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Abstract

Let P and F be sets of n ≥ 2 and m ≥ 2 points in the
plane, respectively, so that P∪F is in general position.
We study the problem of finding the minimum angle
α ∈ [2π/m, 2π] such that one can install at each point
of F a stationary rotating floodlight with illumination
angle α, initially oriented in a suitable direction, in
such a way that, at all times, every target point of P is
illuminated by at least one light. All floodlights rotate
at unit speed and clockwise. We give an upper bound
for the 1-dimensional problem and present results for
some instances of the general problem. Specifically,
we solve the problem for the case in which we have
two floodlights and many points, and give an upper
bound for the case in which there are many floodlights
and only two target points.

1 Introduction

Illumination problems are well known in Discrete and
Computational Geometry [4]. Let P be a set of n ≥ 2
targets and F a set of m ≥ 2 floodlights, both defined
in the plane. We assume that P ∪ F is in general po-
sition and that all floodlights rotate clockwise at unit
speed. We say that F covers P with illumination an-
gle α ≥ 2π/m if there is a suitable initial orientation
of each light so that, at all times, each target point
of P is illuminated by at least one floodlight. We
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consider the problem of finding the minimum angle
α = α(P, F ) ∈ [2π/m, 2π] and initial orientation of
each floodlight so that F covers P .
Our general problem can be considered a discretiza-

tion of the one studied by Kranakis et al. [2]. Given
the locations of m floodlights (i.e. antennae) and a re-
gion, their problem asks to schedule the lights so that
the entire region is covered at all times. The schedul-
ing of static floodlights for covering a given region was
first considered by Bose et al. [1]. Research related to
our problem can be found in a number of domains, in-
cluding art gallery and related problems, multi-target
tracking, and multi-robot surveillance tasks [3, 4]. A
complete review of these fields can be found in [4].
We present results for some cases of our general

problem: the elements of P ∪F are located on a given
line (Section 2), the two-dimensional version with two
floodlights (Section 3), and the problem in the plane
with two target points (Section 4).
Given points u, v in the plane, `(u, v) denotes the

line containing both u and v. We identify any flood-
light by the point where it is installed. For any flood-
light f , at any instance of time, the region illuminated
by f is delimited by rays f− and f+, starting at f−
and ending at f+ in the clockwise direction. We say
that we configure f with angle β if the angle between
f+ and the positive x-axis is equal to β. Given that
all floodlights rotate at the same speed, it suffices to
consider only the interval of time [0, 2π).

2 Points and floodlights on a line

We first consider the case in which the points of P
and the floodlights of F lie on a line L, say the x-
axis. Kranakis et al. [2] considered the case in which
the floodlights are located on a line. They showed that
the entire line can be illuminated bym rotating flood-
lights using illumination angle 3π/m and this bound
is tight. This can be viewed as a special case of our
problem where n ≥ m+ 1 and each of the m+ 1 seg-
ments determined by F contains at least one point of
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P . We consider other cases and show that the illumi-
nation angle is smaller than 3π/m for some of them.
Partition P into k − 1 (k ≥ 2) maximal inter-

vals s1, s2, . . . , sk−1, from left to right, each of which
contains elements of P but no elements of F . Let
F1 denote the elements of F to the left of s1, Fi
(i = 2, . . . , k−1), the elements of F between si−1 and
si, and Fk, the elements of F to the right of sk−1. Let
mi = |Fi| for i = 1, . . . , k. Observe that m1,mk ≥ 0,
mi ≥ 1 for i = 2, . . . k−1, andm1+m2+. . .+mk = m.

Lemma 1 Two floodlights f1 and f2 with illumina-
tion angle α, belonging to the same set among F1 ∪
Fk, F2, F3, . . . , Fk−1, can be configured to cover P dur-
ing 2α time in total. Furthermore, if two floodlights
of F cover P with angle α < 3π/2, then they must
belong to a same set among F1 ∪Fk, F2, F3, . . . , Fk−1.

