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Abstract

A web-based system that determines point/curve and
curve/curve bisectors in a dynamic geometry system
in a completely automatic way is presented. The sys-
tem consists of an interactive drawing canvas where
the bisector is displayed together with the initial
point/curve elements. Algebraic methods are used to
provide the equation of an algebraic variety contain-
ing the bisector. A numeric approach is followed to
provide the graph of the semi-algebraic subset corre-
sponding to the true bisector. It is based on the free
dynamic geometry system GeoGebra and the open
source computer algebra system Sage.

Introduction

A Dynamic Geometry System (DGS) is a computer
application that allows the on-screen drawing of (gen-
erally) planar geometric diagrams and the manipula-
tion of these diagrams by mouse dragging. The �rst
standard systems to appear (in the late 80's) were
Cabri in France [10] and The Geometer's Sketchpad

in USA [9]. Nowadays special mention deserves Ge-

oGebra [6], whose free software model and e�ective
community development has resulted in a spectacular
world wide distribution.
From the beginning, DGS have been the paradigm

of new technologies applied to Math education. How-
ever, most DGS rely on numeric computations and ap-
proximate graphs, which make them prone to inaccu-
racies. Moreover, their lack of symbolic tools prevent
DGS from realizing a thorough algebraic treatment of
geometry.
In this work we develop a symbolic treatment of

bisectors in the plane (locus set of points equidistant
to two geometrical elements).
In [1], symbolic algorithms to determine algebraic
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descriptions of point/curve and curve/curve bisectors
are described. In this note we present the implementa-
tion of these algorithms in an open web-based system
in which symbolic capabilities are added to the DGS
GeoGebra by connecting it (remotely) to the Com-
puter Algebra System (CAS) Sage [13].
The presented prototype is based on the remote

use of Sage rather than GeoGebraCAS [8], the CAS
available within GeoGebra, due to higher versatility
of Sage, that includes multiple specialized software
packages. The prototype wants to illustrate a gen-
eral philosophy of DGS-CAS connection that we �nd
more appropriate to implement with the most general
systems possible. For this same reason, direct use of
Python from GeoGebra has not been considered.
Together with these symbolic web applications, nu-

meric graphic alternative tools are provided to visual-
ize a bisector when the exact symbolic computation of
its algebraic description is not computationally possi-
ble.

1 Bisectors

Given two geometrical elements (points, curves, sur-
faces, etc.), their bisector is the locus set of points
equidistant to them. We consider bisectors of two ge-
ometric objects O1 and O2 in the Euclidean 2-space
E2, where each object is a point or an algebraic curve
(see for instance Figure 1). Bisectors play an impor-
tant role when constructing Voronoi diagrams, medial
axis transformations and in a variety of algorithms re-
lated to shape decomposition (see [12]). A systematic
study of plane bisectors can be traced back to [4],
where the curves are parametrically described, and
[7], where a set containing the bisector is obtained by
solving a system of nonlinear equations.
Standard DG systems do not consider bisectors.

Besides the usual computation of the parabola via
its focus and directrix, there are not other primitives
for such computations. Nevertheless, the bisector of a
point and a linear object in a DG environment can be
partially determined through an elementary locus op-
eration. Since a bisector point is the center of a circle
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Figure 1: Bisector (dotted) of a line and an ellipse.

tangent to the linear object and passing through the
point, the locus tool can suggest a graphical path con-
taining the bisector. Similarly, following the symbolic
locus approach in [2], an algebraic variety containing
the bisector can be found by solving the correspond-
ing nonlinear polynomial system. We refer to this set
as the algebraic or untrimmed bisector.
In [1], a mixed algebraic-numeric approach for the

study of bisectors of points and lines within a DGS
is sketched. More precisely, elimination techniques
are used for obtaining the detailed description of a
bisector. Since the complete bisector description falls
out of the algebraic setting, a numerical approach to
trim the algebraic bisectors is shown to provide an
easy generation of bisectors.
More concretely, the following is the algorithm pro-

posed to compute point/curve bisectors:

