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Abstract

Abstract Voronoi diagrams are a unifying framework
that covers many types of concrete Voronoi diagrams.
This talk reports on the state of the art, including
recent progress.

Introduction

Concrete Voronoi diagrams [1] are mostly de�ned in
terms of sites and distance, and both concepts can
vary greatly. Abstract Voronoi diagrams [6] are built
on what most concrete diagrams have in common: a
system of simple bisecting curves J(p, q) = J(q, p),
where p, q are just indices from a set S of n elements.
Each curve J(p, q) divides the plane into two domains,
D(p, q) and D(q, p). The abstract Voronoi region of p
with respect to S is de�ned by

VR(p, S) :=
⋂

q∈S\{p}

D(p, q)

and the abstract Voronoi diagram of S is just the plane
minus all Voronoi regions.
An interesting question is what properties to re-

quire of the curves J(p, q). They should be as weak
as possible for generality, but strong enough to en-
sure that useful �Voronoi� structures result from the
above de�nitions. It turns out [7] that the following
are su�cient.

(A1) Each curve J(p, q), where p 6= q, is unbounded.
After stereographic projection to the sphere,
it can be completed to a closed Jordan curve
through the north pole.

For any three indices p, q, r in S, and S′ :=
{p, q, r},

(A2) each Voronoi region VR(p, S′) is path-wise con-
nected,

(A3) each point of the plane belongs to the closure of
a Voronoi region VR(p, S′).
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Figure 1: Admissible curve systems

Informally, if the bisecting curves are un-
bounded and behave decently, and if any triplet
J(p, q), J(p, r), J(q, r) is situated as shown in Fig-
ure 1, the AVD theory applies.

1 Results

This means that structural results and e�cient algo-
rithms become available without further e�ort [7].

Theorem 1 V (S) is a planar graph of complexity

O(n). It can be constructed in an expected number

of O(n log n) many steps.

If we replace Axiom A2 by the more general re-
quirement

(A2') Each Voronoi region VR(p, S′) has at most s con-
nected components

(and assume that any two curves intersect only
�nitely often), the above result can be generalized as
follows [3].

Theorem 2 Abstract Voronoi diagrams with discon-

nected regions can be computed in an expected number

of

O

s2n
n∑

j=3

mj

j


steps, where mj denotes the average number of faces

per region in all AVDs of j sites from S.
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One can extend the de�nition of abstract Voronoi
diagrams to orders k > 1 by de�ning

VRk(P, S) :=
⋂

p∈P, q∈S\P

D(p, q).

For order k = n−1, the resulting AVDs are trees [9] of
linear size. In the general case the following complex-
ity result holds. Here we assume that all curves are
in general position, and that the standard Voronoi-
regions are non-empty.

Theorem 3 The abstract order-k Voronoi diagram

V k(S) has at most 2k(n− k) many faces. This bound

can be achieved.

2 Conclusion

Open is the case of closed bisecting curves.
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