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Guarding the vertices of thin orthogonal polygons is NP-hard
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Abstract

An orthogonal polygon of P is called �thin� if the dual
graph of the partition obtained by extending all edges
of P towards its interior until they hit the boundary
is a tree. We show that the problem of computing a
minimum guard set for the vertices of a thin orthogo-
nal polygon is NP-hard either for guards lying on the
boundary, or on vertices or anywhere in the polygon.

Introduction

The classical art gallery problem for a polygon P asks
for a minimum set of points G in P such that every
point in P is seen by at least one point in G (the guard
set). Many variations of art gallery problems have
been studied over the years to deal with various types
of constraints on guards and di�erent notions of visi-
bility. In the general visibility model, two points p and
q in a polygon P see each other if the line segment pq
contains no points of the exterior of P . The set V (v)
of all points of P visible to a point v ∈ P is the visibil-
ity region of v. A guard set G for a set S ⊆ P is a set
of points of P such that S ⊆ ∪v∈GV (v). Two points
vi and vj are equivalent for the visibility relation
if V (vi) ∩ S = V (vj) ∩ S. If V (vj) ∩ S ⊂ V (vi) ∩ S
then vi strictly dominates vj , and vi can replace vj

in an optimal guard set of S. Guards that may lie
anywhere inside P are called point guards whereas ver-
tex guards are restricted to lie on vertices and bound-

ary guards on the boundary. Combinatorial upper
and lower bounds on the number of necessary guards
are known for speci�c settings (for surveys, refer to
e.g. [8, 10]). The fact that some art gallery problems
are NP-hard [5, 9] motivates the design of heuristic
and metaheuristic methods for �nding approximate
solutions and also the study of more speci�c classes
of polygons where some guarding problems may be
tractable [1, 2, 3, 6]. In this paper, we address the
problem of guarding the vertices of orthogonal poly-
gons, which is known to be NP-hard for generic or-
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thogonal polygons [4]. We show that the problem is
NP-hard also for the family of thin orthogonal poly-

gons, which consists of the orthogonal polygons such
that the dual graph of the corresponding grid parti-

tion ΠHV (P ) is a tree. ΠHV (P ) is obtained by adding
all horizontal and vertical cuts incident to the re�ex
vertices of P (see Fig. 1). Our proof is inspired in [4]

Figure 1: Orthogonal polygons, grid partitions and
dual graphs: (a) ΠHV (P ) and its dual graph in gen-
eral; (b) a thin orthogonal polygon; (c) a thin orthog-
onal polygon that is a path orthogonal polygon.

although the need to obtain thin orthogonal polygons
led to novel aspects in the construction. The class
of thin orthogonal polygons contains the class of thin
polyomino trees introduced in [1], for which the au-
thors conjecture that the guarding problem under the
general visibility model has a polynomial-time (exact)
algorithm. To the best of our knowledge, this prob-
lem is open. In [12], we give a linear-time algorithm
for computing an optimal vertex guard set for any
given path orthogonal polygon (for which the dual
graph of ΠHV (P ) is a path graph), and prove tight
lower and upper bounds of dn/6e and bn/4c for the
optimal solution for the subclass where all horizontal
and vertical cuts intersect the boundary at Steiner
points. Since the thin grid orthogonal polygons be-
long to this class, our work extends results previously
known for the spiral thin grid orthogonal polygons
and the MinArea grid orthogonal polygons [6] (for
which the minimum vertex guard sets have exactly
bn/4c and dn/6e guards) and somehow explains why
the MinArea grid orthogonal polygons were consid-
ered representative of extremal behaviour [11]. The
result that supports our proof allows us to conclude
that a minimum guard set for the vertices of a path
orthogonal polygon can be found in linear-time.
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In rest of the paper, we show that computing a
minimum guard set for the vertices of a thin orthogo-
nal polygon (GVTP) is NP-hard, either for boundary
guards, vertex guards or point guards.

1 Hardness for boundary guards

Theorem 1 GVTP for thin orthogonal polygons is

NP-hard for boundary guards.