Proof. Suppose that both f1 and f2 belong to a set
Fi (i = 1, . . . , k), and assume w.l.o.g. that f1 is to the
left of f2. Configure f1 with angle zero and f2 with
angle π (see top of Figure 1a). At time t = π the
configuration of f1 and f2 is as shown in the bottom
of Figure 1a. Since there is no element of P in the
segment connecting f1 and f2 then all elements of P
are illuminated during intervals [0, α] and [π, π + α],
2α time in total.

f1 f2

f1 f2

(a)

f1 f2

f1 f2

(b)

Figure 1: Proof of Lemma 1: (a) Case where f1 and f2
belong a same set Fi. (b) Case where f1 ∈ F1 and f2 ∈ Fk.

Suppose now that f1 ∈ F1 and f2 ∈ Fk. Configure
both f1 and f2 with angle zero (see top of Figure 1b).
At time t = π the configuration of f1 and f2 is as
shown in the bottom of Figure 1b. Since all elements
of P belong to the segment connecting f1 and f2 then
all elements of P are illuminated during intervals [0, α]
and [π, π + α], 2α time in total.
For the second part of the lemma, let f and g be

the two lights that cover P . Clearly α ≥ π. Assume,
w.l.o.g., that g 6∈ F1 ∪ Fk and that f is to the left of
g. Also, let Q ⊆ P denote the set of targets to the

right of f . Light f alone can cover Q for an interval
of length α, while g alone can cover Q for α− π only.
Since α < 3π/2, an interval of length 2π − α > π/2
is unaccounted for by f , but g can pick up at most
α−π < π/2 of this. Hence, f and g must belong to the
same set. The claim does not hold if α ≥ 3π/2. �

Lemma 2 Three floodlights f1, f2, and f3 with illu-
mination angle α < π, can be configured so that, to-
gether, they cover the whole line L (hence, P ) during
2α time in total.

Proof. The proof can be obtained from [2]. Assume,
w.l.o.g., that f1, f2, and f3 appear in this order from
left to right. Configure f1, f2, and f3 with angle zero,
π, and zero, respectively (top of Figure 2). At time
t = π the configuration is as shown at the bottom of
Figure 2. During interval [0, α] the line is illuminated
by f1 and f2, and during interval [π, π+α], by f2 and
f3. The result follows. �

f1 f2 f3

f1 f2 f3

Figure 2: Proof of Lemma 2

Theorem 3 If all floodlights belong to the same set
among F1 ∪ Fk, F2, F3, . . . , Fk−1, then α(P, F ) =
2π/m, which is optimal. Otherwise, α(P, F ) satisfies:

α(P, F ) ≤ min

{
3π

m
,

2π

m−Q+ 2bQ3 c

}
(1)

where Q denotes the number of odd numbers in the
set {m1 +mk,m2, . . . ,mk−1}.

Proof. Obviously α(P, F ) ≥ 2π/m in all cases. All
lights belong to the same set iff k = 2, or k = 3
and m1 = m3 = 0. In both cases, illumination an-
gle α = 2π/m is sufficient. Assume first that k = 2
and let F1 = {f1, . . . , fm1

} and F2 = {f ′1, . . . , f ′m2
}.

Floodlight fi is configured with angle (i − 1)α for
i = 1, . . . ,m1, and floodlight f ′j , with angle π − jα
for j = 1, . . . ,m2 (see Figure 3). Then, at any time
t ∈ [0,m1α) P is covered by a member of F1 and,
at any time t ∈ [m1α, 2π), by a member of F2. As-
sume now that k = 3 and m1 = m3 = 0. Then,
F = F2 = {f1, . . . , fm}. By configuring fi with angle
2iπ/m, P is covered by F . This proves the optimal
result when all lights belong to the same set.
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f1 f3p1 p2 p3 f4 f5f2

Figure 3: Two groups of floodlights F1 = {f1, f2} and
F2 = {f ′1, f ′2, f ′3} = {f3, f4, f5}, where m1 = 2 and m2 =
3, and the configuration with angle α = 2π/5.

