On the control of some systems modelling solidification processes and related phenomena

Enrique FERNÁNDEZ-CARA
Dpto. E.D.A.N. - Univ. of Sevilla

joint work with several people:
G. Camacho - Univ. of Sevilla, Spain
J.L. Boldrini, B. Caretta - Univ. of Campinas, Brasil
R.C. Cabrales - Univ. of Bio-Bio, Chillan, Chile

Outline

(1) Phase field models

- Existence and uniqueness
- Optimal control results
- Controllability analysis

2 Binary alloy Carman-Kozeny models

- Existence
- Optimal control results
- Other problems and questions
(3) An additional controllability problem

The models

- Can be OK for phase change analysis
- Incorporate complex phenomena
- Appropriate for numerics
- For solidification and melting: Fix[1983], followed by Cagnalp, Hoffman-Jiong, etc.
- The variables:
$\tau=\tau(x, t)$ (temperature)
$u=u(x, t), v=v(x, t)$ (solid fractions)
$w=w(x, t)$ (liquid fraction)
We expect: $u+v+w \equiv 1, u, v, w \geq 0$
- Motion is neglected!

The considered model

$$
\begin{aligned}
& \tau_{t}-b \Delta \tau=\ell_{1} u_{t}+\ell_{2} v_{t}+\ell_{3} w_{t}+f \\
& \left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)-k \Delta\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right) \\
& g_{i}=\text { cubic in } u, v, w, \text { linear in } \tau \\
& g_{1}+g_{2}+g_{3} \equiv 0
\end{aligned}
$$

+ Neumann conditions + initial conditions

Existence and uniqueness

Hypotheses:

- $0<T<+\infty, \Omega \subset \mathbf{R}^{3}$ open, connected, bounded, C^{2}
- τ_{0}, u_{0}, \ldots in $H^{2}(\Omega)$, nonnegative, compatible, with $u_{0}+v_{0}+w_{0}=1$
- $f \in L^{q}(\Omega \times(0, T)), q>5 / 2$

Theorem (Existence and uniqueness)

$\exists!$ (strong) solution $(\tau, u, v, w) \in W_{2}^{2,1}(\text { Omega } \times(0, T))^{4}$ with $u, v, w \geq 0, u+v+w \equiv 1$ $\left(\tau \in L^{2}\left(0, T ; H^{2}(\Omega)\right), \tau_{t} \in L^{2}(\Omega \times(0, T))\right.$, etc. $)$

Comments:

- Estimates
- Well-posedness, regularity, etc.
- OK with other boundary conditions, nonlinear terms, etc.
- Essential: the same diffusion coefficient k for u, v, w

$$
\begin{aligned}
& \tau_{t}-b \Delta \tau=\ell_{1} u_{t}+\ell_{2} v_{t}+\ell_{3} w_{t}+f \\
& \left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)-\left(\begin{array}{l}
k_{1} \Delta u \\
k_{2} \Delta v \\
k_{3} \Delta w
\end{array}\right)=\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right)
\end{aligned}
$$

Global existence?

Phase field models

Optimal control

Formulation:

- $f \in \mathcal{U}_{a d} \subset L^{q}(\Omega \times(0, T))$ is the control
- (τ, u, v) is the state, $\tau \in \Theta_{a d} \subset L^{q}(\Omega \times(0, T))$
- The cost function:

$$
\begin{gathered}
J\left((\tau, u, v, f)=\frac{\alpha_{0}}{2} \iint\left|\tau-\tau_{d}\right|^{2}+\frac{\alpha_{1}}{2} \iint\left|u-u_{d}\right|^{2}\right. \\
\frac{\alpha_{2}}{2} \iint\left|v-v_{d}\right|^{2}+\frac{N}{q} \iint|f|^{q}
\end{gathered}
$$

- The problem:
$\left\{\begin{array}{l}\text { Minimize } J(\tau, u, v, f) \\ \text { Subject to } f \in \mathcal{U}_{a d}, \quad \tau \in \Theta_{a d}, \quad M(\tau, u, v, f)=0\end{array}\right.$
$M(\tau, u, v, f)=0:(\tau, u, v)$ is the state associated to f

