
XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Parallel constrained Delaunay triangulation

Narcís Coll and Marité Guerrieri∗

Geometry and Graphics Group. Universitat de Girona

Abstract

In this paper we propose a new GPU method able to
compute the 2D constrained Delaunay triangulation
of a planar straight line graph consisting of points and
segments. The method is based on an incremental
insertion, taking special care to avoid con�icts during
concurrent insertion of points into the triangulation
and concurrent edge �ips.

Introduction

The constrained Delaunay triangulation (CDT) is one
of the fundamental topics in Computational Geom-
etry and it is used in many areas such as terrain
modelling, �nite element method, pattern recogni-
tion, path planning, etc. A CDT of a planar straight
line graph (PSLG) can be constructed in the follow-
ing way: begin with an arbitrary triangulation of the
PSLG points; examine each PSLG segment in turn to
see if it is an edge; force each missing PSLG segment
to be an edge; then �ip non-locally Delaunay edges
until all edges are locally Delaunay with the provision
that PSLG segments cannot be �ipped. There are
two ways to force a PSLG segment to be an edge of
the triangulation. The �rst consists of deleting all the
edges it crosses, then inserting the segment and retri-
angulating the two resulting polygons (one from each
side of the segment). The second approach consists of
iteratively �ipping the edges that crosses the segment
until the segment is an edge. Qi et al. [2] presented a
GPU method for computing the CDT of a PSLG. This
method has three phases. The �rst phase computes
the Delaunay triangulation of the PSLG points, while
the second inserts the PSLG segments into the tri-
angulation using edge �ipping and the third �ips the
remaining non-locally Delaunay edges. Experimental
results show that the method achieves a signi�cant
speedup with respect to the best CPU methods. How-
ever, since the Delaunay triangulation is constructed
using a digital Voronoi diagram computed on a uni-
form grid, the method needs a huge memory space to
allocate the grid and is less e�cient when the distri-
bution of the input points is far from being uniform.

∗Email: (coll,mariteg)@imae.udg.edu. Authors research
supported by TIN2010-20590-C02-02.

Our approach of computing the CDT on the GPU ex-
tends the method presented in [1] by simultaneously
inserting points and segments into the triangulation.

1 Our approach

Our algorithm is based on an iterative process that
�nishes when all PSLG elements (points and seg-
ments) are inserted into the Delaunay triangulation
and no edge needs to be �ipped. In each iteration as
many elements as possible are inserted with the con-
dition that only one point can be inserted into one
single triangle. Each iteration is divided into four
steps: location, where the triangle containing every
non inserted point is determined; insertion, where at
most one point per each triangle is inserted; marking,
where some edges of the triangulation are marked to
be a segment or marked to be �ipped because they
are crossed by a segment or they are non-locally De-
launay; and �ipping, where some of the marked edges
are �ipped thus avoiding con�icts between them.
Let n be the number of points andm be the number

of segments. In order to use the GPU's resources as
e�ciently as possible the following arrays allocated in
the global memory are used:
Points. Positions (x, y) in 2D. Its �rst three posi-

tions corresponds to the three vertices of a large aux-
iliary triangle that contains all points. Size n+ 3.
Segments. Indices to Points. Each two consecutive

indices correspond to a segment. Size 2m.
Inserted-P. Binary �ags to determine whether a

point has been inserted or not. Size n+ 3.
Inserted-S. Binary �ags to establish whether a

segment has been inserted or not. Size m.
Triangles. Indices to Points. Each three consec-

utive indices correspond to a triangle. Position zero of
this array corresponds to the auxiliary triangle. Size
3(2n+ 1).
Neighbours. Indices to Triangles. Each three

consecutive indices correspond to the current neigh-
bours of the triangle. Size 3(2n+ 1).
FutureNeighbours. Indices to Triangles. Each

three consecutive indices correspond to the neigh-
bours that the triangle will have after executing a
point insertion or a �ip which a�ects its current neigh-
bours. Size 3(2n+ 1).