Input: curve c : f(x, y) = 0, point A
Step 1: Compute (symbolically) the untrimmed
(algebraic) bisector of A and c
Step 2: De�ne this object as an implicit curve d
Step 3: Construct a point B on d
Step 4: Construct the point D on c closest to B
Step 5: If D and A are at the same distance from
B, then construct the point E, E = B
Return:

i) the locus graphic object truelocus of E
when B moves along d
ii) the equation(s) of the untrimmed bisector

Moreover, to compute the untrimmed bisector in
step 1, a solution based on the remote use of a CAS
is indicated.
The system presented here results mainly from the

implementation of these algorithms in a web system
with a GeoGebra applet through an automatic con-
nection with a remote Sage server.
Determining the algebraic description of some bi-

sectors is computationally out of reach. To obtain the
graph of these bisectors we provide an alternative nu-
merical method based on the dynamic color property
of GeoGebra whose details can be found in Section
2.2.

Figure 2: Algebraic bisector (red dotted) and true
trimmed bisector (black dotted) of point A(1, 0) and
curve y2 = x3.

2 System Description

The system consists of two main web applications cor-
responding to the symbolic treatment of point/curve
and curve/curve bisectors. Moreover, two auxiliary
web applications showing a graphic illustration of a
bisector are also provided. They all have been in-
cluded in a simple web page together with examples
and instructions freely available at [15].
All four applications consist of a drawing canvas

where the bisectors are displayed together with the
initial elements. They all are based on the DGS Ge-
oGebra and the CAS Sage.
GeoGebra is a free DGS with multiple representa-

tions of objects in di�erent windows: graphics, alge-
bra, and spreadsheet. Its remarkable world wide use
makes GeoGebra a de facto standard in the �eld. Sage
is an open source CAS that integrates more than 100
open-source packages (including Singular).

2.1 Symbolic web applications

After the user has input the point and the curve in
the applet, he/she just has to press the Find bisec-

tor button. The aleph.sagemath.org sagecell server
[14] is then used to remotely obtain an algebraic va-
riety containing the bisector whose graph is input in
the applet. To determine the true (trimmed) bisec-
tor, a numeric comparison of distances is carried out.
Figure 2 shows how the answer provides both the al-
gebraic description of the bisector together with the
true (trimmed) bisector.
The algebraic treatment of the geometric data ob-

tained from the applet is done in Sage with some ad-
hoc Python code composed of several hundred lines of
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Figure 3: Bisector (white) of point (0, 2) and curve
y4 + y2 − y − x10 − x3 − x = 0 (left) and bisector
(white) of curves y2 −x3 = 0 and x3 + y4 = 9 (right).

code. More precisely, once the data are sent to Sage,
the appropriate variables are initialized and the ideal
corresponding to the task is generated. Singular (a
CAS included in Sage with special emphasis on com-
mutative algebra) is then called to basically compute
a Groebner basis for this ideal.
It has to be noted that the integration of GeoGe-

bra and Sage has been implemented without loosing
interactivity. The DGS-CAS communication is syn-
chronous. That is, changing an element in the Ge-
oGebra construction does automatically trigger the
corresponding update on the Sage side.
The structure of the symbolic web application for

the computation of simple curve/curve bisectors is
similar. It implements in a GeoGebra applet the an-
alytic method sketched in [1] (algorithm 1, Section
3).

2.2 Graphic web applications

In the case of bisectors, even point/curve bisectors in
simple situations can be very involved. For instance,
the bisector of the point (2, 2) and the curve y = x7+2
is a polynomial of degree 20 with more than 150 terms.
A curve/curve bisector is symbolically computed

as the intersection of two envelopes (see [3]), each
one previously obtained with an elimination proce-
dure using Groebner bases. This makes the process
too complex for the symbolic computation of bisectors
of curves other than lines and circles with current al-
gorithms and standard hardware.
When obtaining the algebraic description of a

point/curve or curve/curve bisector is not possible,
two web applications providing a graphic illustration
of the bisector have been implemented, one for each
type of bisector
The idea of these graphic applications is to scan the

di�erent 1-pixel points in the applet to change their
RGB color code. The color of a point P is changed
according to a formula related to the distances to, for
instance, curves a and b, in such a way that the closer
the value distance(P, a) is to distance(P, b) the whiter
the point P becomes. Figure 3 shows a point/curve
and a curve/curve bisector as graphed by the appli-
cations.