If neither of the two cases above occurs, we con-
figure the floodlights to satisfy inequality (1) as fol-
lows. We consider the case m1 = mk = 0 and mi = 1
(i = 2, . . . , k−1) separately because the result follows
immediately from [2], since our problem is equivalent
to illuminating the whole x-axis. In this case m = Q
and α(P, F ) = 3π/m = min{ 3πm ,

2π
m−Q+2bQ3 c

} which is
also optimal.
For the remaining cases, we can only obtain

an upper bound on the optimal illumination an-
gle. We proceed as follows. Pair the elements of
F into N = bm1+mk

2 c + bm2

2 c + . . . + bmk−1

2 c =
m−Q

2 pairs (f1,1, f1,2), (f2,1, f2,2), . . . , (fN,1, fN,2)
so that the elements of each pair belong to a
same set among F1 ∪ Fk, F2, F3, . . . , Fk−1. Group
the remaining Q floodlights into M = bQ3 c
triples (f ′1,1, f

′
1,2, f

′
1,3), . . . , (f

′
M,1, f

′
M,2, f

′
M,3) (leaving

at most two ungrouped). Let α = 2π
m−Q+2bQ3 c

=

2π
2N+2M . We now schedule the floodlights as fol-
lows. Configure fi,1 and fi,2 with angles (i− 1)α and
π + (i − 1)α, respectively, for i = 1, . . . , N ; and con-
figure f ′j,1, f ′j,2, and f ′j,3 with angles (N + j − 1)α,
(N + j − 1)α, and π + (N + j − 1)α, respectively, for
j = 1, . . . ,M . Finally, arbitrarily configure the re-
maining floodlights (at most two). The correctness of
this configuration follows from lemmas 1 and 2. �

3 Many points and two lights
In this section we consider the case of two floodlights
f1 and f2, i.e., m = 2. Let p1, . . . , pn denote the ele-
ments of P . Assume w.l.o.g. that line `(f1, f2) is hor-
izontal and that f1 is located to the left of f2. Given
any target point pi (i = 1, . . . , n), let θi ∈ [0, π) de-
note the angle at pi in the triangle 4pif1f2. If there
are points from P on both sides of the line `(f1, f2),
then we define two angles β+ and β− as the maximum
of θi over all points pi above and below `(f1, f2), re-
spectively (see Figure 4a). Otherwise, all the points of
P are on the same side of `(f1, f2) and we define two
angles, βmax and βmin, as the largest and smallest θi
over all points pi, respectively (see Figure 4b).

Theorem 4 (Two floodlights) For m = 2, n ≥ 2:
(1) If there are points of P on both sides of `(f1, f2)
then α(P, F ) = π + β++β−

2 .
(2) If all the points of P lie on one side of `(f1, f2)
then α(P, F ) = π + βmax−βmin

2 .

f1 f2

β+

β−

(a)
f1 f2

βmax

βmin

(b)

Figure 4: (a) β+ and β−. (b) βmax and βmin.

Proof. First, we prove part (1) of the theorem. We
configure floodlights f1 and f2 initially as follows. Let
Af1Bf2 be the quadrilateral such that angle ∠f1Af2
is equal to β+, angle ∠f2Bf1 is equal to β−, and
points f1 and f2 are symmetric with respect to the
line `(A,B) as shown in Figure 5a.

f1 f2

β−

β+

A

B

(a)

f1 f2

A

B

β+

β−

(b)

f1

f2

B

(c)

Figure 5: (a) Initial position. (b),(c) General position.

