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Abstract

In this paper we de�ne a distance guarding concept on
plane graphs and associate this concept with distance
domination and distance vertex cover concepts on tri-
angulation graphs. Furthermore, for any n-vertex
maximal outerplanar graph, we provide tight up-
per bounds for g2d(n) (2d-guarding number), γ2d(n)
(2d-domination number) and β2d(n) (2d-vertex cover
number).

Introduction

Domination, covering and guarding are widely studied
subjects in graph theory. Given a graph G = (V,E)
a dominating set is a subset D of V such that ev-
ery vertex not in D is adjacent to a vertex in D. A
subset C of V is a vertex cover if each edge of the
graph is incident to at least one vertex of the set.
Thus, a dominating set guards the vertices of a graph
while a vertex cover guards its edges. In plane graphs
these concepts di�er from the guarding set concept
that guards the faces of the graph. Let G = (V,E) be
a plane graph, a guarding set is a subset S of V such
that every face has a vertex in S. There are many pa-
pers and books about domination and its many vari-
ants in graphs, e.g. [4, 8, 9, 10]. Domination was ex-
tended to distance domination by Meir and Moon [11]:
given a graph G, a subset D of V is said to be a dis-
tance k-dominating set if for each vertex u ∈ V −D,
distG(u, v) ≤ k for some v ∈ D. The minimum car-
dinality of a distance k-dominating set is said to be
the distance k-domination number of G and is de-
noted by γkd(G). In the case of distance domination,
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there are also some known results concerning bounds
for γkd(G), e.g., [13, 14]. However, if graphs are re-
stricted to triangulations, as far as we know, there
are no known bounds for γkd(G). The distance domi-
nation was generalized to broadcast domination when
the power of each vertex may vary [6]. Given a graph
G = (V,E), a broadcast is a function f : V → N0. A
broadcast is dominating if for every vertex v, there
is a vertex u such that f(u) > 0 and d(u, v) ≤ f(u).
A dominating broadcast f is optimal if

∑
v∈V f(v)

is minimum over all choices of broadcast dominating
functions for G. The broadcast domination problem
consists in building this optimal function. Note that,
if f(V ) = {0, k}, then the broadcast domination prob-
lem is the distance k-dominating problem. If a broad-
cast f provides coverage to the edges of G instead of
covering its vertices, we have a generalization of the
vertex cover concept [2]. A broadcast f is covering if
for every edge (x, y) ∈ E, there is a path P in G that
includes the edge (x, y) and one end of P must be a
vertex u, where f(u) is at least the length of P . A cov-
ering broadcast f is optimal if

∑
v∈V f(v) is minimum

over all choices of broadcast covering functions for G.
Note that, if f(V ) = {0, 1}, then the broadcast cover
problem coincides with the problem of �nding a min-
imum vertex cover. Regarding the broadcast cover
problem when all vertices have the same power (i.e.,
when f(V ) = {0, k}, for a �xed k ̸= 1), as far as we
know, there are no published results besides [5] where
the authors propose a centralized and distributed ap-
proximation algorithm to solve it. Concerning the
guarding concept there are also known bounds on the
guarding number g(G). For example, g(G) ≤ ⌊n

2 ⌋, for
any n-vertex plane graph [3], and if G is a maximal
outerplanar graph this bound is ⌊n

3 ⌋ [7]. Contrary to
the notions of domination and vertex cover on plane
graphs that were extended to include its distance ver-
sions, the guarding concept was not generalized to its
distance version.

In this paper we generalize the guarding concept
on plane graphs to its distance guarding version. We
also formalize the broadcast cover problem when all
vertices have the same power, which we call distance
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k-vertex cover. Since there are no combinatorial re-
sults for the concepts of domination, vertex cover
and guarding on its distance versions on triangulation
graphs (triangulations, for short), we also address this
problem. In the next section we describe some of the
terminology that will be used throughout this paper.

1 Preliminaries

Given a triangulation of a point set T = (V,E), we
say that a bounded face Ti of T (i.e., a triangle) is kd-
visible from a vertex p ∈ V , if there is a vertex x ∈ Ti

such that distT (x, p) ≤ k − 1. The kd-visibility region
of a vertex p ∈ V comprises the triangles of T that are
kd-visible from p (see Fig. 1).

p p

( )a (b)

Figure 1: The kd-visible region of p for: (a) k = 1;
(b) k = 2.

