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The behaviour of the threshold anomaly for non-central potentials, which account for collective excitations 1n heavy-ion colhi-
sions. is investigated. It 1s shown that the non-central potentials should exhibit an energy dependence at energies in the vicinity of
the Coulomb barnier This energy dependence 1s, however, different from that of the elastic optical potential. occurring at lower
energles It 1if further shown that there are corrections to the traditional collective model such that, if the transition potential 1s
expressed as the derivative of the optical potential, the corresponding deformation length will be complex and energy-dependent

Simple model calculations are presented

During recent years, evidence of the energy-depen-
dence of the real (the threshold anomaly) and ima-
ginary parts of nucleus-nucleus optical potentials has
been found by careful analyses of the clastic scatter-
ing at energies 1n the vicinity of the Coulomb barrier
[1-5] This energy dependence has been attributed
to the coupling of non-clastic channels to the elastic
channel 1n this energy region [6.7]. The threshold
anomaly has also been related to the rapid increase
of the surface imaginary potential as the energy 1s 1n-
creascd above the Coulomb barrier and the conse-
quent correction to the real potential through a dis-
persion relation [8-10]. The optical potential can
thus be written as

U(E)=Vo+AV(E) 1B (E) . (1)

where 175 is an energy-independent potential (dou-
ble-folded potential, for example). W' (E) 1s the im-
aginary potential and the dispersive real potential
AV'(E) s defined as
P ( W(E")

AV(E)= = J‘ ( .dL . (2)
where P denotes a principal value integral.

Generalizing this to the case of a set of strong-cou-
pled channels, it was suggested by Satchler [11] that
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each element of the potential matrix, which defines
the coupled channels equation. should be expected to
exhibit a threshold anomaly. In such a case, the en-
crgy dependence of the different diagonal and off-di-
agonal clements of the potential matrix will be attrib-
uted to couphings to other channels not included 1n
the subset of coupled channels. However. a priori,
there 15 no reason for all the terms of the potential
matrix to have the same encrgy dependence. Satchler
[11] argued that. in the case of collective excitations,
one would expect a similar energy dependence in the
coupling interaction (transition potential) and the
clastic optical potential, though one could ¢xpect a
shift 1n the threshold of the coupling potential by ap-
proximately half of the excitation energy. He further
concludes that if one uses an optical potential that 1s
consistent with the dispersion relation but still needs
an energy-dependent deformation length, then either
the optical model itself or the nuclear structure model.
or both. are inadequate

The excitauon functions of the first excited 3 ~ state
of 2%8Pb by '°0 at encrgies around the Coulomb bar-
ricr have been measured and analysed [12.13] and
more recently detailed angular distrnibutions for the
same system were measured at energies from above
to below the Coulomb barrnier [14]. These angular
distributions were analyzed and the results hinted at
a possibility that the transition potential may have an
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energy dependence which s different from that of the
clastic optical potential [14].

We present here a ssmple model which shows that.
tfor collective excitations, the central and coupling
potentials. although consistent separately with dis-
persion relations, could exhibit different energy de-
pendences Note that coupling potentials include the
case of reorientation potentials for the case of clastic
scattering of nucler with /=1 Let us consider the
usual collecive model description of nelastic exci-
tation. The optical potential U s considered as a
function of the collective variable J. which 1s a mea-
sure of the change 1n distance of the surfaces of the
colhiding nuclei. The real and 1maginary parts of the
potential can be cxpanded 1n a Taylor series in pow-
ers of 4. and to the first order in 4.
H'(&‘):H'—ﬂo‘. (3)

dr

- . dl
'io)y=1— %5.
If the potentials are exponential 1n the region of 1n-
terest. then

I'd)y=1r(1+é/a). W(S)=H(1+5/a). (4)

where « 15 the diffusencss parameter, which has been
assumed to be the same for the real and imaginary
potentials. Note that, when expressing the imaginary
potential as a function of J. we are implicitly assum-
1ng that the collective variable changes slowly. com-
parcd with the processes that contribute to the ima-
ginary potential That implies also that the encrgy of
the barrier B will be a function of 4. Approximately.
wWe can write

B(o)=B(1-5/R) . (5)

where B is the height of the undeformed barrier and
R 1s the corresponding radius. To explore the imph-
cations of the effect of § on both the geometry of the
potential as well as on the barrier, we consider a fac-
torizable form of H'(F)

BW(EY=WF(x). (6)

where H71s a function of the radius while F(x) ex-
presses the energy dependence in terms of the param-
cter y=(B—FE)/.1. F(x) 1s assumed to be a Fermi
function F(x)=[1+cexp(x)]~". The parameter 115
a measure of the energy range over which the imag-
nary potential increases. According to eqs (4) and
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(5). both H and F(.x) are dependent on the collec-
tive variable 0.

