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Threshold anomaly in non-central forces 
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The behavmur of the threshold anomaly for non-central potentials, wh,ch account for collectwe excltat,ons m heavy-~on colh- 
s~ons. ~s investigated. It ~s shown thai the non-central potentmls should exhibit an energ5 dependence at energies m the vicinity of 
the Coulomb barrier Th~s energy dependence is, however, different from that of the elastkc optical potenual, occurring at lower 
energies It ff further shown thai there are correctmns to the tradmonal collectwc model such that. ff the trans~tmn potential ~s 
expressed as the derivative of the optical potential, the corresponding deformation length will be complex and energy-dependent 
Simple model calculauons are presented 

Durmg recent years, evidence of the energy-depen- 
dence of the real (the threshold anomaly)  and ima- 
ginary parts of nucleus-nucleus optical potentials has 
been found by careful analyses of the elastxc scatter- 
ing at energies m the vtcmlty of the Coulomb barrter 
[ 1-5] This energy dependence has been attributed 
to the couphng of non-clasttc channels to the elastic 
channel tn this energy region [6.7]. The threshold 
anomaly has also been related to the rapid mcrease 
of the surface imaginary potential as the energy ts m- 

creased above the Coulomb barrier and the conse- 
quent correction to the real potential through a dis- 
persion relation [8-10] .  The optical potential can 
thus be written as 

U ( E ) =  V o + A I ' ( E )  + t H ( E ) ,  ( I ) 

where go is an energy-independent potential (dou- 
ble-folded potential, for example),  I,I'(E) ts the tm- 
agmary potential and the dispersive real potenual 
AI ' (E )  ts defined as 

A V ( E ) =  P f I4 '(E')  ~ d E ' ,  (2) 

where P denotes a prmclpal value mtegral. 
Generahzlng this to the case of a set of strong-cou- 

pled channels, it was suggested by Satchler [ 1 1 ] that 
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each element of the potential matrix, which defines 

the coupled channels equation, should be expected to 

exhtbtt a threshold anomaly. In such a case, the en- 

ergy dependence of the different diagonal and off-di- 

agonal elements of the potenttal matrix will be attrib- 

uted to couphngs to other channels not mcluded m 

the subset of coupled channels. However. a priori, 

there ts no reason for all the terms of the potential 

matrix to have the same energy dependence. Satchler 

[ 1 1 ] argued that, m the case of collective excitations, 

one would expect a similar energy dependence m the 

coupling mteractlon (transit ion potential)  and the 

elastic optical potenttal, though one could expect a 

shift m the threshold of the coupling potential by ap- 

proxtmatel,, half of the excitation energy. He further 

concludes that t fone uses an optical potential that ts 

consistent with the dispersion relatton but still needs 

an energy-dependent deformation length, then either 

the optical model itself or the nuclear structure model. 

or both, are madequate 

The excitation functions of the first excited 3 - state 

of 2°8Pb by ~60 at energies around the Coulomb bar- 

rter have been measured and analysed [ 12,13] and 

more recently detailed angular dtstrtbutions for the 

same system were measured at energies from above 

to below the Coulomb barrier [14]. These angular 

distributions were analyzed and the results hinted at 

a posstbthty that the transition potential may have an 

0370-2693/93/$ 06 00 © 1993 Elsevier Science Pubhshers B V All rights reserved 303 



Volume  300, n u m b e r  4 P H Y S I C S  L E T T E R S  B 18 F e b r u a r y  1993 

energy dependence which is different from that of  the 
elastic opucal  potentml [ 14 ]. 