Hypotheses:

- $\alpha_{i} \geq 0, N>0$
- $\mathcal{U}_{a d}, \Theta_{a d}$ are nonempty, closed and convex
- The admissible set $E_{a d}$ is nonempty

$$
E_{a d}=\left\{(\tau, u, v, f): f \in \mathcal{U}_{a d}, \quad \tau \in \Theta_{a d}, \quad M(\operatorname{tau}, u, v, f)=0\right\}
$$

Theorem (Existence of optimal controls)

$$
\begin{aligned}
& \exists(\hat{\tau}, \hat{u}, \hat{v}, \hat{f}) \in E_{a d} \text { with } \\
& J(\hat{\tau}, \hat{u}, \hat{v}, \hat{f}) \leq J(\tau, u, v, f) \quad \forall(\tau, u, v, f) \in E_{a d}
\end{aligned}
$$

Phase field models

Optimality conditions

Characterization (Dubovitskii-Milyoutin formalism):

$$
\left\{\begin{array}{l}
\text { Minimize } J(\tau, u, v, f) \\
\text { Subject to } f \in \mathcal{U}_{a d}, \quad \tau \in \Theta_{a d}, \quad M(\tau, u, v, f)=0
\end{array}\right.
$$

The main idea: if (τ, u, v, f) is optimal,

$$
D C(J) \cap T C(M) \cap F C\left(\mathcal{U}_{a d}\right) \cap F C\left(\Theta_{a d}\right)=\emptyset
$$

Consequence: $\exists G_{i}$, not all zero, with
$G_{0} \in D C(J)^{*}, \quad G_{1} \in T C(M)^{*}, \quad G_{2} \in F C\left(\mathcal{U}_{a d}\right)^{*}, \quad G_{3} \in F C\left(\Theta_{a d}\right)^{*}$
and

$$
G_{0}+G_{1}+G_{2}+G_{3}=0
$$

Phase field models

Optimality conditions

The adjoint state (θ, p, q)

(associated to the linearized system at (τ, u, v, f))

$$
\begin{aligned}
& -\theta_{t}-b \Delta \theta=H_{1} p+H_{2} q+\alpha_{0}\left(\tau-\tau_{d}\right) \\
& -\binom{p}{q}_{t}-b \Delta\binom{p}{q}=-\binom{\ell_{1}^{\prime}}{\ell_{2}^{\prime}} \theta_{t}+K\binom{p}{q}+\binom{\alpha_{1}\left(u-u_{d}\right)}{\alpha_{2}\left(v-v_{d}\right)}
\end{aligned}
$$

"starting" from zero at $t=T$, etc.
Then, after some computations:
$\exists g_{2}, g_{3}$ such that

$$
\begin{aligned}
& \iint\left(N|f|^{q-2} f+\theta\right) h=\iint g_{2} h+\iint g_{3} \psi \\
& \forall h \in L^{q}(\Omega \times(0, T)), \quad M^{\prime}(\tau, u, v, f)(\psi,, \lambda, \eta, h)=0 \\
& \iint g_{2}(h-f) \geq 0 \quad \forall h \in \mathcal{U}_{\mathrm{ad}} \\
& \iint g_{3}(\psi-\tau) \geq 0 \quad \forall \psi \in \Theta_{\mathrm{ad}}
\end{aligned}
$$

Pointwise constraints on f and τ :

- $\mathcal{U}_{a d}=\left\{f \in L^{q}(\Omega \times(0, T)):|f| \leq C_{0}\right\}$
- $\Theta_{a d}=\left\{\tau \in L^{2}(\Omega \times(0, T)): 0<C_{1} \leq \tau \leq C_{2}\right\}$

For appropriate (large) C_{0} :

- $E_{a d} \neq \emptyset$ and existence holds
- Dubovitskii-Milyoutin's formalism can be applied