With the ansatz for H'(E) of eq. (6). the disper-
sive potenual A1'(E) of eq. (1) becomes

AV(EY=WG (), (7)

where (G (.v) isrelated to F(x) through the dispersion
relation

x

Giay= "o j AT (8)
n y=x

The optical potential can be written as
UCE.0)=1(E. )+ H(E. ). (9)
To first order in . onc obtains

V(E0) =T+ HG(X)

+ - [PHHGO)+ WG ()], (10)

SIS,

H(E. 3)= WF(X)
+ 2 [WEF(X)+ el (V)] . (1)

where we have introduced the parameter e=aB/RA
and used cq. (4). In these equations, the diagonal po-
tenual g(E) 1s the term independent on d and the
transition potential {,(£) 1s the term lhincar in §. We
can write this exphcitly as

Uy(EY=1y+ HG(x)+11TF(x) . (12)
U(E)
=_(‘<9L"’(E) + & u'((;'(\\v)+|1-"(4\-))). (13)
dr u

The first term on the night of eq. (13) 1s the usual
prescription of the collecive model where the tran-
sttion potential 1s related to the denivative of the cen-
tral potential. The new feature of this model 1s the
second term on the right which arises from the shift
of the barrier due 1o deformation. Eqs (12) and (13)
suggest that, while the central terms will exhibit the
threshold anomaly around an energy B. the non-cen-
tral terms will exhibit it around an encrgy B(1 —a/
R). Besides. all the non-central terms will exhibit the
threshold anomaly at the same cnergy. indepen-
dently of the mulupolarity or the coupling strength
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(provided that a first order treatment 1s valid)

It 1s of interest to point out that exactly the same
expressions (12) and (13) are obtained for the cen-
tral and transition potentials if one considers the adi-
abatic ltmit when the coupled cquations can be de-
coupled 1nto eigenchannels. In the case of including
the ground state and a one-phonon state. the two ci-
genchannels describe the scattering by potentials of
radu R =6, with the corresponding barriers B(1F d/
R). The transition potential 1s half the difference of
the two cigenchannel potentials and up to order J
vields exactly eq. (13).

If one still defines the coupling potential by

dU(F)
dr

U(E)= —0ur (14)
the ratio of the effective to the static deformation
length of the potential becomes complex and energy
dependent:

o Oerr _ G'(x)+1F'(x)
RE) = == TG F1F(v)

(15)

Eq. (15) shows separately the contributions to the
effective deformation of the static deformation and
of the dispersive effect duc to the change in the bar-
ricr energies. R(E) acquires an imaginary part in the
vicinity of the barrier. of the order of eH'/41°(B). The
real part of R(E) has an energy dependence around
the barrier that 1s consistent with the imaginary part
through dispersion relations.

The size of the correction to the conventional model
depends crucially on the parameter e, that 1s deter-
mined primarily by the range 4 over which the ima-
ginary potential rises (for £=8—J, the imaginary
potential is 27%, while for E=B+4.11 is 73% of the
maximum value). Depending on the valuce of €. one
obtains different shapes of the cnergy dependence of
the 1maginary part of the transition potential. For
e < |, the imaginary transition potential rises mono-
tonically to a constant value 6d W '/dr. For €> 1. one
observes a characteristic maximum in the imaginary
transition potential just above the barrier, and then a
gradual decrease to the value dd W'/dr at larger cner-
gies. We 1llustrate this in figs. 1 and 2, where we show
both the elastic (central) and transition potentials for
the inelastic scattering of '°O on 2°%Pb to the first 3~
state of the target. Calculations have been done tak-
ing B=80 MeV, a=06 fm and R=12 fm. Two val-
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Fig | Central (full line) and non-central (dashed line) poten-
tials versus the energy for 4=2 5 MeV The real parts are the up-
per lines. and the imaginary parts are the lower lines