23



Parallel constrained Delaunay triangulation

ContainingTriangle. Indices to Triangles to
record which triangle contains a point, in the case
that the point has not been inserted, or otherwise, a
triangle incident to the point. Initially, all points are
contained in the auxiliary triangle. Size n+ 3.
PointToInsert. Indices to Points to record which

the next point to be inserted in each triangle is. Size
2n+ 1.
Flip. Flags (0, 1, 2, 3) to discern whether an edge

has to be �ipped or not. Each three consecutive �ags
corresponds to a triangle. Flag 0 indicates the edge
is not a segment and does not have to be �ipped.
Flag 1 indicates the edge is not a segment and has to
be �ipped because it is non-locally Delaunay. Flag 2
indicates the edge is a segment and does not have to be
�ipped. Flag 3 indicates the edge is not a segment and
has to be �ipped because it is crossed by a segment.
Size 3(2n+ 1).
EdgeToFlip. Flags (0,1,2,3,4,5,6) to record, for

each triangle, which is the edge that will be �ipped
(0,1,2), or no edge will be �ipped (3) or the edge that
will be �ipped by an adjacent triangle (4,5,6). In the
latter case, it is necessary to subtract 4 to determine
the edge that really will be �ipped. Size 2n+ 1.
Next we explain in detail each step of the algorithm.

1.1 Location step

For each point p the triangle ContainingTriangle[p]
is updated as follows: If point P=Point[p] has not yet
been inserted into the triangulation (Inserted[p] =
0), a walking process is launched until the triangle
t that really contains P is reached. If P lies on an
edge, t is taken as the triangle adjacent to the edge
with the lowest index. Then, ContainingTriangle[p]
is updated with t and VertexToInsert[t] is updated
with p. Note that VertexToInsert[t] can be updated
simultaneously by distinct processors. In this manner,
VertexToInsert[t] contains the last point reaching t.

1.2 Insertion step

For each triangle t, the point of index
p =VertexToInsert[t] is inserted into the tri-
angulation as follows: Let pi =Triangles[3t + i]
(i = 0..2) be the vertex indices of the triangle t.
Triangle t will be triangulated to triangle t with
vertex indices p0, p1 and p, triangle 2p + 1 with
vertex indices p1, p2 and p, and triangle 2p + 2 with
vertex indices p2, p0 and p. To properly determine
the neighbours of these three new triangles, this step
needs to be subdivided into two parts.
In the �rst part, for each triangle t with a point

to be inserted p, the future neighbours of the trian-
gles Neighbours[3t + 1] and Neighbours[3t + 2] are
updated according to the insertion of p in t.
In the second part, for each triangle t, if t has

a point p to be inserted, the arrays Triangles,
Neighbours and Flip corresponding to the triangles

t, 2p+ 1 and 2p+ 2 are updated according to the in-
sertion of p in t. Otherwise, the neighbours of t are
simply updated with the triangles previously stored
in FutureNeighbours[3t..3t+ 2].

foreach p < n+ 3 do /* in parallel */

if Inserted [i] = 0 then

t =ContainingTriangle[p];
P =Point[p];
Found=false;
while Found=false do

[P0, P1, P2] = Points[Triangles[3t..3t+ 2]];
if P contained in some segment PjPj+1

and Neighbours[3t+ j]<t then
Found=true; t=Neighbours[3t+ j];
else if P contained in triangle P0P1P2

then Found=true;
else

C = (P0 + P1 + P2)/3;
Seek for j such that segment Cp
intersects segment PjPj+1;
t =Neighbours[3t+ j];

ContainingTriangle[p]=t;
VertexToInsert[t]= p;

Algorithm 1: Location

foreach t < 2n+ 1 do /* in parallel */

p=VertexToInsert[t];
if i ̸= −1 then foreach j = 1..2 do

t′=Neighbours[3t+ j];
j′=opposite(j);
FutureNeighbours[3t′ + j′]=2p+ j;

Algorithm 2: Insertion. Part 1.

foreach t < 2n+ 1 do /* in parallel */

p=VertexToInsert[t];
if i ̸= −1 then

Inserted-P[i]=1;
[p0, p1, p2]=Triangles[3t..3t+ 2];
[n0, n1, n2]=FutureNeighbours[3t..3t+ 2];
[f0, f1, f2]=Flip[3t..3t+ 2];
Triangles[3t..3t+ 2]=[p0, p1, p];
Triangles[3(2p+ 1)..3(2p+ 1) + 2]=[p1, p2, p];
Triangles[3(2p+ 2)..3(2p+ 2) + 2]=[p2, p0, p];
Neighbours[3t..3t+ 2]=[n0, 2p+ 1, 2p+ 2];
Neighbours[3(2p+ 1)..3(2p+ 1) + 2]=
[n1, 2p+ 2, t];
Neighbours[3(2p+ 2)..3(2p+ 2) + 2]=
[n2, t, 2p+ 1];
Flip[3t..3t+ 2]=[f0,−1,−1];
Flip[3(2p+ 1)..3(2p+ 1) + 2]=[f1,−1,−1];
Flip[3(2p+ 2)..3(2p+ 2) + 2]=[f2,−1,−1];

else

Neighbours[3t..3t+ 2]=
FutureNeighbours[3t..3t+ 2];

Algorithm 3: Insertion. Part 2.