Since f1 and f2 rotate at unit speed, it always holds
that ∠f1Af2 = β+ and ∠f2Bf1 = β− (see Figure 5b).
Furthermore, the region not illuminated by the lights
is always a subset of the interior of the union of the tri-
angles 4f1Af2 and 4f2Bf1 (see Figures 5b and 5c),
and it never contains points of P by the definition of
β+ and β−. It remains to show that any illumination
angle smaller than π + β++β−

2 is not feasible.
Suppose that, initially, floodlight fi, i = 1, 2 covers

angles in the interval [αi, βi]. First we show that these
intervals cover all possible directions in [0, 2π]. If, to
the contrary, a direction t is not covered by [α1, β1]∪
[α2, β2], then there is a rotation such that pi is not
illuminated, where pi is the point above the x-axis
and ∠f2pif1 = β+, a contradiction. Therefore, the
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floodlight intervals overlap as shown in Figure 6a.

f1f2

α1

β1 α2

β2

(a)

f1 f2

β+

pi

(b)

Figure 6: The floodlight intervals.

We show now that the overlapping interval [α2, β1]
has length at least β+. Suppose to the contrary that it
is smaller than β+. Consider the rotation by the angle
γ such that the β2-ray of floodlight f2 passes through
the point pi defining β+ (see Figure 6b). Then the
α1-ray of floodlight f1 will not cover pi since the an-
gle between the two rays is less than β+. Therefore pi
is not covered if the rotation angle is slightly smaller
than γ, a contradiction. Similarly, the overlapping
interval [α1, β2] has length at least β−. If the illumi-
nation angle is α then 2α ≥ 2π + β+ + βi. The claim
of part (1) follows.
To prove part (2) of the theorem we configure flood-

lights f1 and f2 at the beginning as follows. Let
Af1Bf2 be a quadrilateral such that ∠f1Af2 = βmin
and ∠f2Bf1 = βmax and points f1 and f2 are sym-
metric about line `(A,B) as shown in Figure 7a. The
argument is similar to the proof of part (1) since the
points A and B move along arcs shown in Figure 7a.
The uncovered part is either a region below Cf1Bf2D,
shown in Figure 7a, or the wedge XY Z, shown in
Figure 7c. In any case the area between the two arcs
defined by βmin and βmax is always illuminated.
The optimality of angle π+ βmax−βmin

2 can be shown
similarly to the proof of part (1). �

4 Many lights and two points
Let p1 and p2 denote the elements of P and f1, . . . , fm
denote the elements of F . Let θi (i = 1, . . . ,m) de-
note the angle by which line `(fi, p1) has to be rotated
clockwise with center fi to become line `(fi, p2). As-
sume w.l.o.g. that θ1 ≤ θ2 ≤ . . . ≤ θm.

Lemma 5 If n = 2 then α(P, F ) ≤ 2π
m + θm−θ1

m .

Proof. It suffices to prove that for α = 2π
m + θm−θ1

m
the m floodlights can be configured properly. Con-
figure f1 arbitrarily and, for i = 1, . . . ,m − 1, con-
figure fi+1 to start illuminating point p2 at the time
fi stops illuminating it. Since α ≥ 2π/m then p2 is

f1 f2

A

B

C D

(a)

f1 f2

(b)

f1 f2

X Y

Z

(c)

Figure 7: The floodlight intervals.

always illuminated. Observe that p1 is illuminated
at some time by both fi and fi+1 since θi ≤ θi+1.
Then the time spam in which p1 is illuminated by
fi and not by fi+1 is equal to α + θi − θi+1. Since∑m−1
i=1 (α+ θi − θi+1) + α = mα+ θ1 − θm = 2π then

p1 is always illuminated. �

One can build examples, as the following one, in which
θ1 < θm and α is the theoretical minimum (i.e. α =
2π/m), showing that α = 2π

m + θm−θ1
m is not always

optimal. Let m = 8 and (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) =
(π4 ,

π
4 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

3π
4 ,

3π
4 ). Then f1, . . . , f8 can be con-

figured with α = 2π/m so that p1 is illuminated in
the (circular) order f1, f3, f8, f2, f4, f5, f6, f7 and p2
in the order f6, f1, f7, f3, f2, f8, f4, f5. Thus, it be-
comes interesting to decide whether α(P, F ) = 2π/m
when θ1, . . . , θm are all multiples of 2π/m.
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