The optimality system:

$$
\begin{aligned}
& \iint\left(N|f|^{q-2} f+\theta\right) h=\iint g_{2} h+\iint g_{3} \psi \\
& \forall h \in L^{q}(\Omega \times(0, T)), \quad M^{\prime}(\tau, u, v, f)(\psi,, \lambda, \eta, h)=0 \\
& g_{2}=\left\{\begin{array}{ll}
\leq 0 & f=C_{0} \\
=0 & |f|<C_{0} \\
\geq 0 & f=-C_{0}
\end{array} \quad g_{3}= \begin{cases}\leq 0 & \tau=C_{2} \\
=0 & C_{1}<\tau<C_{2} \\
\geq 0 & \tau=C_{1}\end{cases} \right.
\end{aligned}
$$

Phase field models

Controllability

Exact controllability to the trajectories:

- Locally supported distributed controls:
$f 1{ }_{\omega}$, with $\omega \subset \subset \Omega, f \in L^{q}(\omega \times(0, T))$
- The controllability problem: Fix τ_{0}, u_{0}, v_{0} and find $f \in L^{q}(\omega \times(0, T))$ with

$$
\begin{gathered}
\tau_{t}-b \Delta \tau=\ell_{1}^{\prime} u_{t}+\ell_{2}^{\prime} v_{t}+f 1_{\omega} \\
\binom{u}{v}_{t}-k \Delta\binom{u}{v}=\binom{g_{1}}{g_{2}} \quad \text { etc. } \\
\tau(T)=\hat{\tau}(T) \quad\left(\text { and } \quad\binom{u}{v}(T)=\binom{\hat{u}}{\hat{v}}(T)\right)
\end{gathered}
$$

$(\hat{\tau}, \hat{u}, \hat{v})$ is an uncontrolled trajectory

- The aim: solve this problem at least for small dist. $\left(\left(\tau_{0}, u_{0}, v_{0}\right),(\hat{\tau}(0), \hat{u}(0), \hat{v}(0))\right)$

Reformulation - null controllability

Set $(\tau, u, v)=(\hat{\tau}, \hat{u}, \hat{v})+(\varphi, y, z)$ and find f with

$$
\begin{aligned}
& \varphi_{t}-b \Delta \varphi=\ell_{1}^{\prime} y_{t}+\ell_{2}^{\prime} z_{t}+f 1_{\omega} \\
& \binom{y}{z}_{t}-k \Delta\binom{y}{z}=\binom{g_{1}^{\prime}}{g_{2}^{\prime}} \quad \text { etc. } \\
& \varphi(T)=0 \quad\left(\text { and } \quad\binom{y}{z}(T)=0\right)
\end{aligned}
$$

After linearization at $(\tilde{\varphi}, \tilde{y}, \tilde{z})$:

$$
\begin{aligned}
& \varphi_{t}-b \Delta \varphi=\ell_{1}^{\prime} y_{t}+\ell_{2}^{\prime} z_{t}+f 1_{\omega} \\
& \binom{y}{z}_{t}-k \Delta\binom{y}{z}=M\binom{y}{z}+\varphi\binom{h_{1}}{h_{2}} \quad \text { etc. } \\
& \varphi(T)=0 \quad\left(\text { and } \quad\binom{y}{z}(T)=0\right)
\end{aligned}
$$

The strategy:

- Prove \exists for this LNC problem
- Find a fixed point of $(\tilde{\varphi}, \tilde{y}, \tilde{z}) \mapsto\left(M, h_{1}, h_{2}\right) \mapsto(\varphi, y, z)$
- We introduce the adjoint state

$$
\begin{aligned}
& \theta_{t}-b \Delta \theta=h_{1} p+h_{2} q \\
& -\binom{p}{q}_{t}-k \Delta\binom{p}{q}=M^{*}\binom{p}{q}-\theta_{t}\binom{\ell_{1}^{\prime}}{\ell_{2}^{\prime}}
\end{aligned}
$$

- We try to prove a Carleman estimate

$$
\left\{\begin{array}{l}
\iint \rho^{-2} \theta^{2} \leq \iint_{\omega \times(0, T)} \rho^{-2} \theta^{2} \\
\forall \text { solution }(\theta, p, q)
\end{array}\right.
$$