For the proof, we de�ne a reduction from the
vertex-cover problem in graphs (VC) to GVTP with
boundary-guards. VC, known to be NP-complete, is
the problem of deciding whether a graph G = (V,E)
has a vertex-cover S of size |S| ≤ k, for k integer. A
vertex-cover of G is a subset S ⊆ V such that for each
edge (u, v) ∈ E, either u ∈ S, or v ∈ S, or both.
The thin orthogonal polygon we construct for a

given graph G = (V,E) is a large square with |E|
tiny d-gadgets attached to its bottom. In Fig. 2 we
sketch this construction and in Fig. 3 we present the
double gadget (d-gadget) de�ned for the proof.

Figure 2: From VC to GVTP with boundary guards:
the representation of G = ({u, v, w}, {(u, v), (u,w)});
the edges of G are mapped to the points uv and uw
(that will be replaced by tiny d-gadgets) and the ver-
tices are mapped to the segments u, v and w.

We de�ne the side-length of this square to be L∆,
with L = 1 + 2|V | + 3|E| and ∆ = 10L. Consider-
ing V = {v1, v2, . . . , vn} sorted, we denote by E+

i the
subset of all edges (vi, vj) ∈ E such that i < j, also
sorted by increasing value of j. In the construction we
follow these orderings: for each i, we represent vi by a
segment of length ∆ on the top edge of the square and
the edges in E+

i as middle points of |E+
i | consecutive

segments of length 2∆ on the bottom edge, placed
between the projections of vi and vi+1, and with sep-
aration gaps of length ∆ between each other. The
square is implicitly divided into L slabs of length ∆,
and we leave the �rst slab empty and an empty slab
between consecutive items.

Figure 3: A sketch of the d-gadget Ξij de�ned for the
edge (vi, vj). The vertices on the left side are labelled
from N1 to N18 in CW order and on the right side
are labelled fromM1 toM18 in CCW order. B ≡ N11

and A ≡M11 are the two distinguished vertices.

The d-gadget associated to the edge (vi, vj) ∈ E+
i ,

denoted by Ξij , is de�ned as follows. Let Oij be the
point that represents the edge (vi, vj) and AiBi and
AjBj the segments associated to vi and vj . Together
with Oij , these segments de�ne two visibility cones
with apex Oij . By a slight perturbation, we can
decouple the two cones, and move the new apexes
to the distinguished vertices (B and A) of a tiny d-
gadget Ξij . The structure of this gadget will �x seg-
ment AiBi (resp. AjBj) as the portion of the bound-
ary of the polygon that A (resp. B) sees above line X
(i.e, above the gadget). We use VC instead of the
minimum 2-interval piercing problem used in [4] in
order to be able to control the aperture of visibility
cones and also the structure of the thin orthogonal
polygon obtained in the reduction. Some of the ver-
tices of a d-gadget can only be guarded by a local

guard (i.e., a guard below line X), for instance, the
vertices M16, M12, M8, M7 and M5 on its right part
and N16, N12, N8, N7 and N5 on the left part. For
every d-gadget, at least three local boundary-guards
will be needed to guard these vertices and no three
such guards can see both A and B if they see all these
vertices. Moreover, one can always locate three local
boundary-guards that see all the gadget vertices other
than A (namely, at N8, N1 and M8) or other than B
(namely, at N8, M1 and M8). Another guard is re-
quired to guard the unguarded vertex but it does not
need to be local. As we will see, this guard can be
located on the portion of the top edge of the polygon
seen from the unguarded vertex.

