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1. Introduction

The Interacting Boson Model (IBM1) [1,2] was first introduced 
in a phenomenological way as a boson model for describing low-
lying collective states in medium mass even–even nuclei. The 
model is based on a scalar s-boson plus five quadrupolar d-bosons 
and the 36 bilinear products of the corresponding creation and 
annihilation operators close under the u(6) algebra [1,3]. On one 
hand, the group structure of the model was soon completely stud-
ied and calculations for different chains of isotopes were exten-
sively done [1]. On the other hand, the microscopic foundation 
of the model was established by introducing the neutron–proton 
degree of freedom in the Interacting Boson Model 2 (IBM2) and 
considering the bosons as the counterparts of fermion pairs [4]. 
The next step was to add fermionic degrees of freedom in the In-
teracting Boson Fermion Model (IBFM) so as to be able to treat 
odd–even nuclei [5,6]. In general, in the IBFM one has too many 
parameters in the Hamiltonian to account for the boson–fermion 
interactions. The crucial point for the development of the IBFM 
was to derive the different terms in the boson–fermion interac-
tion on a microscopic basis [6–8], to reduce the number of free 
parameters to just three, corresponding to monopole, quadrupole 
and exchange interactions. This was accomplished within the Gen-
eralized Seniority (GS) scheme [9] using the Number Operator 
Approximation (NOA) [10] by obtaining the image of the shell 
model nucleon (proton or neutron) creation operator in the boson–
fermion IBFM space. This was a major achievement that allowed to 
study entire chains of odd–even nuclei in many regions of the nu-
clear mass table [6]. In addition, the calculated IBFM image of the 
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nucleon creation operator is needed, for the study of one-nucleon 
transfer in IBFM and IBM and also for the study of β-decay in 
nuclei [11], since this process can be simulated in IBFM as the 
combination of a neutron pick-up and a proton stripping reactions. 
Also, some time ago, the use of the IBFM to provide detailed nu-
clear wavefunctions for the study of dark matter detection limits 
was suggested [12]. Since the IBFM Hamiltonian is based on the 
IBFM image of the one nucleon transfer operator, improvements 
in this fundamental operator will provide a better nuclear model 
to evaluate the matrix elements relevant for WIMP scattering on 
heavy nuclear targets in dark matter detectors. Consequently, any 
improvement in the IBFM one nucleon transfer operator will be 
important. It is worth noting that, apart from the original deriva-
tion, other alternatives, based on the Nuclear Field theory [13]
or the Holstein–Primakoff mapping [14] have been proposed with 
limited impact. Here we would like to point out that the NOA 
approximation is a weak point in the original derivation as it 
gets worse when one goes apart from closed shells. Consequently, 
a rederivation of the one nucleon transfer operator in IBFM with-
out this approximation is needed. In this work, such operator is 
obtained.

The manuscript is structured as follows. In Section 2, the NOA 
approximation is briefly revised and examples of its failure when 
going apart from closed shells are shown. In Section 3, the image 
of the single fermion creation operator in the IBFM space, without 
using NOA, is presented. The detailed derivation is worked out in 
Appendix A. In Section 4, simple examples of application of the 
new operator for one nucleon transfer reactions in the Sm–Pm–Gd 
region are presented and confronted with the original one. Finally, 
in Section 5, the conclusions and future developments of this work 
are briefly commented.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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2. NOA approximation and its failure

In this section, the so called Number Operator Approximation 
(NOA) is revised and examples of its failure far from closed shells 
are shown. First we define correlated pair creation operators as