A kd-guarding set for T is a subset F ⊆ V such that
every triangle of T is kd-visible from an element of F .
We designate the elements of F by kd-guards. The kd-
guarding number gkd(T ) is the number of vertices in
a smallest kd-guarding set for T . Note that, to avoid
confusion with multiple guarding [1] - where the typ-
ical notation is k-guarding - we will use kd-guarding,
with an extra �d�. Given a set S and a positive
integer n, we de�ne gkd(S) = max{gkd(T ) : T =
(V,E) is triangulation with V = S} and gkd(n) =
max{gkd(S) : |S| = n}. A kd-vertex cover for T , or
distance k-vertex cover for T , is a subset C ⊆ V such
that for each edge e ∈ E there is a path of length at
most k, which contains e and a vertex of C. The
kd-vertex cover number βkd(T ) is the number of ver-
tices in a smallest kd-vertex cover set for T . Given
a set S and a positive integer n, we de�ne βkd(S) =
max{βkd(S) : T = (V,E) is triangulation with V =
S} and βkd(n) = max{βkd(S) : |S| = n}. Finally,
as already de�ned by other authors, a kd-dominating
set for T , or distance k-dominating set for T , is
a subset D ⊆ V such that each vertex u ∈ V −D,
distT (u, v) ≤ k for some v ∈ D. The kd-domination
number γkd(T ) is the number of vertices in a smallest
kd-dominating set for T . Given a set S and a positive
integer n, we de�ne γkd(S) = max{γkd(T ) : T =
(V,E) is triangulation with V = S} and γkd(n) =
max{γkd(S) : |S| = n}. Our main goal is to obtain
bounds on γkd(T ), gkd(T ) and βkd(T ). We start by

establishing a tight upper bound for g2d(n) for a spe-
cial class of triangulations, namely the maximal out-
erplanar graphs. A graph is a maximal outerplanar
graph if it is a triangulation of a simple polygon with-
out holes [12]. Edges on the exterior face are called
exterior edges, and interior edges otherwise.
In the next section we show that there is a re-

lationship between 2d-guarding, 2d-dominating and
2d-vertex cover sets on triangulations. In sections 3
and 4 we provide upper bounds for g2d(n), γ2d(n) and
β2d(n) on maximal outerplanar graphs and show that
these bounds are tight.

2 Relationship between distance

vertex cover, guarding and

domination on triangulations

We start by showing that the three concepts are dif-
ferent. Fig. 2 depicts 2d-dominating and 2d-guarding
sets for a given triangulation. Note that in Fig. 2(a)
the set {u, v} is 2d-dominating since the remaining
vertices are at distance 1 or 2. However, it is not
a 2d-guarding set because the shaded triangle is not
guarded, as its vertices are at distance 2 from {u, v}.
In 2(b) {w, z} is a 2d-guarding set, however it is not a
2d-vertex cover since any path between the bold edge
and w or z has length at least 3. Therefore, the bold
edge is not covered.

u
v

w

z

( )a (b)

Figure 2: (a) 2d-dominating set for a triangulation T ;
(b) 2d-guarding set for T .

Now we are going to establish a relation between
g2d(T ), γ2d(T ) and β2d(T ). The following results can
be easily generalized to gkd(T ), γkd(T ) and βkd(T ).

Lemma 1 If C is a 2d-vertex cover of a triangulation
T , then C is a 2d-guarding set and a 2d-dominating
set of T .

Lemma 2 If F is a 2d-guarding set of a triangulation
T , then F is a 2d-dominating set of T .

The previous lemmas prove the following result.

Theorem 3 Given a triangulation T the minimum
cardinality g2d(T ) of any 2d-guarding set veri�es
γ2d(T ) ≤ g2d(T ) ≤ β2d(T ).
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(a) (b) (c)

Figure 3: (a) A 2d-dominating set for a triangulation T (black vertices); (b) a 2d-guarding set for T (gray
vertices); (c) each of the bold edges needs a di�erent vertex to be 2d-covered.

Note that the inequalities above can be strict, as
we can see in the triangulation T presented in Fig. 3,
where γ2d(T ) = 2, g2d(T ) = 3, and β2d(T ) ≥ 4.

3 2d-domination and 2d-
guarding of maximal out-

erplanar graphs

In this section we establish upper bounds for g2d(n)
and γ2d(n) on maximal outerplanar graphs. In order
to do this, and following the ideas of O'Rourke [12],
we �rst need to introduce some lemmas.

Lemma 4 Suppose that f(m) guards are always suf-
�cient to 2d-guard any outerplanar maximal graph G
with m vertices. Then if G has two guards placed
at any two adjacent vertices or one guard placed at
any one of its vertices, then f(m− 2) or f(m− 1)
additional guards are su�cient to 2d-guard G, respec-
tively.

Lemma 5 Let G be an outerplanar maximal graph
with n ≥ 2k vertices. There is an interior edge e
of G that partitions G into two pieces, one of which
contains m = k, k + 1, . . . , 2k − 1 or 2k − 2 exterior
edges of G.

Theorem 6 Every n-vertex maximal outerplanar
graph, with n ≥ 5, can be 2d-guarded by ⌊n

5 ⌋ 2d-
guards. That is, g2d(n) ≤ ⌊n

5 ⌋ for all n ≥ 5.

Proof. For 5 ≤ n ≤ 11, the truth of the theorem
can be easily established. It should be noted that
for n = 5 the 2d-guard can be placed randomly and
for n = 6 it can be placed at any vertex of degree
greater than 2. Assume that n ≥ 12 and that the
theorem holds for all n′ < n. Lemma 5 guarantees
the existence of an interior edge e that divides G into
two maximal outerplanar graphsG1 andG2, such that
G1 has m exterior edges of G with 6 ≤ m ≤ 10. The
vertices of G are labeled with 0, 1, . . . , n− 1 such that
e is (0,m). Each value of m is considered separately.
We present the cases m = 6 and m = 9.

