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Abstract

The Minimum Weight Pseudo-Triangulation
(MWPT) problem is suspected to be NP-hard.
We show here how Simulated Annealing (SA) can
be applied for obtaining approximate solutions to
the optimal ones. To do that, we applied two SA
algorithms, the basic version and our extended hybrid
version of SA. Through the experimental evaluation
and statistical study we assess the applicability and
performance of the SA algorithms. The obtained
results show the bene�ts of using the hybrid version of
SA to achieve improved and higher quality solutions
for the MWPT problem.

Introduction

A pseudo-triangle is a simple polygon with three con-
vex vertices, and a pseudo-triangulation is a parti-
tion of a planar region into pseudo-triangles. See [9]
and [10] for surveys about theory and applications,
with several interesting results that include combina-
torial properties and counting of special classes, rigid-
ity theoretical results, and representations as poly-
topes, among others.
Optimization problems related to pseudo-

triangulations are interesting under several optimality
criteria. In this work, we consider the optimality
criterion for pseudo-triangulations refereed as Mini-
mum Weight. The weight of a pseudo-triangulation
is the total length of their edges. Minimizing the
total length is one of the main optimality criteria
that provides a quality measure. This formulation is
known as the Minimum Weight Pseudo-Triangulation
(MWPT) problem. The complexity of the MWPT
problem is unknown an it is assumed to be in
NP-hard class [6].
Indeed, since no polynomial algorithm is known,
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approximate solutions of high quality are di�cult to
obtain by deterministic methods. Thus, we consider
approximation algorithms. These algorithms are ca-
pable of obtaining approximate solutions to the op-
timal ones and they can be easily implemented for
�nding good solutions in NP-hard optimization prob-
lems [8].

In this work, we propose the use of Simulated

Annealing (SA) for �nding high quality pseudo-
triangulations of minimum weight. For this, we inves-
tigate its application through an experimental study
and an extended statistical analysis of the results. We
have implemented the algorithms involved and addi-
tionally, generated our set of instances. Non para-
metric statistical tests were applied for assessing the
performance of the algorithms implemented.

Our recent work on this research, [4] and [5], sum-
marize successive stages of this research using a di�er-
ent metaheuristic. The preliminary results obtained
at the initial phase guided to apply a more method-
ological approach in this research.

This paper is organized as follows. Section 1 de-
scribes a general overview of the SA metaheuristic and
the main algorithms. Section 2 describes the experi-
mental design, and Section 3 presents the experimen-
tal evaluation and statistical analysis. Lastly, Section
4 is devoted to the conclusions.

1 Simulated Annealing

Simulated Annealing applied to optimization prob-
lems emerges from the work of S. Kirkpatrick et al.
[7] and V. Černý [2]. SA is based on the principles of
statistical mechanics whereby the annealing process
requires heating and then slowly cooling a substance
to obtain a strong crystalline structure. This case is
based in an extension of local search (a trajectory-
based approach) to solve combinatorial optimization
problems. Without loss of generality, the strategy is
good for optimization problems, since SA has an ex-
plicit strategy to escape from locally optimal solu-
tions. SA introduces a control parameter, T , called
temperature or cooling schedule, whose initial value
should be high and should decrease during the search
process. The search process is done according to the
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execution of several iterations of the algorithm until
a termination condition is achieved.
In order to apply SA to the MWPT problem it is

necessary to de�ne some components of a SA by spec-
ifying the following parameters: solution space S, ob-
jective function f , neighborhood of a solution N (Si),
initial solution S0, initial temperature T0, tempera-
ture decrement rule R, number of moves at each tem-
perature M(Tk) (length of the Markov chain), accep-
tance function, and termination condition. The objec-
tive of this study is assessing throughout a rigorous
experimental study the applicability and respective
performances of MWPT-SA and MWPT-SA-2P for
the MWPT problem. Next, we describe the common
components taken into account in the experimenta-
tion.

1.1 The MWPT-SA Algorithm

This algorithm is the result of two combined strate-
gies: random walk and iterative improvement, com-
monly named diversi�cation and intensi�cation. The
search has two phases. The �rst phase consists of the
exploration of the search space; however, this behav-
ior is slowly decreased, leading the search to converge
to a local minimum, i.e., phase of iterative improve-
ment. At each iteration, a neighbor of the neigh-
borhood is randomly chosen. The neighborhood of
a pseudo-triangulation is obtained by application of
edge �ips on two adjacent pseudo-triangles [1]. The
moves that improve the cost function are always ac-
cepted. Otherwise, the neighbor is selected with a
given probability that depends on the current temper-
ature. The basic outline is illustrated in Algorithm 1
(MWPT-SA).