- Even better

$$
\left\{\begin{array}{l}
\iint \rho^{-2}\left(\theta^{2}+p^{2}+q^{2}\right) \leq \iint_{\omega \times(0, T)} \rho^{-2} \theta^{2} \\
\forall \text { solution }(\theta, p, q)
\end{array}\right.
$$

This would imply observability for (θ, p, q) and thus null controllability for (φ, y, z)

Unfortunately it is unknown whether Carleman holds

$$
\begin{aligned}
& -\theta_{t}-b \Delta \theta=h_{1} p+h_{2} q \\
& -\binom{p}{q}_{t}-k \Delta\binom{p}{q}=M^{*}\binom{p}{q}-\theta_{t}\binom{\ell_{1}^{\prime}}{\ell_{2}^{\prime}}
\end{aligned}
$$

What is known:

$$
\left\{\begin{array}{l}
\iint \rho^{-2}\left(\theta^{2}+p^{2}+q^{2}\right) \leq \iint_{\omega \times(0, T)} \rho^{-2}\left(\theta^{2}+q^{2}\right) \\
\forall \text { solution }(\theta, p, q)
\end{array}\right.
$$

A consequence of the results of Fursikov-Imanuvilov[1996]
This provides partial null controllability for (φ, y, z) (with an additional control in the z-equation; realistic?)

A weaker question - unique continuation:
Assume that

$$
\begin{aligned}
& \left\{\begin{array}{l}
-\theta_{t}-b \Delta \theta=h_{1} p+h_{2} q \\
\\
-\binom{p}{q}_{t}-k \Delta\binom{p}{q}=M^{*}\binom{p}{q}-\theta_{t}\binom{\ell_{1}^{\prime}}{\ell_{2}^{\prime}}
\end{array}\right. \\
& \theta=0 \text { in } \omega \times(0, T)
\end{aligned}
$$

Do we have $\theta \equiv 0$?
Unfortunately, this is also unknown
This would lead to (local) approximate controllability results ...

Binary alloy Carman-Kozeny models

The models

- Appropriate to describe seggregation phenomena in binary alloys
- Again suitable for numerical analysis (shown below)
- First introduced by Carman[1939], modified by Kozeny[1970], Scheidegger[1974]
- The variables:
$\tau=\tau(x, t)$ (temperature)
$c=c(x, t)$ (solute concentration)
$\mathbf{u}=\mathbf{u}(x, t), p=p(x, t)$ (velocity field and pressure)
We expect: $c \geq c_{\ell} \geq 0, c_{\ell}$: liquid conc. of the solute
- Motion effects are crucial!

Binary alloy Carman-Kozeny models

Description

The equations:

$$
\begin{aligned}
& \tau_{t}+\mathbf{u} \cdot \nabla \tau-b \Delta \tau=f \\
& c_{t}+\mathbf{u} \cdot \nabla c_{\ell}(c, \tau)-k \Delta c=0 \\
& \mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \Delta \tau+a_{\varepsilon}(c, \tau) \mathbf{u}+\nabla p=B(c, \tau) \\
& \nabla \cdot \mathbf{u}=0
\end{aligned}
$$

Additional relations:

$$
\begin{aligned}
& c_{\ell}=\psi\left(f_{s}\right) c, \quad f_{s}=f_{s}(c, \tau): \text { solid fraction, } 0 \leq f_{s} \leq 1 \\
& a_{\varepsilon}=\alpha f_{s}^{2}\left(1+\varepsilon-f_{s}\right)^{-3} \text { (Carman-Kozeny) } \\
& B=b_{0}+b_{1} \tau+b_{2} c_{\ell}(c, \tau) \text { (Boussinesq approximation) } \\
& \quad+\text { Neumann conditions + initial conditions }
\end{aligned}
$$

Formally, the case $\varepsilon=0$ corresponds to a free-boundary model: $f_{s}=1$ in the solid, $0 \leq f_{s}<1$ in the rest

Binary alloy Carman-Kozeny models

Hypotheses:

- $0<T<+\infty, \Omega \subset \mathbf{R}^{3}$ open, connected, bounded, C^{2}
- $\tau_{0}, c_{0}, \mathbf{u}_{0}$ in $H^{1}(\Omega)$, compatible
- $f \in L^{2}(\Omega \times(0, T))$

Theorem (Existence)

\exists weak solution (τ, c, \mathbf{u})
$\left(\tau \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \tau_{t} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)\right.$, etc.)