Case m = 6. G1 has m+ 1 = 7 exterior edges, thus
G1 can be 2d-guarded with one guard. G2 has n − 5

exterior edges including e, and by induction hypothe-
sis, it can be 2d-guarded with ⌊n−5

5 ⌋ = ⌊n
5 ⌋−1 guards.

Thus G1 and G2 together can be 2d-guarded by ⌊n
5 ⌋

guards.

Case m = 9. The presence of any of the internal edges
(0,8), (0,7), (0,6), (9,1), (9,2) and (9,3) would violate
the minimality of m. Thus, the triangle T in G1 that
is bounded by e is either (0,5,9) or (0,9,4). Since these
are equivalent cases, suppose that T is (0,5,9) (see Fig.
4(a)).
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Figure 4: (a) The triangle T is (0,5,9); (b) the internal
edge (0,4) and the triangle (6,7,8) are present.

The pentagon (5,6,7,8,9) can be 2d-guarded by plac-
ing one guard at a chosen vertex. However, to 2d-
guard the hexagon (0,1,2,3,4,5) we cannot place a
guard randomly.We will consider two separate cases:
(i) The internal edge (0,4) is not present: if a guard
is placed at vertex 5, then the hexagon (0,1,2,3,4,5)
is 2d-guarded, thus G1 is 2d-guarded. Since G2 has
n− 8 edges it can be 2d-guarded by ⌊n−8

5 ⌋ ≤ ⌊n
5 ⌋ − 1

guards applying the induction hypothesis. This yields
a 2d-guarding of G by ⌊n

5 ⌋ guards; (ii) The internal
edge (0,4) is present: if a guard is placed at vertex
0, then G1 is 2d-guarded unless the triangle (6,7,8)
is present in the triangulation (see Fig. 4(b)). In
any case, two 2d-guards placed at vertices 0 and 9
guard G1. G2 has n − 8 exterior edges, including
e. By lemma 4 the two guards placed at vertices 0
and 9 allow the remainder of G2 to be guarded by
f(n− 8− 2) = f(n− 10) additional 2d-guards. Recall
that f(n′) is the number of 2d-guards that are always
su�cient to guard a maximal outerplanar graph with
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n′ vertices. By the induction hypothesis f(n′) = ⌊n′

5 ⌋.
Thus, ⌊n−10

5 ⌋ = ⌊n
5 ⌋ − 2 guards su�ces to 2d-guard

G2. Together with the guards placed at vertices 0
and 9 that 2d-guard G1, all G is guarded by ⌊n

5 ⌋ 2d-
guards.

�

To prove that this upper bound is tight we need
to construct a maximal outerplanar graph G of or-
der n such that g2d(G) = ⌊n

5 ⌋. Fig. 5 shows a maxi-
mal outerplanar graph G for which γ2d(G) = n

5 , since
the black vertices can only be 2d-dominated by dif-
ferent vertices. Thus, γ2d(n) ≥ n

5 . Note that this
example can be generalized to kd-domination to ob-
tain γkd(n) ≥ n

(2k+1) .

Figure 5: A maximal outerplanar graph G for which
γ2d(G) = n

5 .

According to theorem 3, γ2d(G) ≤ g2d(G), so
⌊n
5 ⌋ ≤ g2d(G). In conclusion, ⌊n

5 ⌋ 2d-guards are oc-
casionally necessary and always su�cient to guard a
n-vertex maximal outerplanar graph G. On the other
hand, we can also establish that γ2d = ⌊n

5 ⌋, since
⌊n
5 ⌋ ≤ γ2d(n) and γ2d(n) ≤ g2d(n), for all n. Thus,

it follows:

Theorem 7 Every n-vertex maximal outerplanar
graph with n ≥ 5 can be 2d-guarded (and 2d-
dominated) by ⌊n

5 ⌋ guards. This bound is tight.

4 2d-covering of maximal outer-

planar graphs

In this section we determine an upper bound for 2d-
vertex cover on maximal outerplanar graphs which is
also tight.

Lemma 8 Suppose that f(m) vertices are always suf-
�cient to 2d-cover any outerplanar maximal graph G
with m vertices. If we randomly choose a vertex of G
to be a 2d-covering vertex, then f(m − 1) additional
vertices are su�cient 2d-cover G.

Theorem 9 Every n-vertex maximal outerplanar
graph, with n ≥ 4, can be 2d-covered with ⌊n

4 ⌋ ver-
tices. That is, β2d(n) ≤ ⌊n

4 ⌋ for all n ≥ 4.

Now, we will prove that this upper bound is tight.
The bold edges of the maximal outerplanar graph il-
lustrated in Fig. 6 can only be 2d-covered from di�er-
ent vertices, and therefore β2d(n) ≥ n

4 . To conclude:

Theorem 10 Every n-vertex maximal outerplanar
graph with n ≥ 5 can be 2d-covered by ⌊n

4 ⌋ vertices.
This bound is tight.

Figure 6: A maximal outerplanar graph G for which
β2d(G) = n

4 .
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