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Three location tapas calling for CG sauce
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Abstract

Based on some recent modelling considerations in lo-
cation theory we call for study of three CG constructs
of Voronoi type that seem not to have been studied
much before.

Introduction

There is a strong interrelation and mutual ensemina-
tion between (continuous) location theory and com-
putational geometry. The first generates interest
into distance optimization problems with geometrical
interpretations, the second builds geometrical algo-
rithms for efficient solution to the first’s problems.
In this talk I will shortly present some recent work

stemming from location theory calling for study of
three novel (?) computational geometry constructs.

1 Mixed norm shortest paths

The fact that the distance measure may be different
from one region to another, contrary to the usual as-
sumption that distance is measured by a single norm,
has been acknowledged in only a few location stud-
ies. Parlar [14] considers the plane divided by a linear
boundary with at one side `2 and at the other side `1.
Brimberg et al [2] consider a bounded region with a
different norm inside and outside, focusing in partic-
ular on an axis-parallel rectangular city with `1 inside
and `2 outside.
Brimberg et al. [1] and Zaferanieh et al. [19] con-

sider location in a space with two distinct `p norms in
complementary halfplanes. The way to calculate the
distance in such a space was studied more in detail by
Franco et al [7].
Fathali and Zaferanieh [5] extend this work to in-

clude more general block norms. Fliege [6] consid-
ers differentiably changing metrics similar to Riemann
spaces.
Unfortunately part of this work is wrong. All au-

thors consider only two possibilities when calculating
distances: when the two points lie in the same half-
plane simply use the corresponding distance, and oth-

∗Email: Frank.Plastria@vub.ac.be

erwise in two steps via the best possible point on the
separating line. Although this is true in some partic-
ular cases, e.g. the axis-parallel rectangular city case
evoked before (but without inflation factors), Parlar
already observed that in general when calculating dis-
tance in this naive way distance to a fixed point is
not continuous everywhere. Worse: triangle inequal-
ity may be violated. This clearly shows that such
distance calculation cannot be correct, but none of
the authors try to resolve this discrepancy.
What should rather be done is to consider shortest

path distance in the space, similar to what is done
in the so-called weighted (euclidean) region problem
well known in CG since the original paper of Mitchell
and Papadimitriou [10] (which depicts a clear coun-
terexample to the naive distance above): the length of
the shortest possible piecewise linear path using the
adequate measure (speed in that paper) in each piece.
For two halfspaces with arbitrary distinct norms or

gauges we studied more in detail the optimality condi-
tions when crossing the boundary, generalizing Snell’s
law in optics. This has nice geometric interpretation
and leads to a geometrical view on deriving such dis-
tances [16].
What turns out to be crucial is the comparison be-

tween the two norms along (the direction of) the sep-
arating line. As long as these are equal things remain
relatively simple and the naive assumption about dis-
tances is correct. However, when they differ things
change. One region is then ‘slower’ than the other
(as measured along the boundary line). And in such
a case some paths connecting two points within the
slowest region will consist of three pieces. They ‘hitch
a ride’ along the quicker boundary.
Thereby continuity of the distance is again guaran-

teed, but now convexity is partially lost, as illustrated
by the balls in the figure below. At right of the vertical
separation line we have the slower region in gray with
distance measure 4`1, at left the faster region with
norm `2. The figure shows balls of increasing mixed-
norm radius centered at the dot. For very small radius
we have the diamond-shaped `1 ball. As soon as the
radius allows to reach the boundary a part of circular
shape arises at left due to two piece shortest paths,
which spills over with a linearly moving front at the
right corresponding to three piece paths. The white
line shows the set of meeting points where one-piece
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and three-piece paths yield equal distance.

slow: 4`1

fast: `2

It should be noted that Brimberg et al [2] correctly
prove convexity of the distance from a fixed point to
all points of the other region, but do not acknowl-
edge that this convexity (quite crucial for their sub-
sequent optimization approaches) does not extend to
the whole plane if the fixed point lies in the slower
region.
The linearly separated two-norm situation is of

course only the first step. For adequate description
of some reality one will have to consider a plane
split into cells each with their own norm or gauge
(for asymmetry). How to efficiently calculate shortest
path distances in such a context seems to be largely
open, apart from some work on approximations, see
Cheng et al. [3]. Correctly attacking location prob-
lems in such mixed norm spaces is another matter
all together. A first step will probably be to look at
Voronoi diagrams in such environments. Clearly a lot
of opportunities for CG.
Interesting applications may be found in fire-

fighting using models to simulate the quite different
ways fires spread in various circumstances, taking into
account vegetation like (ir)regularly spaced planta-
tions of varying types, influence of terrain inclination,
and weather conditions, such as winds and humidity,
and so forth.