Algorithm 1 MWPT-SA
Generate an initial solution Si ∈ S
Set the initial temperature to T0

k ← 0
while termination condition not met do

c← 1
while c < M(Tk) do

Choose Sj ∈ N (Si) ⊂ S
Evaluate δ = f(Sj)− f(Si)
if δ < 0 then

Si ← Sj

SaveBestSoFarSolution
else

Si ← Sj with probability p(Tk, Si, Sj)
end if

c← c+ 1
end while

k ← k + 1
Decrease temperature Tk

end while

Algorithm 1 (MWPT-SA) starts with an initial so-
lution Si ∈ S, which can be randomly or heuristically
constructed. Then, it initializes the temperature with
value T0. M(Tk) is the number of iterations for tem-

perature Tk. At each inner iteration, a new solution
Sj ∈ N (Si) is randomly generated. If Sj is better
than Si, then Sj is accepted as the current solution.
Otherwise, the move from Si to Sj is an uphill move,
and Sj is accepted with a probability computed ac-
cording to the acceptance function. Finally, the value
of Tk is decreased at each outer iteration, controlled
by variable k. The algorithm continues in this way
until the termination condition is met.

1.2 The MWPT-SA-2P Algorithm

This is an extend scheme, called MWPT-SA-2P al-
gorithm, which was designed considering the cooling
schedule of MWPT-SA. The cooling schedule is used
for balancing between diversi�cation and intensi�ca-
tion, by allowing to return to previous stages. In this
manner, the performance of MWPT-SA is improved.
Indeed, escaping from the area of low quality in the
phase of diversi�cation was sometimes almost impos-
sible for the basic algorithm. Then it is necessary to
have the possibility of exploring other regions of the
search space. The basic outline is illustrated in Al-
gorithm 2. The algorithm introduces an additional
variable (named previous) in order to incorporate a
control over the trajectory. This variable allows to
know which is the parameter setting of the algorithm
running where the best so far solution has been found.

Algorithm 2 MWPT-SA-2P
Generate an initial solution Si ∈ S
Set the initial temperature to T0

k ← 0
while termination condition not met do

c← 1
while c < M(Tk) do

Choose Sj ∈ N (Si) ⊂ S
Evaluate δ = f(Sj)− f(Si)
if δ < 0 then

Si ← Sj

SaveBestSoFarSolution
Tpreviuos ← Tk

else

Si ← Sj with probability p(Tk, Si, Sj)
end if

c← c+ 1
end while

k ← k + 1
if the best so far solution was updated then

Decrease temperature Tk

else

if it is the �rst pass on Tk then

Return to previous temperature Tpreviuos and
Do the second pass

end if

end if

end while

Algorithm 2 (MWPT-SA-2P) controls, before de-
creasing the temperature, whether during the current
temperature Tk the algorithm has found a better so-
lution than the best so far solution. If not, the pro-
cess returns to a state refereed as the previous tem-
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perature, named Tpreviuos, where the best so far so-
lution was found. From that state, the algorithm
chooses moves for walking in other directions for ex-
ploring other areas of the unexplored solution space.
In this case, the SaveBestSoFarSolution process saves
the best solution found for all cycles so far and the
corresponding temperature Tpreviuos. The amount of
repetitions to get through Tk was experimented, and
we conclude that a maximum of two is enough. As the
title suggests, 2P in MWPT-SA-2P stands for double
pass, as the algorithm returns at most once on the
path traveled.

2 Experimental Design

Representation. The pseudo-triangulations are planar
subdivisions induced by planar embeddings of graphs.
For their representation we use a Doubly-Connected

Edge List (DCEL) [3]. For evaluation purposes in
SA, a solution must be transformed from the DCEL
into a nxn matrix, where n is the number of points.

Objective Function. The weight of a pseudo-
triangulation PT, named fw(PT ), is the sum of the
euclidean lengths of all the edges of PT.

Instances collection. An ad-hoc software was de-
signed and implemented by the authors for generating
the collection of problem instances, each one being a
set P of n points in the plane. A collection of ten
(10) instances of size n were generated, with n equal
to 40/80/120. Each one is called LDni, 1 ≤ i ≤ 10.
The points were randomly generated, uniformly dis-
tributed, with coordinates x, y ∈ [0, 1000]. For imple-
mentation purposes, there are non collinear points.