This idea, based on the dynamic color property of
GeoGebra, was �rst used by R. Losada [11]. Neverthe-
less, this approach should be taken with care. Given
the numerical character of the application, misleading
answers can be returned.

3 Point/Curve Bisectors

In Figure 2 above we have already seen how the an-
swer given by the application provides a complete de-
scription of the bisector of a point and a curve, both
algebraically and graphically. Here we give a rough
description of the method.

If the curve is non-singular, obtaining the alge-
braic bisector is a direct application of the elementary
method for computing bisector points. Each bisector
point must lie on the intersection of the normal line
to the curve by a generic point on it, and the per-
pendicular bisector of this point and the given one.
Computing the locus of these points we get the alge-
braic bisector, which will be trimmed in a subsequent
step. Note that if the initial point lies on the curve
itself, the bisector is contained in the normal line to
the curve, as noted in [5]. However, if the curve is
singular, the normal line will remain unde�ned when
the generic point is a singular one, thus including a
spurious factor (the perpendicular bisector of the sin-
gular point and the initial point) in the elimination
result. Nevertheless, after the trimming process, all
but a �nite number of points in this perpendicular
bisector will be excluded.

If the initial point is a singular point on the curve,
the normal line will be unde�ned and the perpendic-
ular bisector will be the whole plane, so the process
returns the ideal ⟨0⟩ after elimination. In this case,
the trimming procedure does not have a proper vari-
ety to trim, since the algebraic bisector is the whole
plane. Following [7], we exclude the singular points
from our locus �nding algorithm. In this way, the ap-
plication returns some partial information about the
bisector. For instance, we have a bi-dimensional bisec-
tor for the curve y2 = x3 and the point (0, 0) as shown
by the point/curve graphic application in [15] (Figure
4, left). In this case, the symbolic web application
provides the algebraic description of the boundary of
this bi-dimensional bisector (Figure 4, right).

As a conclusion, we note that the proposed appli-
cations deal e�ciently with regular curves, while for
singular ones the results, although sometimes clever,
must be taken with caution. The �nal decision about
bisectors in such cases should be guided by an ad-hoc
and speci�c study. The automatic determination of
the bisectors in these cases is work in progress.
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Figure 4: 2D bisector of curve y2 = x3 and its cusp
(0, 0) (left) and its boundary (right).

Figure 5: Algebraic bisector (dotted red) and true
trimmed bisector (dotted black) of circles (x + 4)2 +
y2 = 8 and (x− 2)2 + y2 = 36.

4 Curve/Curve Bisectors

As mentioned above, for algebraic curves of low de-
gree the symbolic application for the computation of
curve/curve bisectors in [15] provides an algebraic va-
riety where the bisector lies. This algebraic bisector
is then trimmed numerically within GeoGebra to dis-
play the true bisector.
Figure 5 shows the algebraic bisector and true bi-

sector of the intersecting circles (x+4)2+ y2 = 8 and
(x− 2)2 + y2 = 36 as provided by the prototype.
For curves of higher degree, the computation of the

algebraic bisector is (currently) computationally out
of reach. In these cases we have already seen in 2.2
how the graphic web application allows the display
of curve/curve bisectors for curves of any degree (see
Figure 3).

5 Conclusion

The prototype presented provides tools for the
study of bisectors in the plane (point/curve and
curve/curve). Complete graphic information is pro-
vided together with an exact algebraic description
when computationally possible.
The system, web-based and interactive, shows the

power of the remote automatic connection of CAS

and DGS. Moreover, the exclusive use of free soft-
ware, shows that it can be done without resorting to
expensive commercial systems.
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