We present here a sxmple model  which shows that, 
for collective excitatmns,  the central and couphng 
potentmls,  although consistent separately with dis- 
persion relations, could exhibit  different energy de- 
pendences Note that coupling potentmls include the 
case of  r conen tauon  potentials  for the case of  elastic 
scattering of  nuclm wqth 1>/I Let us consider  the 
usual collective model  deser lptmn of  inelastic exc~- 
tatmn. The optical potentml ~_" ~s considered as a 
functmn of  the collective variable 6, which is a mea- 
sure of  the change m dis tance of  the surfaces of  the 
colhdmg nuclm. The real and mlagmary  parts of  the 
potential  can be expanded m a Taylor  series m pow- 
ers of(~, and to the first order  md .  

d l ( ~  d l l .  
I ( , J ) = l - ~ 7  " , I ~ ' ( 6 ) = ~ -  d r  o .  ( 3 )  

If the potentmls are exponent ial  in the regmn of  m- 
terest, then 

l ' ( d ) = V ( l + ~ / a ) ,  t t ' ( , 5 ) = H ' ( l + d / a ) ,  ( 4 )  

where a is the diffuseness parameter ,  whlch has been 
assumed to be the same for the real and imaginary 
potentials.  Note that, when expressing the ~magmary 
potenual  as a function o f &  we are imphc~tl~ assum- 
ing that the collectwe variable changes slow b ,  com- 
pared wHh the processes that contr ibute  to the ~ma- 
gmary potentml That implies also that the energy of  
the barr ier  B will be a function o ld .  Approximate ly .  
we can write 

B(d)..-B( I - ~ / R )  . (5)  

where B is the height of  the undeformed b a m e r  and 
R ~s the corresponding radms. To explore the ~mph- 
cartons of  the effect o f ~  on both the geometr.~ of  the 
potentml as well as on the b a m e r ,  we consider  a fac- 
tonzable  form of  It '(E) 

H'(I..') = 14"l-'(.v). (`6) 

where It" is a functmn of  the radms while F ( x )  ex- 
presses the energy dependence  m terms of  the parana- 
eter x =  (B-E)~.1. F(x) ~s assumed to be a Fermi 
functmn F ( x ) =  [ 1 + exp(.v) ]-~.  The parameter  J is 
a measure of  the energy range over  wh~ch the ,magl- 
nary potentml increases. According to eqs (4)  and 

(5) ,  both W and t"(x)  are dependent  on the collec- 
rive variable 6. 

With the ansatz for I t ' (E )  o feq .  (6) ,  the disper- 
sive potenual  AI ' (E)  ofeq .  ( I ) becomes 

aXI'(E) = I t 'G( .v ) ,  (7)  

where G (.v) is related to F ( x )  through the dispersion 
relatmn 

G ( . x ) = -  p i ---=-F(V)dy. (8)  
7/' I ' - - .V 

- x  

The optical potential  can be written as 

/,,'(E. d ) =  I ' (E.  d )+11 t ' (E ,  d ) .  (9)  

To first order  in d, one obtains 

I ' (E,  d ) =  I 'o+ l t ' ( / ( . r )  

d 
+ - [ I ' +  I t ' G ( x ) +  It'eG'(.v)I, (10)  

a 

W(E. 6) = Jtl.(x) 

d 
+ - [ l i T ( x ) +  I f i F ' ( . \ ) ]  , ( l  1 ) 

a 

where we have introduced the parameter  c = aB/RA 
and used eq. (4) .  In these equauons,  the diagonal po- 
tentml U0(E) ts the term independent  on d and the 
t r ansmon  potenual  r_',(E) is the term linear in ~. We 
can wine  th~s exphcltl~ as 

Uo(E) = I ~, + l ! 'G (x )  + l l ! ' F ( x ) .  ( 12 ) 

t ,(  E) 

d(dU°(E)ar t ) = -  \ - - - + a -  ~l'(G'(.v)+d:'(x)) . (13) 