S+ =
k∑

i=1

αi
ĵi

2
A(00)

ii , D+
μ =

k∑
i,i′=1
i≤i′

βii′ A(2μ)

ii′√
1 + δii′

, (1)

where ĵi = √
2 ji + 1, A( J M)

ii′ = (c†
i × c†

i′ )
( J )
M and the α’s and β ’s are 

the structure coefficients for the S and D pairs, respectively.
When several nondegenerate single particle orbits are available 

the NOA approximation [10] consists in making

N̂ =
∑

j

N̂ j ≈
∑

j

α2
j N̂ j, (2)

where N̂ j = c†
j · c̃ j is the number operator for a particular j-orbit 

and N̂ is the number operator for the full set of single particle or-
bits in the shell. For degenerate orbits all |α j | are equal to one and 
the above equation is exact. However, for nondegenerate orbits the 
α2

j are no longer equal to one and Eq. (2) is only approximately 
valid. The NOA is assumed to recover the quasispin algebra for 
the S+ and S− = (S+)† operators of the Generalized Seniority (ṽ) 
scheme.

Since the occupation probability of orbit j is defined as v2
j =

n j
2Ω j

, where Ω j = j + 1/2 and n j is the expectation value of the 
number operator N̂ j , under the NOA approximation it is obtained 
that

n j ≈ nα2
j
Ω j

Ωe
⇒ v2

j ≈ α2
j

n

2Ωe
(3)

for states with n particles and ṽ = 0. Here Ωe is given by

Ωe =
∑

j

α2
j Ω j. (4)

This value of n j (or v2
j ) implies a linear dependence in n

when the α j quantities are independent of n, which is the case 
of the semi-magic nuclei where ṽ is approximately a good quan-
tum number. However the filling of the single particle levels is 
not linear in n when the subshell effects are important, where the 
lower single particle level first fills quickly, then the next single 
particle level and so on (quoted in [17, p. 175]). Even worse, un-
physical results can be obtained in some cases if NOA is used. For 
instance, in Ref. [17] the S and D correlated pair-creation opera-
tors are obtained by assuming a residual Surface Delta Interaction 
(SDI). Taking the α j ’s of [17], given under column labeled MSSP 
(mid shell single particle) in Table 2 for neutrons in the major 
shell 82–126 and in Table 7 for protons in the major shell 50–82, 
NOA provides for v2

j the results given in Table 1 for Z = 64 and 
N = 102.

We can observe in Table 1 (column 4 under NOA) that the pre-
dicted values for v2

7/2 are greater than 1 in both cases, which is 
unphysical, showing clearly the failure of the NOA approximation.

It should be noted that this problem arises when one calculates 
microscopically the structure of the S pair getting its structure 
constants α j ’s and, then using NOA (3) for obtaining the occupa-
tion probabilities v2

j . Obviously, one could forget about microscopy 
and calculate first the occupation probabilities with BCS or other 
appropriate method and then using NOA through (3) to get the 
α j ’s if needed.
Table 1
Structure coefficients for the S-pair and the corresponding occupation probabili-
ties within and without the NOA approximation for protons and neutrons in the 
A ≈ 160 region for Z = 64 and N = 102.

50–82 protons

Level Energy (MeV) α j v2
j (NOA) v2

j

1g7/2 0.00 −1.717 1.290 0.827
2d5/2 1.00 −0.814 0.290 0.490
1h11/2 2.06 0.523 0.120 0.269
2d3/2 2.52 −0.453 0.090 0.213
3s1/2 2.85 −0.413 0.075 0.182

82–126 neutrons

Level Energy (MeV) α j v2
j (NOA) v2

j

2 f7/2 0.00 −1.818 1.503 0.833
1h9/2 0.69 −0.975 0.432 0.576
1i13/2 1.75 0.569 0.147 0.304
2 f5/2 2.18 −0.487 0.108 0.239
3p3/2 1.47 −0.640 0.186 0.358
3p1/2 2.29 −0.470 0.100 0.226

The exact value for n j without using NOA can be obtained using 
Eq. (22) in Ref. [18], from which the exact value for the occupation 
probability reads

v2
j = −

n/2∑
s=1

(−1)s
[

(n
2 )!ηn−2s,0,0α

s
j

(n
2 − s)!ηn,0,0

]2

, (5)

where ηn,ṽ, J is the normalization constant of states with n parti-
cles, generalized seniority ṽ and total angular momentum J . We 
quote in column 5 of Table 1 the values obtained using this ex-
pression.