Parameter Settings for the SA algorithms. The
proposed algorithms were executed thirty (30) times
using di�erent random seeds for the complete col-
lection of instances. The initial solution is a
pseudo-triangulation. We consider two types of ini-
tial solutions for MWPT-SA-2P; the initial pseudo-
triangulation is: a) a randomly generated solution
and b) a pseudo-triangulation obtained by the GPT
algorithm [4]. The initial temperature T0 depends
on the number m of edges in the initial solution and
the objective function fw. T0 = m × l, where l is
the average length of the edges of the initial solution.
The number of moves at each temperature N(Tk) is
N(Tk) = Tk ensuring that the amount of moves is
directly proportional to the actual temperature. In
each case, for the Temperature decrement rule R,
three di�erent types of rules were considered: (i) Fast
Simulated Annealing (Tk+1 = T0

(1+k) ); (ii) Very Fast

Simulated Annealing (Tk+1 = T0

ek
); and (iii) Geomet-

ric Decrease (Tk+1 = αTk, where α ∈ [0, 1]). The
Geometric cooling scheme had the best performance
according to previous experiments, therefore it was
chosen for the study presented in this work. For this

cooling scheme, we consider α = 0.8, 0.9, and 0.95.
The setting α = 0.95 was chosen due to its high per-
formance. For the termination condition, the search
process is �nished when the temperature is less than
or equal to Tf = 0.005.

Resources. The algorithms were implemented in C

and, for the statistical analysis, MATLAB was used.

3 Experimental Evaluation and

Statistical Analysis for the

proposed SA algorithms

This section shows the applicability of MWPT-SA
and MWPT-SA-2P algorithms through experimental
evaluation. The initial solution can be a randomly so-
lution generated, or a greedy pseudo-triangulation ob-
tained by the GPT algorithm. SA using the last strat-
egy for generating the initial solution can be consid-
ered a hybrid approach. We reference the MWPT-SA-
2P algorithm as MWPT-SA-2P-RPT (RPT stands for
Random Pseudo-Triangulation) or MWPT-SA-2P-
GPT (GPT stands for Greedy Pseudo-Triangulation).
The experimental and statistical study considers the
mentioned set of instances, the best objective, me-
dian, average, and standard deviation values. Us-
ing Kolmogorov-Smirnov test, we detect that the ob-
tained values do not follow a normal distribution, then
non parametric statistical tests were applied to deter-
mine if there is signi�cant di�erence between algo-
rithms. Wilcoxon rank-sum test was applied for al-
lowing systematic pairwise comparisons and assessing
whether one of two samples of independent observa-
tions came from populations with the same median.
MWPT-SA and MWPT-SA-2P-RPT were compared,
being the the null hypothesis rejected in all cases.
The test rejected the null hypothesis of equal medi-
ans with p-value less than 0.01 in all cases. Then,
MWPT-SA-2P-RPT and MWPT-SA-2P-GPT were
compared, and also the the null hypothesis rejected
at all cases, showing the best performance of MWPT-
SA-2P-GPT over MWPT-SA-2P-RPT. Figures 1 and
2 display another perspective of the algorithms be-
havior.

The comparison between MWPT-SA-2P-GPT and
GPT algorithms can be observed in Figure 3.

It is also important to highlight that MWPT-SA-
2P-GPT achieved objective values that exceed the
values obtained by GPT by between 14% and 71%.
The SA algorithms have best behavior with respect to
GPT. The objective values of the solutions obtained
by the greedy algorithm have low quality with respect
to those found by the SA algorithms. In summary,
among the proposed algorithms, MWPT-SA-2P-GPT
achieves the best performance, obtaining the highest
quality solutions.
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Figure 1: Comparing SA algorithms w.r.t. best values

Figure 2: Comparing SA algorithms w.r.t. median values

Figure 3: Comparing MWPT-SA-2P-GPT and GPT

In addition, the computational e�ort of the pro-
posed algorithms applied to the MWPT problem are
compared and analyzed. The metaheuristic algo-
rithms consume much more computational resources
than a greedy algorithm, but their advantage is that
they are capable of achieving solutions of much higher
quality. Considering the results obtained and showed
in previous subsections for all strategies, Table 1
shows the average runtimes of the mentioned algo-
rithms.

Table 1: Average runtimes of SA algorithms, adding the
greedy algorithm for the MWPT problem (in milliseconds).

Instance MWPT-SA MWPT-SA-2P-GPT GPT
40 11679 27210 69
80 25376 33239 83
120 48342 51646 94

4 Conclusions

Our contributions show how SA can be applied to
the MWPT problem. We have developed MWPT-SA,
MWPT-SA-2P-RPT, and MWPT-SA-2P-GPT algo-
rithms. All claims were corroborated by the experi-
mental study and the respective statical tests. Our
conclusions lead us to propose the use of MWPT-SA-
2P-GPT for suitably solving MWPT.
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