We de�ne the coordinates of the vertices of Ξij

w.r.t. a cartesian system ROij
with origin at Oij . By

construction, the x-coordinates of the points Ai, Bi

and Oij w.r.t. a cartesian system �xed at the bottom
left corner of the large square are given by

x′Ai
= (2i− 1 + 3

∑
k<i |E

+
k |)∆

x′Bi
= x′Ai

+ ∆
x′Oij

= x′Bi
+ 2∆ + 3∆ |E+

i ∩ {(vi, vj′) : j′ < j}|
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and, consequently, if we de�ne xi and xj as xi =
(x′Oij

− x′Bi
)/∆ and xj = (x′Aj

− x′Oij
)/∆, then,

w.r.t. the cartesian system ROij
, we have

Ai = (−(xi + 1)∆, L∆) Aj = (xj∆, L∆)
Bi = (−xi∆, L∆) Bj = ((xj + 1)∆, L∆)

for integers xi ≥ 2 and xj ≥ 2. Then, we de�ne A and
B as the intersection points of the supporting lines of−−−→
OijAi and

−−−→
OijBj with the line y = −4L, that is, as

A = (4xi + 4,−4L) and B = (−4xj − 4,−4L). So,

the rays
−−→
AAi and

−−→
BBj share the supporting lines of

the initial rays
−−−→
OijAi and

−−−→
OijBj . The aperture of

the visibility cone CA = cone(A,AiBi) is determined
by the vertices M1 and M13. We selected M1 as the

intersection of
−−→
AAi with the line y = −2L and M13

as the intersection of
−−→
ABi with the line y = −3L.

Therefore, M1 = (2xi +2,−2L) andM13 = (τi,−3L),
with τi = 3xi + 3 + ∆

∆+4 , because the straight lines
AAi and ABi are given by the following equations.

AAi : y =
−L
xi + 1

x

ABi : y =
−L(∆ + 4)
xi(∆ + 4) + 4

x+
4L∆

xi(∆ + 4) + 4

Similarly, the vertices N1 and N13 determine the
aperture of the visibility cone CB = cone(B,AjBj),
being N1 = (−2xj − 2,−2L) the intersection of

−−→
BBj

with y = −2L and N13 = (τ̃j ,−3L) the intersection

of
−−→
BAj with y = −3L, with τ̃j = −3xj − 3 − ∆

∆+4 .
The coordinates of the vertices of Ξij are

M1 = (2xi + 2,−2L) M2 = (2xi + 2,−4L)
M3 = (2xi + 1,−4L) M4 = (2xi + 1,−3L)
M5 = (2xi,−3L) M6 = (2xi,−6L)
M7 = (2xi + 1,−6L) M8 = (2xi + 1,−5L)
M9 = (τi,−5L) M10 = (τi,−4L)
A = (4xi + 4,−4L) M12 = (4xi + 4,−3L)
M13 = (τi,−3L) M14 = (τi,−2L)
M15 = (7L,−2L) M16 = (7L,−L)
M17 = (2xi + 2,−L) M18 = (2xi + 2, 0)

with the Nk = (−αxj−β, γ) i�Mk = (αxi +β, γ), for
1 ≤ k ≤ 18. Therefore, the coordinates of the vertices
can be de�ned by rational numbers represented by
pairs of integers bounded by a quadratic polynomial
function on the size of the graph.
We can prove that: the dual graph of the grid par-

tition of the resulting polygon is a tree; M16, M12,
M8, M7, M5, and N16, N12, N8, N7 and N5 require
local guards; the boundary of Ξij imposes no restric-
tion on the propagation of the corresponding visibility
cones CA and CB ; the unique point on the boundary
of Ξij that sees both A and N16 is M1 (similar for B,
M16 and N1); the three local guards N8, N1 and M8

jointly see all the gadget vertices other than A (simi-
lar for N8, M1 and M8 and B). Lemma 2 states the
�nal result we need to conclude the proof and can be
shown as Lemma 2.2. of [4].

Lemma 2 The thin orthogonal polygon P that is ob-

tained can be guarded by 3|E|+ k boundary guards if

and only if the there is a vertex-cover of size k for the

instance graph G = (V,E).

2 Hardness for vertex guards

Theorem 3 GVTP is NP-hard for thin orthogonal

polygons with vertex guards.

For the proof, we can adapt the previous construc-
tion, following the idea of [4], as sketched in Fig. 4.

Figure 4: The reduction from VC to GVTP with
vertex guards for G = ({u, v, w}, {(u, v), (u,w)}). Ear
gadgets are attached to the right endpoints of the seg-
ments. Each ear gadget requires a local guard on a
vertex of the shaded region (to guard Z2).