3. The one-nucleon transfer operator without NOA

The one nucleon transfer operator is the one nucleon (proton or 
neutron) creation operator in the i shell specified by the standard 
single particle level quantum numbers ni , li , 1

2 , ji and mi . We will 
replace them by just one label for convenience and denote this 
operator by c†

i . When necessary we will make explicit ji and mi . 
The annihilation operator with good tensor character is given by 
c̃ jimi = (−1) ji−mi c ji−mi , where ci = (c†

i )
†.

The first few terms in the boson expansion of c†
i which change 

generalized seniority in one unit are

c†
i �→ Aia

†
i + Bi

(
s† × ãi

)( ji)

mi

+
k∑

i′=1

Cii′
(
d† × ãi′

)( ji)

mi

+
k∑

i′=1

Dii′ s
†(d̃ × a†

i′
)( ji)

mi

+ . . . (6)

where k is the number of single particle orbits considered and a†
i is 

the fermion creation operator in the IBFM space. The coefficients 
Ai , Bi , Cii′ and Dii′ are obtained following the OAI method [15], 
in which the matrix elements of c†

i between states with different 
generalized seniority are made equal to the matrix elements of 
the boson expansion between the corresponding boson states. The 
correspondence between the states is∣∣S N 〉 �→ ∣∣sN 〉

, (7)∣∣S N ; i
〉 �→ ∣∣sN ; i

〉
, (8)∣∣S N−1 D;2μ

〉 �→ ∣∣sN−1d;2μ
〉
, (9)
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where∣∣S N 〉 = η−1
2N,0,0

(
S+)N |0〉 (10)∣∣S N ; i

〉 = η−1
2N,1,i

(
S+)N

c†
i |0〉 (11)∣∣S N−1 D;2μ

〉 = η−1
2N,2,2

(
S+)N−1

D+
μ|0〉 (12)∣∣sN 〉 = (N!)− 1

2
(
s†)N |0〉 (13)∣∣sN ; i

〉 = (N!)− 1
2
(
s†)N

a†
i |0〉 (14)∣∣sN−1d;2μ

〉 = [
(N − 1)!]− 1

2
(
s†)N−1

d†
μ|0〉 (15)

and the different η’s are the norms of the states.
In Appendix A the detailed derivation of the one-nucleon trans-

fer operator in the boson–fermion space without the use of NOA is 
worked out. The result is

c†
i �→ η2N,1,i

η2N,0,0
a†

i + √
Nαi

η2(N−1),1,i

η2N,0,0

(
s† × ãi

)( ji)

mi

+
k∑

i′=1

√
5βi′i

ĵi
√

1 + δii′

η2
2N,2,2(ii′)

η2N,2,2η2(N−1),1,i′

(
d† × ãi′

)( ji)

mi

−
k∑

i′=1

√
5Nαiβi′i

√
1 + δii′

ĵi

× η2
2N,2,2(ii′)

η2N,2,2η2N,1,i′
s†(d̃ × a†

i′
)( ji)

mi
. (16)

Some of the η’s were already calculated in Refs. [16–18]:

η2
n,0,0 =

[(
n

2

)
!
]2 ∑

m1...mk∑k
i=1 mi=n/2

k∏
i=1

α
2mi
i

(
Ωi
mi

)
, (17)

η2
n,2,2 =

k∑
i,i′=1
i≤i′

β2
ii′η

2
n,2,2

(
ii′

)
, (18)

η2
n,2,2

(
ii′

) =
n
2 −1∑
p=0

[
(n

2 − 1)!
p!