24



XV Spanish Meeting on Computational Geometry, June 26-28, 2013

1.3 Marking step

In this step the edges corresponding to a PSLG
segment and the candidate edges to be �ipped are
marked. An edge can be a candidate due to being
crossed by a segment or being non-locally Delaunay.
Accordingly, this step is subdivided into two parts:
In the �rst part, for each non inserted segment s

whose both endpoints have already been inserted into
the triangulation, if the endpoints of s are connected
by an edge, this edge is marked as constrained. Oth-
erwise, a walking process starting from the �rst end-
point is launched until a �ippable edge crossed by s
and not �ipped in the previous �ipping step is found.
Then, this edge and its opposite edge are marked to
be �ipped. The same is done starting from the other
endpoint.

foreach s < m do /* in parallel */
if Inserted-P[s]=0 and
Inserted-P[Segments[2s]]=1 and
Inserted-P[Segments[2s+ 1]]=1 then

for j = 0..1 do

if j = 0 then

[i0, i1]=Segments[2s..2s+ 1];
else [i1, i0]=Segments[2s..2s+ 1];
[P0, P1]=Points[i0..i1];
starting from ContainingTriangle[i0] seek
for the triangle of index t incident to i0
intersecting segment P0P1;
if P1 is a vertex of t then

j=edge of t connecting P0 and P1;
t′=Neigbours[3t+ j];
j′=opposite(j);
Flip[3t+ j]=Flip[3t′ + j′]=2;
Inserted-P[s]=0;

else

Found=false;
while Found=false do

j=edge of t intersecting segment
P0P1;
if j is �ippable and di�erent to
EdgeToFlip[t] then

Found=true;
t′=Neigbours[3t+ j];
j′=opposite(j);
Flip[3t+ j]=Flip[3t′ + j′]=3;

else

t=Neigbours[3t+ j];

Algorithm 4: Marking. Part 1.

In the second part, for each triangle t not crossed
by any segment (Flip[3t] mod 2+Flip[3t + 1] mod
2+Flip[3t + 2] mod 2=0) the non constrained edges
that are non Delaunay are marked to be �ipped.

1.4 Flipping step

During this step, at most one edge of each triangle t
is �ipped. To avoid con�icts between concurrent �ips,

foreach t < 2n+ 1 do /* in parallel */

if
∑2

k=0(Flip[3t+ k] mod 2) = 0 then for

j = 0..2 do

if Flip[3t+ j]̸= 2 and no Delaunay(j) then
Flip[3t+ j]=1;

Algorithm 5: Marking. Part 2.

this step needs to be subdivided into three parts.
In the �rst stage, a marked edge whose opposite

edge is the only marked edge in its triangle t′ is sought.
If this edge exists, let nc be the number of marked
edges of t. Then, if nc ≥ 2 or (nc = 1 and t < t′) the
edge is stored in EdgeToFlip[t].
In the second stage, if t has an edge to be �ipped

(EdgeToFlip[t]≤ 2), the future neighbours of the tri-
angles adjacent to the quadrilateral determined by the
edge are updated accordingly to the future �ip of the
edge. Otherwise, if the opposite edge of an edge j of
t is to be �ipped, 4 + j is stored in EdgeToFlip[t].
In the third stage, if t has an edge to be

�ipped (EdgeToFlip[t]≤ 2), the arrays Triangles,
Neighbours and Flip corresponding to the triangles
t and t′ are updated according to the �ip. Otherwise,
if any adjacent triangle has an edge to be �ipped, the
array Neighbours is updated.

foreach t < 2n+ 1 do /* in parallel */

EdgeToFlip[t]=3;

nc=
∑2

k=0(Flip[3t+ k] mod 2);
if nc > 0 then

j = 0;
Found=false;
while j ≤ 2 and no Found do

if Flip[3t+ j]=1 then

t′=Neigbours[3t+ j];
j′=opposite(j);

nc′=
∑2

k=0(Flip[3t
′ + k] mod 2);

if Flip[3t′ + j′]=1 and nc′ = 1 and
(nc ≥ 2 or (nc = 1 and t < t′)) then

EdgeToFlip[t]=j;
Found=true;

j ++;

Algorithm 6: Flipping. Part 1.