Comments:

- The interesting question: what happens as $\varepsilon \rightarrow 0$?
- There are results for $\Omega \subset \mathbf{R}^{2}$ Boldrini-Planas[2005]

Binary alloy Carman-Kozeny models

Optimal control

Formulation:

- The cost function:

$$
\begin{gathered}
J(\tau, c, \mathbf{u}, f)=\frac{\alpha_{0}}{2} \iint\left|\tau-\tau_{d}\right|^{2}+\frac{\alpha_{1}}{2} \iint\left|c-c_{d}\right|^{2} \\
\frac{\alpha_{2}}{2} \iint\left|\mathbf{u}-\mathbf{u}_{d}\right|^{2}+\frac{N}{2} \iint|f|^{2}
\end{gathered}
$$

- The problem:
$\left\{\begin{array}{l}\text { Minimize } J(\tau, c, \mathbf{u}, f) \\ \text { Subject to } \quad f \in \mathcal{U}_{a d}, \quad \tau \in \Theta_{a d}, \quad M(\tau, c, \mathbf{u}, f)=0\end{array}\right.$

Binary alloy Carman-Kozeny models

Hypotheses:

- $\alpha_{i} \geq 0, N>0$
- $\mathcal{U}_{a d}, \Theta_{a d}$ are nonempty, closed and convex
- The admissible set $E_{a d}$ is nonempty

$$
E_{a d}=\left\{(\tau, c, \mathbf{u}, f): f \in \mathcal{U}_{a d}, \quad \tau \in \Theta_{a d}, \quad M(\tau, c, \mathbf{u}, f)=0\right\}
$$

Theorem (Existence of optimal controls)
$\exists(\hat{\tau}, \hat{c}, \hat{\mathbf{u}}, \hat{f}) \in E_{a d}$ with
$J(\hat{\tau}, \hat{c}, \hat{\mathbf{u}}, \hat{f}) \leq J(\tau, c, \mathbf{u}, f) \quad \forall(\tau, c, \mathbf{u}, f) \in E_{a d}$

Again: what happens as $\varepsilon \rightarrow 0$?

Binary alloy Carman-Kozeny models

Optimality conditions

Characterization

- The adjoint state $(\theta, \psi, \mathbf{w})$

$$
\begin{aligned}
& -\theta_{t}-\mathbf{u} \cdot \nabla \theta-b \Delta \theta-\frac{\partial c_{\ell}}{\partial \tau} \mathbf{u} \cdot \nabla \psi=\alpha_{0}\left(\tau-\tau_{d}\right)+\ldots \\
& -\psi_{t}-\frac{\partial c_{\ell}}{\partial c} \mathbf{u} \cdot \nabla \psi-k \Delta \psi=\alpha_{1}\left(c-c_{d}\right)+\ldots \\
& -\mathbf{w}_{t}-(\mathbf{u} \cdot \nabla) \mathbf{w}-\nu \Delta \mathbf{w}+a_{\varepsilon} \mathbf{w}+\nabla q=\alpha_{2}\left(\mathbf{w}-\mathbf{w}_{d}\right)+\ldots \\
& \nabla \cdot \mathbf{w}=0
\end{aligned}
$$

"starting" from zero at $t=T$, etc.