]2

(−1)
n
2 −1−p

× η2
2p,0,0

n
2 −1−p∑

q=0

α
n−2−2p−2q
i α

2q
i′ . (19)

The missing η in (16), η2N,1,i , is calculated in Appendix A, 
Eq. (28), to be

η2
2N,1,i =

N∏
m=1

(−m2α2
i

) +
N∑

m=1

η2
2m,0,0

[
N∏

n=m+1

(−n2α2
i

)]
. (20)

The procedure to obtain the one-nucleon transfer operator 
is: i) first calculate the structure coefficients αi and βi,i′ of the 
S and D pairs by assuming an appropriate nucleon–nucleon resid-
ual interaction; ii) then, with the above equations, the norms η’s 
are obtained; iii) finally, with these results, Eq. (16) provides the 
approximate image of the one-nucleon transfer operator in the 
boson–fermion space.

Once the one-nucleon transfer operator in the boson–fermion 
space is obtained, the complete program should start by compar-
ing some results from this and the previous operator based in NOA. 
This will be done in the next section by using realistic wavefunc-
tions already obtained in Ref. [19] for Nd, Sm and Pm isotopes. 
Table 2
Spectroscopic intensities for one-proton stripping reactions A−1

60 Nd → A
61Pm.

Final state 147Pm 149Pm

NOA This work NOA This work

7/2 + ( 1) 3.441 3.441 1.564 1.335
7/2 + ( 2) 0.002 0.003 0.057 0.046
7/2 + ( 3) 0.001 0.007 0.358 0.578
7/2 + ( 4) 0.000 0.000 0.001 0.000
7/2 + ( 5) 0.000 0.000 0.010 0.028

5/2 + ( 1) 1.768 1.715 3.018 3.105
5/2 + ( 2) 0.000 0.003 0.327 0.229
5/2 + ( 3) 0.021 0.067 0.027 0.039
5/2 + ( 4) 0.000 0.001 0.011 0.010
5/2 + ( 5) 0.000 0.000 0.000 0.001

Final state 151Pm 153Pm

NOA This work NOA This work

7/2 + ( 1) 0.392 0.329 0.149 0.102
7/2 + ( 2) 2.890 3.173 2.157 2.540
7/2 + ( 3) 0.729 0.524 0.775 0.697
7/2 + ( 4) 0.121 0.095 0.480 0.446
7/2 + ( 5) 0.003 0.010 1.088 0.855

5/2 + ( 1) 0.834 0.601 0.705 0.452
5/2 + ( 2) 0.004 0.000 0.029 0.008
5/2 + ( 3) 0.098 0.126 0.009 0.022
5/2 + ( 4) 0.330 0.466 0.006 0.010
5/2 + ( 5) 0.016 0.017 0.218 0.357

However, a consistent approach will require the microscopic red-
erivation of the boson–fermion interaction in the IBFM starting 
with this one-nucleon creation operator. This will be done in a 
forthcoming publication. The use of the derived operator for the 
study of β-decay will be also analyzed elsewhere.

4. Applications

In order to check the obtained one-nucleon transfer operator, 
stripping and pick-up reactions to odd-Pm isotopes are studied 
here using wavefunctions already obtained in Ref. [19] within the 
IBFM. There, details on the IBFM parameters and the full calcula-
tion for the even–even 60Nd core isotopes and the odd–even 61Pm 
isotopes are given. The main idea is to show a realistic calculation 
with the new operator and the differences with the one used up 
to now, based on NOA.

We present results for spectroscopic intensities of one-proton 
striping reactions A−1

60 Nd → A
61Pm, in Table 2, and one-proton pick-

up reactions A+1
62 Sm → A

61Pm, in Table 3. The intensities are cal-
culated to the lowest states with spin 7/2+ and 5/2+ for both 
the operator with NOA and the operator obtained without NOA in 
this work. The spectroscopic intensities are defined as the square 
reduced matrix elements of the transfer operator between the 
ground state of the even–even initial nucleus and the final state 
in the odd–even one. The results obtained with each operator were 
normalized to fulfill the Macfarlane–French sum rules [20]. Regard-
ing the negative parity states 11/2− no results for transfer to them 
are shown since, as this is a one-orbit calculation, NOA and the 
present transfer operator provide the same results.