2 Results

The algorithm was implemented using OpenCl on
a computer equipped with an Intel(R) Pentium(R)
D CPU 3.00GHz, 3,5GB RAM and a GPU NVidia
GeForce GTX 580/PCI/SSE2. Each one of the al-
gorithm's parts was written in a kernel. The algo-
rithm was executed ten times on two di�erent models
(Chairs32×32 and Holland4×4) and compared with
Triangle [3], one of the most popular computational
geometry software. The model Chairs32×32 is formed
by 1024 copies of the model showed in the Figure

25



Parallel constrained Delaunay triangulation

foreach t < 2n+ 1 do /* in parallel */

if EdgeToFlip[t]≤ 2 then

j=EdgeToFlip[t]; j1=j + 1 mod 3;
n=Neighbours[3t+ j1]; nj1=opposite(j1);
FutureNeighbours[3n+ nj1]=t′;
t′=Neighbours[3t+ j]; j′=opposite(j);
j1′=j′ + 1 mod 3;
n′=Neighbours[3t′ + j1′]; nj1′=opposite(j1′);
FutureNeighbours[3n′ + nj1′]=t;

else

for j=0..2 do

t′=Neighbours[3t+ j];
if EdgeToFlip[t′]≤ 2 and
Neighbours[EdgeToFlip[t′]]=t then
EdgeToFlip[t]=4 + j;

Algorithm 7: Flipping. Part 2.

foreach t < 2n+ 1 do /* in parallel */

if EdgeToFlip[t]≤ 2 then

j=EdgeToFlip[t];
t′=Neighbours[3t+ j]; j′=opposite(j);
j1=j + 1 mod 2; j2=j + 2 mod 2;
j1′=j′ + 1 mod 2; j2′=j′ + 2 mod 2;
p2=Triangles[3t+ j2]; p3=Triangles[3t′ + j2′];
Triangles[3t+ j1]=p3; Triangles[3t′ + j1′]=p2;
ContainingTriangle[p3]=t;
ContainingTriangle[p2]=t′;
n1=FutureNeigbours[3t+ j1];
n2=FutureNeigbours[3t+ j2];
n1′=FutureNeigbours[3t′ + j1′];
n2′=FutureNeigbours[3t′ + j2′];
Neigbours[3t+ j]=n1′; Neigbours[3t+ j1]=t′;
Neigbours[3t+ j2]=n2;
Neigbours[3t′ + j′]=n1;
Neigbours[3t′ + j1′]=t;
Neigbours[3t′ + j2′]=n2′;
FutureNeighbours[3t..3t+ 2]=
Neighbours[3t..3t+ 2];
FutureNeighbours[3t′..3t′ + 2]=
Neighbours[3t′..3t′ + 2];
if Flip[3t+ j]=3 then EdgeToFlip[t]=j1;
else EdgeToFlip[t]=3;

else if EdgeToFlip[t]= 3 then

Neighbours[3t..3t+ 2]=
FutureNeighbours[3t..3t+ 2];

else

j=EdgeToFlip[t]-4; j1=j + 1 mod 2;
if Flip[3t+ j]=3 then EdgeToFlip[t]=j1;
else EdgeToFlip[t]=3;

for j=0..2 do if Flip[3t+ j]̸= 2 then

Flip[3t+ j]=0;

Algorithm 8: Flipping. Part 3.

1 arranged in a 32 by 32 array, while the model
Holland4×4 is formed by 16 copies of the model
showed in the Figure 2 arranged in a 4 by 4 array.
The mean running times are presented in Table 1.
Our future task is to study the performance of our
algorithm versus [2]. However, our approach does not

make use of the huge memory space needed by [2] to
store the required digital Voronoi diagram.

Chairs32×32 Holland4×4
Num. Vertices 1444864 1015344
Num. Segments 739328 1007488
Mean time (ms) 4028 2306
Triangle (ms) 12835 10254

Table 1: Behaviour of the proposed algorithm.

Figure 1: Cell of the model Chairs32×32

Figure 2: Cell of the model Holland4×4

References

[1] N. Coll, M. Guerrieri, Parallel Delaunay triangulation
based on Lawson's incremental insertion, in: Proceed-
ings of the XIV Spanish Meeting on Computational
Geometry, CRM Documents, 8, Centre de Recerca
Matemàtica, Bellaterra (Barcelona), 2011, 169�172.

[2] M. Qi, T. Cao, T. Tan, Computing 2D constrained
Delaunay triangulation using the GPU, in: Proceed-
ings of the ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games, I3D '12, ACM, New
York, NY, USA, 2012, 39�46.

[3] http://www.cs.cmu.edu/ quake/triangle.html.

26


	papers
	7-egc_paper_36_final