Can i) 100 1 110
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Fig 2 Same as fig 1 for =4 55 MeV.

ues of J. which are 1=4.55 MeV, taken from ref. [9].
and 4=2.50 McV. have been used. In both cases. the
optical potential s taken as 1.5+11.2 McV for E=150
MeV. Both caiculations arc consistent with the em-
pirical data of the optical potential of '*O+?%Pb.
These vield values of € of 0 88 and 1.6 respectively.
The transition potential 1s normahized so that 1t co-
incides with the central potential at high energies. It
1s clearly seen that the energy dependence of the tran-
sttion and central potentials are different 1n an en-
crgy region around the Coulomb barrier. Even though
from figs. | and 2 1t may appear that 1f e < 1. the tra-
ditional collective model, where the transition poten-
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tial 1s taken as the product of a static deformation
length and the derivative of the complex potenual, 1s
valid. this 1s not strictly true In fig. 3 we show the
real and imaginary parts of R(E') as a function of the
energy for the two cases .1=4.55 MeV and 1=2.5
MeV It 1s seen that even for .1=4.55 MeV (e< ).
the deformation length becomes complex. It 1s ¢vi-
dent. of course. that very high quahty inclastic data
will be necessary to extract this complex deformation
length at energies around the Coulomb barrier

The parameter € can be understood 1n a tume-de-
pendent picture. t=7%/.1 has been described as a re-
tardation time n the time-dependent picture of the
imaginary potential [ 15]. It s the characteristic time
for the processes that contribute to the imaginary po-
tential, that 1s, for the coupling to states not related
to the collective vanable d. aB/R 1s approximately
equal 1o 1" Classically. the hamiltoman for a vibra-
tional collective vanable d 1s

H=Pi/2M+Kd>/2=1Veap(d/a) . (16)

where M and K arc. respectively, the inertia parame-
ter and the harmonic constant of the collective vari-
able We can define the characteristic time for collec-
tive excitation as

dPs/dt

\/T= =4 (17)

Ri =)

.()(J HE 166 et 118

PaMen

Fig 3 Recal (upper lines) and imaginary (lower lines) parts of
the ratio of the effective and static deformatton lengths as a func-
tion of the energy The full lines correspond to .1=2 5 MeV and
the dashed lines to .1=4 55 McV
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d”;/d: can be obtained from eq. (16) using Hamil-
ton’s equation
) N .

%:—%%{:—%+£cxp(d/a). (18)
The second term on the RHS dominates over the first
in the adiabatic limit. On the other hand, as d will
take values of the order of ¢, we can estimate the value
of P, as #i/u. Thus, T=AR/aB 1s the charactenistic
time for collective excitations. Hence the parameter
e¢=1/T1s the ratio of the time for processes that take
away flux from the coupled channels system to the
time for the processes that couple within the coupled
channels system If t< 7. the coupling to non-collec-
tive channels 1s fast compared to the coupling to col-
lective channels, and then 1ts effect on the diagonal
and transition potentials 1s similar, producing a sim-
ilar energy dependence of both. If 1> T, the coupling
to non-collective channels 1s slow compared to that
of collective channels. and so a different energy de-
pendence appears. Note that these conditions are not
mcompatible with the assumption that the collective
vanable changes slowly compared with processes that
contribute to the imaginary potential. The character-
istic time of change of ¢ can be defined as

do/dt

/1T =
/ 0

(19)
dd/dr can be obtained from eq. (16) using Hamil-
ton’s equation

dé _dH P,

dt — dpr, ~ M (20)
Hence. using the previous estimates for d and Ps, one
gets "= Ma* /h. which can be larger than 71f the in-
crtia parameter 1s large enough.

To conclude. we have shown that the transition po-
tentials for collective excitation have a different en-
ergy dependence to the diagonal potentials. The de-
formation length of the potential becomes complex
and energy-dependent around the Coulomb barrcr.
The size of this effect depends crucially on how fast
the imaginary optical potential rises to its maximum
value as the energy increascs. These cffects could be
investigated measuring the scattering of polarized
projectiles at energies around the Coulomb barrier.
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