/f2(d). Thus
with probability at least 1 − n−10 we have that
Vol(Q1) ≤

(
(f1(d) + 1)(d2d + 10)/f2(d)

)
log n/n =

f3(d) logn/n. �

Claim E. For each fixed integer d > 0, there exist
a universal positive constant c2 := c2(d) with the fol-
lowing property. Let K be any convex polytope in Rd.
Then the probability that r points chosen at random
from K are in convex position is at most (c2 n

2
d−1 )−n.

Proof. This is an immediate consequence of [6] (see
for instance [4, Theorem 2.1]). �
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Claim F. With probability at least 1 − 2n−2 the
random point set Rn satisfies that no lattice paral-
lelotope Q with Vol(Q) < 20 f3(d) logn/n contains
d(2 + 2d2) logn/(log log n) points of Rn in convex po-
sition.

Proof. Let Q be a lattice parallelotope with
Vol(Q) < 20 f3(d) logn/n. By Claim B, with prob-
ability at least 1 − n−10 we have |Rn ∩ Q| ≤ (3/2) ·
20 f3(d) logn. Thus it suffices to show that the
probability that there exists a lattice parallelotope
Q with with |Rn ∩ Q| ≤ (3/2) · 20 f3(d) logn and
d(2 + 2d2) logn/(log logn) points of Rn in convex po-
sition is at most n−2.
Let c2 := c2(d) be as in Claim E. Thus the expected

number of r-tuples of Rn in Q in convex position is
at most(
|Rn ∩Q|

r

)(
c2r

2
d−1

)−r
≤
(

(3/2) · f3(d) logn

r

)(
c2r

2
d−1

)−r
≤
(
e · (3/2) · F2 log n

r

)r (
c2r

2
d−1

)−r
<
(
c3 log n · r−1−

2
d−1

)r
,

where c3 := 3ef3(d)/2c2.
Since there are at most nd2

d

choices for Q, it
follows that the expected total number of such r-
tuples with r = d(2 + 2d2) logn/ log logn is at most
nd2

d ·
(
c3 log n · r−1−

2
d−1

)r
< n−2 (this last inequal-

ity follows from an elemenary but long manipula-
tion). This completes the proof, since it follows that
the probability that such an r-tuple exists is at most
n2. �

To finish the proof of (2), recall that H is a maxi-
mum size empty convex polytope of Rn, and thatH ⊆
Q1. It follows immediately from Claims D and F that
with probability at least 1−n−1 the parallelotope Q1

does not contain a set of d(2 + 2d2) logn/(log logn)
points of Rn in convex position. In particular, with
probability at least 1 − n−1 the size of H is at most
d(2 + 2d2) logn/(log log n). �

2 Proof of Theorem 3
The proof of Theorem 3 is totally analogous to the
proof of [3, Theorem 2]. Indeed, in that proof, es-
sentially all the arguments are independent of the
dimension. The only adaptation that needs to be
done is that we need a version of [3, Corollary 6] for
d > 2 dimensions. We recall that [3, Corollary 6]

claims that if H is a closed convex set in R2, then
there exist rectangles U,K such that U ⊆ H ⊆ K,
Vol(U) ≥ Vol(H)/8, and Vol(K) ≤ 2Vol(H).
A d-dimensional analogue of this statement follows

from the following result in [9]: if H is a convex body
in Rd, then H contains a parallelotope P such that
some translate of dP contains K. Indeed, this implies
at once that if H is a closed convex set in Rd, then
there exist parallelotopes U,K such that U ⊆ H ⊆ K,
Vol(U) ≥ Vol(H)/d, and Vol(K) ≤ d ·Vol(H).
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