2 Knapsack Voronoi diagrams
Let S be a finite set of sources s ∈ R2 with capacities
cs > 0. Consider the location of a central point x
in the plane that should be connected to sufficiently
many of the sources to be able to supply given demand
D. The supply-weighted sum of distances should be

minimized, possibly together with some additional
costs f(x):

min
∑
s∈S

wsd(s, x) + f(x) (1)∑
s∈S

ws ≥ D (2)

0 ≤ ws ≤ cs (3)
x ∈ R2 (4)

This is a continuous single facility location-allocation
problem that I have been studying under several vari-
ants for f(x), most of the time consisting of fixed
weighted distances to demand point(s) [9, 17, 18, 15].
For any fixed location x finding the best allocation

W = (ws)s∈S for the supplies is a continuous knap-
sack problem, easily solved by taking sources s ∈ S
at their full capacity ws = cs in non-increasing or-
der of distance d(s, x), until the demand D is met.
Only the last chosen source may contribute below its
capacity, and all further sources will not contribute
at all (ws = 0). There are only a finite number of
allocations W of such type possible.
For any fixed allocation W finding the correspond-

ing best site x amounts to solve a single facility
minisum location problem (Fermat-Weber problem)
which may be easily done by various methods of con-
vex optimization. And this x should then yield W as
optimal allocation.
It is therefore of interest to know the regions with

fixed allocation.
The planar subdivision corresponding to different

solutions to this knapsack problem is what I call a
Knapsack Voronoi diagram. In case all capacities are
equal c, we obtain a traditional k-th order Voronoi
diagram with k = dD/ce , with additional splits of
some cells as soon as demand is not a multiple of ca-
pacity. When capacities differ the order k is not fixed
and we have new types of diagrams. In particular ver-
tices of the diagram may have from 3 up to 6 edges.
The following examples show how vertices with 5 or 6
edges may arise. Demand is always D = 8, but in the
first case ca = 10, cb = 6, cc = 5, while in the second
ca = 4, cb = 6, cc = 5.
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As long as the coefficients of the distances d(s, x)
in (1) are simply equal to ws the edges of the cor-
responding Knapsack Voronoi diagram remain linear
segments. But in some models such as the location
of an assembly station [18] additional factors appear
and then we need diagrams similar to multiplicatively
weighted Voronoi diagrams, where cells have circular
arcs as boundaries and may be disconnected.
This shows the interest of studying the properties

and efficient ways to calculate such diagrams, clearly
a task for CG.
More general constructs, such as multi-facility ver-

sions of previous location models may be considered
where the allocation problem for fixed location(s) of
the central facility(ies) to be located consists of a lin-
ear program with coefficients either fixed or depend-
ing only on the distances between sources and facility
site(s). Such an LP can generically have only a finite
number of optimal solutions, each corresponding to
certain linear inequalities between the distances, so
corresponding to (often empty) cells of a Voronoi-like
diagram. I do not know of any study of such struc-
tures.

3 Push-pull Voronoi diagrams
for points and polygons

Push-pull location problems try to find good sites
within a given region for facilities that at the same
time are far (pushed away) from some repelling points
r ∈ R and close (pulled) to some other attracting
points a ∈ A.
For euclidean distances Ohsawa [11] fully constructs

the set of efficient points for this biobjective maximin-
minimax problem. He shows that any such efficient
point must lie on the boundary of cells obtained by
intersecting the farthest-point Voronoi diagram w.r.t.
R with the closest-point Voronoi diagram w.r.t. A
within the given region. These line-segments may
then be projected into two-dimensional value-space
where an efficient CG boundary seeking technique fin-
ishes the job.

This work has been extended later first to rectangu-
lar distance `1 in [13], then to partial coverage prob-
lems in [12].
A few years ago together with José Gordillo and

Emilio Carrizosa I studied [8] another similar push-
pull location problem where the set R consists of ex-
tensive facilities described as polygonal regions. But
instead of looking at the bi-objective problem that has
a continuum of efficient solutions, we were looking for
one particular solution that ‘best’ separates (if possi-
ble) R from A. Separation was measured in a support
vector machine way (see e.g. [4]) by maximizing the
difference r2R−r2A where rR is the (euclidean) distance
to the closest r ∈ R and rA the farthest distance to
some a ∈ A. In the feasible case where A may be
separated by a circle from all regions in R, i.e. when
this objective may be positive, this means geometri-
cally that we seek the largest area annulus enclosing
all points of A and not meeting R. In the non fea-
sible case the objective will always be negative and
we look for the smallest area annulus that contains or
overlaps all A and such that its ‘hole’ does not meet
R. These two cases are illustrated below; the annulus
is coloured as light gray.

rA

rR

(Feasible case)

rA rR

(Unfeasible case)

For a site x we call ‘active’ any r closest to x (the
actual closest point(s) of this r is also called active)
and any a farthest from x . We showed that generi-
cally three cases may arise at an optimal solution:
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(1) there are 4 active elements with at least one of
each type, or there are 3 active elements with one a
and two r (in the nonconvex case possible twice the
same r with different active points) either (2) with
colinear active points, or (3) one active r active at a
vertex. Enumeration of all realizations of such cases
leads to an O(n5) algorithm.
However, these conditions are directly related to the

farthest point Voronoi diagram VA w.r.t. A and the
closest point Voronoi diagram VR w.r.t. the polygons
R. It is well known that edges of VR are parts of
bisectors between two polygons, and these consist of
successive linear and parabolic pieces depending on
whether the active points of both polygons are of the
same type (a vertex or on an edge) or not. The points
where these pieces touch are called breakpoints.
Now Case (1) may be realized in three ways: either

as a vertex of VA or as a vertex of VR or as the point of
intersection between an edge of VA and an edge of VR.
Case (3) corresponds to a breakpoint of some edge of
VR and case (2) happens at a finite number of points
easily constructed from VR.
Therefore using the CG approach should lead to

much lower complexity. But this CG approach to the
problems remains to be done.
It should be noted that in an optimal solution to

a multifacility version of this push-pull problem all
sites will satisfy the same conditions, so the same set
of candidate sites arises, but now several of such sites
will have to be combined.
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