- After some computations: $\exists g_{2}, g_{3}$ such that

$$
\begin{aligned}
& \iint(N f+\theta) h=\iint g_{2} h+\iint g_{3} \psi \\
& \forall h \in L^{2}(\Omega \times(0, T)), \quad M^{\prime}(\tau, u, v, f)(\psi,, \lambda, \eta, h)=0 \\
& \iint g_{2}(h-f) \geq 0 \quad \forall h \in \mathcal{U}_{a d} \\
& \iint g_{3}(\psi-\tau) \geq 0 \quad \forall \psi \in \Theta_{a d}
\end{aligned}
$$

Binary alloy Carman-Kozeny models

Formulation (motivations in industrial problems):

- A second cost function:

$$
J(\tau, c, \mathbf{u}, f)=T^{*}\left(f, c_{e} ; \delta\right)+\frac{N}{q} \iint|f|^{q}
$$

with $T^{*}\left(f, c_{e} ; \delta\right)=\inf \left\{T>0:\left\|c(T)-c_{e}\right\|_{L^{2}} \leq \delta\right\}$

- The problem:
$\left\{\begin{array}{l}\text { Minimize } J(\tau, c, \mathbf{u}, f) \\ \text { Subject to } f \in \mathcal{U}_{a d}, \quad \tau \in \Theta_{a d}, \quad M(\tau, u, v, f)=0\end{array}\right.$

Some questions:

- Existence?
- Optimality conditions for \hat{f}, \hat{T} ?

More comments and questions:

- Characterization leads to algorithms (as usual; work in progress ...)
- Controllability results can also be considered For instance: for $N=2$, local null controllability of τ and \mathbf{u} Also: large time null controllability of τ and \mathbf{u} EFC-Guerrero-Imanuvilov-Puel[2005]

The (linearized) FitzHugh-Nagumo equation

The approximate controllability problem:

- Fix $u_{0}, u_{T}, \varepsilon>0$. Find $f \in L^{2}(\omega \times(0, T))$ with

$$
\begin{gathered}
u_{t}-k \Delta u+v+\alpha(x, t) u=f 1_{\omega}, \quad u(0)=u_{0} \\
v_{t}-\sigma u+\gamma v=0, \quad v(0)=0 \\
\left\|u(T)-u_{T}\right\|_{L^{2}} \leq \varepsilon
\end{gathered}
$$

- Describes excitability and bistability phenomena, Hodgkin-Huxley[1952], Hastings[1975]. Also related to solidification.
- Memory effects:

$$
\begin{aligned}
& u_{t}-k \Delta u+\sigma \int_{0}^{t} e^{-\gamma(t-s)} u(s) d s+\alpha(x, t) u=f 1_{\omega} \quad \text { etc. } \\
& u(0)=u_{0}
\end{aligned}
$$

The (linearized) FitzHugh-Nagumo equation

Fix $u_{0}, u_{T}, \varepsilon>0$. Find $f \in L^{2}(\omega \times(0, T))$ with

$$
\begin{gathered}
u_{t}-k \Delta u+v+\alpha(x, t) u=f 1_{\omega}, \quad u(0)=u_{0} \quad \text { etc. } \\
v_{t}-\sigma u+\gamma v=0, \quad v(0)=0 \\
\left\|u(T)-u_{T}\right\|_{L^{2}} \leq \varepsilon
\end{gathered}
$$

This is unknown

What is known:

- OK if $\sigma=0$
- OK if v satisfies $v_{t}-\kappa \Delta v+\sigma u+\gamma v=0, \quad v(0)=0$ Uniformly bounded controls $f_{\varepsilon, \kappa}$ as $\kappa \rightarrow 0$?

The (linearized) FitzHugh-Nagumo equation

Approximate controllability also holds if $\alpha=\alpha(x)$

The proof:

- Consider the adjoint $h=h(x, t)$ with

$$
\begin{aligned}
& -h_{t}-k \Delta h+\sigma \int_{t}^{T} e^{-\gamma(s-t)} h(s) d s+\alpha(x, t) h=0 \\
& h(0)=h_{T}
\end{aligned}
$$

- We prove unique continuation:

$$
h=0 \text { in } \omega \times(0, T) \Rightarrow h \equiv 0
$$

- This relies on the properties of $h \ldots$

THANK YOU VERY MUCH ...