It can be observed in Tables 2 and 3 that differences are small 
for spherical 147Pm and larger for the more deformed 153Pm, 
where fragmentation is stronger and consequently the values of 
the spectroscopic intensities are more sensitive to the transfer 
operator. Unfortunately, the scarce experimental information for 
these transfers and the large error bars do not allow a conclu-
sive statement on the improvement of the new operator with re-
spect to the old one. In any case, Tables 2 and 3 show that there 
are measurable differences between the results obtained with the 
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Table 3
Spectroscopic intensities for one-proton pick-up reactions A+1

62 Sm → A
61Pm.

Final state 147Pm 149Pm

NOA This work NOA This work

7/2 + ( 1) 4.347 4.429 3.232 3.524
7/2 + ( 2) 0.090 0.036 0.118 0.122
7/2 + ( 3) 0.036 0.021 2.406 2.145
7/2 + ( 4) 0.002 0.001 0.001 0.000
7/2 + ( 5) 0.002 0.001 0.167 0.137

5/2 + ( 1) 3.763 3.860 2.501 2.450
5/2 + ( 2) 0.018 0.013 0.006 0.072
5/2 + ( 3) 0.331 0.254 0.050 0.038
5/2 + ( 4) 0.002 0.002 0.003 0.006
5/2 + ( 5) 0.003 0.002 0.010 0.006

Final state 151Pm 153Pm

NOA This work NOA This work

7/2 + ( 1) 0.133 0.238 0.00 0.090
7/2 + ( 2) 3.544 3.260 3.001 2.402
7/2 + ( 3) 0.002 0.182 0.109 0.325
7/2 + ( 4) 0.011 0.042 0.091 0.200
7/2 + ( 5) 0.057 0.023 0.002 0.282

5/2 + ( 1) 1.362 1.761 1.145 1.589
5/2 + ( 2) 0.008 0.004 0.003 0.010
5/2 + ( 3) 0.498 0.464 0.156 0.142
5/2 + ( 4) 1.770 1.559 0.052 0.050
5/2 + ( 5) 0.015 0.009 2.068 1.909

traditional (with NOA) and the new (without NOA) transfer opera-
tors. These differences are expected to increase for well deformed 
nuclei and when more single particle orbits are active.

5. Summary and conclusions

A rederivation of the IBFM image of the one-fermion creation 
operator within the Generalized Seniority scheme but without the 
NOA approximation has been obtained. A comparison with pre-
vious results of spectroscopic factors for stripping and pick-up of 
one proton involving 61Pm isotopes has been presented and size-
able differences have been found.

The consistent applicability and limitations of the use of the 
derived operator need to be done by using it in the derivation 
of the IBFM boson–fermion interaction. This will be accomplished 
by including it in the standard IBFM-2 code ODDPAR [21]. Then, 
another important application of the derived operator, apart from 
the study of the one nucleon transfer reactions, is the study of 
single β-decay between odd–even nuclei, which is simulated in 
the IBFM through the combination of a one-neutron pick-up and 
a one-proton stripping transfer reactions. We are working along 
these lines and results will be reported elsewhere. Finally, the ex-
pected improvement in the wavefunctions of heavy odd-A nuclei 
through the use of the new boson–fermion interaction can have 
deep impact in the study of other quantities, such as the matrix 
elements of the magnetic moment operator or those present in 
the cross section of WIMP-nucleus scattering.
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Appendix A

In this appendix, the derivation of the one-nucleon transfer op-
erator in IBFM without the use of NOA is worked out completely.