The first term on the right of  eq. (13)  ~s the usual 
prescript ion of  the collective model  where the tran- 
smon potentml ~s related to the der ivat ive of  the cen- 
tral potemml.  The new feature of  this model is the 
second term on the right which arises from the shift 
of  the barrier due to deformauon.  Eqs ( 12 ) and ( 13 ) 
suggest that, while the central terms will exhibit  the 
threshold anomaly around an energy B, the non-cen- 
tral terms will exhibit it around an energy B( 1 - a /  
R ). Besides, all the non-central  terms will exhibit  the 
threshold anomaly at the same energy, indepen- 
dently of  the mult~polarlty or the couphng strength 
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(provided  that a first order  t reatment  ts val id)  
It is of  mterest  to point  out that exactly the same 

expressions ( 12 ) and ( 13 ) are ob tamcd  for the ccn- 
tral and transstton potenttals if one considers the adi- 
abatic hmlt  when the coupled equattons can be de- 
coupled mto elgenchannels.  In the case of  including 
the ground state and a one-phonon state, the two c~- 
gcnchannels describe the scattering by potentials  of  
radix R +fi, with the corresponding barriers B( I g fi/ 
R) .  The transi t ion potential  is half  the difference of  
the two cxgenchannel potentials  and up to order  d 
yields exactly eq. ( 13 ). 

If one stdl defines the coupling potential  by 

_ d U ( E )  
U t ( E ) = - 6 ¢ f r  ~-r " (14)  

the ratio of  the cffectlve to the static deformat ion 
length of  the potential  becomes complex and energy 
dependent :  

G '  (A)  "t- I/~" (X)  
R ( E ) =  = l - c  l)~/W+G(x)+tF(x)" (15)  

Eq. (15)  shows separately the contr lbut tons to the 
effective dcformat ton of  the static deformat ion  and 
of  the dispersive effect due to the change in the bar- 
rler energies. R (E)  acquires an i magmary part in the 
VlClntty of  the barrier, of  the order ofe  W / 4 I ' ( B ) .  The 
real part  of  R (E)  has an energy dependence around 
the b a m e r  that is consistent wtth the tmagmary part 
through dispersion relations. 

The size of  the correction to the conventional model 
depends cructally on Ihc parameter  e, that is deter- 
mined pr imari ly  by the range A over which the tma- 
glnary potential  rises (for E=B-A, the imaginary 
potential  is 27%, while for E=B+A, it is 73% of  the 
max imum value).  Depending on the value of~,  one 
obtains different shapes of  the energy depcndcnce of  
the imaginary part of  the transi t ion potential .  For  

< 1, the ~maginary t ransmon potential  rises mono- 
tomcally to a constant  value 6d W/dr .  For ~ > 1. one 
observes a characterist ic  max imum in the imaginary 
transtt ton potential  just above the barrier,  and thcn a 
gradual decrease to the value dd W/dr at larger cner- 
gies. Wc tllustrate this in figs. 1 and 2, where wc show 
both the elastic (central)  and transit ion potentials for 
the inelastic scattering of  ~60 on z°8pb to the first 3 -  
state of  the target. Calculatmns have been done tak- 
ing B = 8 0  MeV, a = 0  6 fm and R =  12 fm. Two val- 

.... I 

Fig I Central (full hne)  and non-central (dashed hne) poten- 
ttals versus the energy for A=2 5 MeV The real parts are the up- 
per hnes, and the imaginary parts are the lower hnes 

~,.? ? ( )  1(I¢'. I . ' 0  I 1 ~  

l ( g ! W ,  : 

F~g 2 Sameas f ig  l l o r A = 4 5 5 M e V .  

ues ofd.  which arc J = 4 . 5 5  MeV, taken from ref. [9],  
and A= 2.50 MeV, have been used. In both cases, the 
optical potential is taken as 1.5 + 11.2 MeV for E =  150 
MeV. Both calculations are consistent with the em- 
pirical data of  the optical potential  of  160+2°8Pb. 
These yield values of  e of  0 88 and 1.6 respectively. 
The transit ion potential  is normalized so that it co- 
incides with the central potential  at high energies. It 
is clearly seen that the energy dependence of  the tran- 
sition and central potentials are different in an en- 
ergy region around the Coulomb barrier. Even though 
from figs. 1 and 2 it may appear  that f f~<  I, the tra- 
di t ional  collective model, where the translt ton poten- 
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tlal is taken as the product of  a static deformation 