We consider the polygon obtained previously and
attach a tiny ear gadget to the right endpoint of each
line segment AiBi, for each vi ∈ V . The local vertices
of the ear gadget attached to Bj , w.r.t. the cartesian
system �xed at the bottom left corner of the large
square, can be de�ned as

Z1 = ((x′j + 1)∆, L(∆ + 1) + 1)
Z3 = ((x′j + 1)∆ + 1, L(∆ + 1))
Z2 = ((x′j + 1)∆ + L, L(∆ + 1))

and ((x′j + 1)∆ + L, L(∆ + 1) + 1). The separation
slabs guarantee that the dual graph of ΠHV (P ) for
the new polygon P is still a tree, as required. The ear
gadgets are de�ned in such a way that the vertex A of
Ξij cannot see any vertex of an ear-gadget except for
Bi. Otherwise, A would see points on the boundary
of P arbitrarily closed to Bi but to the right of Bi,
which is impossible by the de�nition of the visibility
cone CA. The height of the ear gadget prevents B from
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seeing any local vertex of the ear-gadget attached to
AjBj . For each j ≥ 2, it is su�cient to guarantee

that, for all Ξij , the intersection point of the ray
−−→
BBj

with the vertical edge incident to the vertex labeled
Z3 is below Z3. This holds for all i if it holds for B in

the rightmost d-gadget Ξi′j , since the rays
−−→
BBj are

sorted by slope around Bj .
Each ear-gadget needs a local guard that must be

located in one of the vertices of the shaded region
and none of these vertices sees a local vertex of a d-
gadget. This means that these guards cannot replace
any guard located in a segment. Since any guard lo-
cated on a segment can move to the segment right
endpoint to become a vertex-guard, without loss of
visibility, we can adapt the proof of Lemma 2 to show
Lemma 4.

Lemma 4 The thin orthogonal polygon P that is ob-

tained can be guarded by |V |+3|E|+k boundary guards

if and only if the there is a vertex-cover of size k for

the instance graph G = (V,E).

3 Hardness for point guards

Theorem 5 GVTP is NP-hard for thin orthogonal

polygons with point guards.

For the proof, we construct a reduction from the
minimum line cover problem (MLCP), as in [4].
MLCP is NP-hard [7]. Given a set L = {l1, . . . , ln}
of lines in the plane, MLCP is the problem of �nding
a set of points of minimum cardinality such that each
line l ∈ L contains at least one point in that set.
Without loss of generality, we consider that L con-

tains neither vertical nor horizontal lines. The poly-
gon constructed for the reduction is obtained by at-
taching single-gadgets (called s-gadgets) to a bounding
box B(L) that contains all intersection points of pairs
of lines in L in its interior. The idea of this construc-
tion is sketched in Fig. 5.

Figure 5: The reduction fromMLCP to GVTP with
guards anywhere. Each tiny box on the bottom rep-
resents an s-gadget (note that not all lines intersected
the bottom edge of the dashed bounding box). On the
right, an s-gadget in detail (the vertices are labelled
from M1 to M14, in CCW order, A ≡M11).

In order to guarantee that a thin orthogonal poly-
gon is obtained, we de�ne a new type of s-gadget,
sketched on Fig. 5, where M1 and M13 reduce the
visibility cone CA to the line LA. Moreover, we had
to restrict the locations of s-gadgets to the bottom
edge of B(L), in contrast to [4]. This can be done be-
cause, for a su�ciently large bounding box, all lines
will intersect the bottom edge of B(L), as there are no
horizontal lines in L. At least a local guard is needed
for each s-gadget. As for the d-gadgets, taking into
account the relative positions of intersections of the
lines with the bottom line (i.e., of vertices M1), and
their slopes, we can de�ne the vertices of the tiny s-
gadget in such a way that M8 sees M12 and M7, and
all local vertices except for A. We can conclude that
the vertices of P can be guarded by n + k guards if
and only if there is a cover for L of size k.
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