We start from Eq. (6) and calculate here the coefficients Ai , Bi , 
Cii′ and Dii′ . They can be obtained from

Ai = 〈S N i‖c†
i ‖S N〉

〈sN i‖a†
i ‖sN〉

; (21)

Bi = 〈S N‖c†
i ‖S N−1i〉

〈sN‖(s† × ãi)
( ji)‖sN−1i〉 ; (22)

Cii′ = 〈S N−1 D;2‖c†
i ‖S N−1i′〉

〈sN−1d;2‖(d† × ãi′)( ji)‖sN−1i′〉 ; (23)

Dii′ = 〈S N i′‖c†
i ‖S N−1 D;2〉

〈sN i′‖s†(d̃ × a†
i′)

( ji)‖sN−1d;2〉
. (24)

First of all we calculate the norm of the v = 1 states, η2
2N,1,i :

〈0|[(S+)N
c†

jimi

]†(
S+)N

c†
ji′mi′

|0〉
= −N2α2

i 〈0|[(S+)N−1
c†

jimi

]†(
S+)N−1

c†
ji′mi′

|0〉
+ δii′η

2
2N,0,0, (25)

where we have used[
c jm,

(
S+)N] = −(−1) j+m Nα jc

†
j−m

(
S+)N−1

. (26)

Hence the norm η2
2N,1,i can be calculated from the recurrence re-

lation

η2
2N,1,i = η2

2N,0,0 − N2α2
i η

2
2(N−1),1,i, (27)

which can be solved to

η2
2N,1,i =

N∏
m=1

(−m2α2
i

) +
N∑

m=1

η2
2m,0,0

[
N∏

n=m+1

(−n2α2
i

)]
. (28)

Using the Wigner–Eckart theorem we calculate the following 
matrix elements:〈
S N i

∥∥c†
i

∥∥S N 〉 = − ĵi
η2N,1,i

η2N,0,0
, (29)

〈
S N

∥∥c†
i

∥∥S N−1i
〉 = Nαi ĵi

η2(N−1),1,i

η2N,0,0
, (30)

〈
S N−1 D;2

∥∥c†
i

∥∥S N−1i′
〉 =

√
5η2

2N,2,2(ii′)
η2N,2,2η2(N−1),1,i′

βi′i√
1 + δii′

, (31)

〈
S N i′

∥∥c†
i

∥∥S N−1 D;2
〉 = √

5
η2

2N,2,2(ii′)
η2N,2,2η2N,1,i′

× Nαiβii′
√

1 + δii′ , (32)

where we used Eq. (3.7) from [16].
The boson matrix elements can be calculated straightforward〈

sN i
∥∥a†

i

∥∥sN 〉 = − ĵi, (33)〈
sN

∥∥(
s† × ãi

)( ji)
∥∥sN−1i

〉 = ĵi

√
N, (34)〈

sN−1d;2
∥∥(

d† × ãi′
)( ji)

∥∥sN−1i′
〉 = ĵi, (35)〈

sN i′
∥∥s†(d̃ × a†

i′
)( ji)

∥∥sN−1d;2
〉 = (−1) ji+ ji′ ĵi

√
N. (36)

Then, the coefficients in the boson expansion of the one-nucleon 
transfer operator read
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Ai = η2N,1,i

η2N,0,0
, (37)

Bi = √
Nαi

η2(N−1),1,i

η2N,0,0
, (38)

Cii′ =
√

5

ĵi

η2
2N,2,2(ii′)

η2N,2,2η2(N−1),1,i′
βi′i√

1 + δii′
, (39)

Dii′ = −
√

5

ĵi

η2
2N,2,2(ii′)

η2N,2,2η2N,1,i′

√
Nαiβi′i

√
1 + δii′ , (40)

to obtain finally the expression of Eq. (16), which complete the 
derivation of the single fermion creation operator in IBFM to the 
lowest order without using NOA.
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