length and the der tvatwe of  the complex potential, is 

valid, this is not strictly true In fig. 3 we show the 

real and imaginary parts of  R ( E )  as a function of  the 

energy for the two cases 3 = 4 . 5 5  McV and 3 = 2 . 5  

MeV It is seen that even for , f=4.55 MeV (~< I ), 

the deformation length becomes complex. It is evi- 

dent, of  course, that very high quaht3 inelastic data 

will be necessary to extract this complex deformation 

length at energies around the Coulomb barrier 

The parameter  e can be understood m a time-de- 

pendent picture, r= ,5 / / I  has bccn described as a re- 

tardation time in the t ime-dependent  p~cture of  the 

1magmas.' potential [ 15 ]. It is the characteristic time 

for the processes that contribute to the maagmary po- 

tential, that is, for the couphng to states not related 

to the collectwe variable d. a B / R  is approxlmateb  

equal to I" Classically, the hamil toman for a vlbra- 

Uonal collective variable d is 

I I = P ] / 2 M + K d 2 / 2 -  l ' c x p ( d / a )  , (16) 

where M and K are, respectwel.\., the inertia parame- 

ter and the harmonic  constant of  the collective vari- 

able We can define the characteristic t ime for collec- 

tive excitation as 

dl~/dt 
I / T =  - -  ( 1 7 )  

t',~ 

"7 

f. 

: z ' 6 ( ]  - - "  t~( ;  1 ( ; ( :  : ~;" I 1 ( '  

? I *d, ', : 

Fig 3 Real (upper hnes) and imaginary, (lov, er hnes) parts of 
lhe rauo of the effective and slallc deformatmn lengths as a rune- 
Iron of the energy The full hnes correspond to 3=2 5 MeV and 
the dashed hnes to A=4 55 MeV 

dP,, /dt  call be obtained from eq. (16) using Hamil- 

ton's equation 

dP~ dH d I" 
- dd C + - a e x p ( : i / a ) .  (18) dt 

The second term on the RHS dominates  over  the first 

in the adlabauc limit. On the other hand, as 6 will 

take values of  the order of  a, we can estimate the value 

of  P,, as h/a .  Thus, T = h R / a B  is the characteristic 

time for collective excitations. Hence the parameter 

= r / T  is the rat]o of  the t~me for processes that take 

away flux from the coupled channels system to the 

tmae for the processes that couple vmhm the coupled 

channels system If r<  7" thc couphng to non-collec- 

twe channels is fast compared to the couphng to col- 

lectwe channels, and then its effect on the diagonal 

and transition potentials is similar, producing a s~m- 

flar energy dependence of  both. If r>  7-, the couphng 

to non-collective channels Is slow compared to that 

of  collective channels, and so a different energy de- 

pendence appears. Note that these condmons  are not 

incompatible with the assumption that the collective 

variable changes slowly compared with processes that 

contribute to the imagmarv potential. The character- 

istic time of  change o l d  can be defined as 

dd /d t  
1 / 7 - -  (19) 

d 

dd /d t  can be obtained from eq. (16) using Hamil- 

ton's  equation 

dd _ d l l  _ l',s . (20) 
dl dP~ .ll 

Hence. using the previous estimates for (5 and /~ ,  one 

gets T ' =  31a ' /h .  which can be larger than r if the in- 

ertia parameter  ~s large enough. 

To conclude, we have shown that the transition po- 

tcntmls for collecm.e excitation have a different en- 

ergy dependence to the diagonal potentials. The de- 

formatmn length of  the potentml becomes complex 

and energy-dependent around the Coulomb bamer .  

The size of  this effect depends crucially on how fast 

the imaginary optical potential rises to its maximum 

value as the energy increases. These effects could be 

investigated measuring the scattering of  polarized 

projectiles at energies around the Coulomb barrier. 
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