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Abstract: - In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie
algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs.
Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be
applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to iso-
morphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5.
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1 Introduction

At present, the most important interest in dealing with Lie algebras lies in the applications of such algebras
to many other scientific subjects, like Physics or Engineering, for instance. Indeed, the theory of General
Relativity describes our spacetime as a four-dimensional smooth manifoldM endowed with a Riemannian
metric field g of Lorentzian signature (− + ++). Once a matter distribution and appropriate boundary
conditions are specified, the curvature of this metric field is dictated by the Einstein equations, a set of ten
highly nonlinear partial differential equations. The group of symmetries of the metric is a Lie group.

Solvable Lie algebras are also used to describe the scalar field sector of supergravity in relation with
its non-perturbative structure encoded in a particular duality group. In this sense, Frè and other authors [6]
used solvable Lie algebras as a decisive and useful tool for studying some problems relative to black holes
and giving an alternative description of the scalar manifold in a broad class of supergravity theories.

Then, by bearing in mind all of these arguments and focusing on this paper, our goal is firstly to deal
with filiform Lie algebras, due to the two following reasons.

In the first place, filiform Lie algebras, introduced by M. Vergne in the late 60’s of the past century [11],
constitute the most structured subset of nilpotent Lie algebras, which allows us to study and classify them
easier than the set of nilpotent Lie algebras. Remember that in earlier papers, some of authors have deeply
studied these algebras and obtained quite a lot results about them. Indeed, we already got the classification
of those over real or complex field having dimensions 10, 11 and 12 (see [1], [5] and [2]), for instance).
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Secondly, with respect to Lie algebras over finite fields, we have already got several results related
to classifications of a low-dimensional family of Lie algebras that in a certain sense can be considered a
precursor of the filiform Lie algebras: the n-dimensional family Fp defined over the field Z/pZ, with p
prime, and having a basis {u1, . . . , un}, such that: if r, s < n, then [ur, us] = 0; and [ur, un] is a linear
combination of some basis elements u1, . . . , un−1 with coefficients over the field Z/pZ (note that un does
not appear in this last linear combination).

To get those results we develop a novel research which consists in using Discrete Mathematics as a tool
to classify these families (the main results obtained are indicated in Section 3). In any case, it is convenient
to say that the main interest of our work is not the computations itself but for one hand to provide new
strategies to find out properties of Lie algebras and for another, to exemplify a suitable technique to be used
in classifications for larger dimensions. Some previous papers related to the using of Graph Theory to deal
with Lie algebras are [3, 4, 8, 9], for instance.

2 Basic concepts

This section is devoted to recall some concepts on both Lie and Graph Theories. In any case, the paper
is not self-contained due to reasons of length. For a more general review of both theories, the reader can
consult [10, 7], respectively, for instance.

A nilpotent Lie algebra g is said to be filiform, if it is verified that

dimg2 = n− 2; . . . dimgk = n− k; . . . dimgn = 0,

with dimg = n, and gk = [g,gk−1], 2 ≤ k ≤ n. A basis {e1, . . . , en} of g is called an adapted basis if:
[e1, e2] = 0; [e1, eh] = eh−1 (h = 3, . . . , n), [e3, en] = 0.

A filiform Lie algebra g is said to be model, if the only non-null brackets between the elements of an
adapted basis are the following: [e1, eh] = eh−1 (h = 3, . . . , n). These brackets are called brackets due to
the filiformity of the algebra and they are not usually indicated in the law of the filiform Lie algebra because
they are supposed.

From now on, we will suppose that all the Lie algebras appearing in this paper are filiform over finite
fields Z/pZ, with p prime and that all bases are adapted. We denote by J(a, b, c) = 0 Jacobi identity
associated with vectors a, b and c.

An isomorphism between Lie algebras is a vector space isomorphism φ such that φ([u, v]) = [φ(u), φ(v)]
for each pair of vectors u and v in the algebra.

Let us now recall some concepts on Graph Theory.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that
every edge links a vertex in U to one in V. Equivalently, a bipartite graph is a graph that does not contain
any odd-length cycles.

The adjacency matrix of a graph with vertices {v1, · · · , vn} is a n×n matrix, where the element in the
i-th row and j-th column is the number of edges between the vertices vi and vj . Note that in the case of
simple graphs the matrix is binary.

3 Associating graphs to 6-dimensional filiform Lie algebras over Z/pZ, with p prime

In this section we show the procedure which links the family Fp
6 of 6-dimensional filiform Lie algebras

over Z/pZ (p prime) with bipartite simple or multiple graphs.

3.1 The procedure
Let Fp

6 be the family of filiform Lie algebras of dimension 6 defined over the finite field Z/pZ, having
a basis {e1, e2, e3, e4, e5, e6}. The law of an algebra g ∈ Fp

6 with respect to the basis {ek}6k=1 is given by
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the following brackets (different of the already supposed), some of them can be null

[ei, ej ] =

6∑
h=2

chijeh for 4 ≤ i < j ≤ 6

Each algebra g ∈ Fp
6 is associated with a matrix of order 3 × 3 determined by the structure constants

of g, that is

Mg =

 c245 c345 c445
c246 c346 c446
c256 c356 c456


where c345 = c445 = c446 = 0 due to filiformity reasons (see [2], for instance).

Let B6 be the set of bipartite graphs with three and three vertices. We define the map F : Fp
6 → B6

such that the image of an algebra g ∈ Fp
6 is a bipartite graph G ∈ B6 which satisfies

1. The vertices of G are the elements e2, e3, e4, and the brackets [e4, e5], [e4, e6], [e5, e6].

2. The adjacency matrix of G, MG, is a symmetric and square matrix of dimension 6 formed by four
submatrices of order 3× 3 verifying

(a) Two of the submatrices of MG are null.
(b) The two non-null submatrices of MG are transpose each of another. Moreover, one of them

corresponds to the matrix associated with the algebra g,

MG =

( O M t
g

Mg O

)
where O denotes the null matrix of dimension 3.

Note that although the dimension of the matrix coincides with the number of vertices of the graph in
the case of dimension 6, it is not true in general, as can be observed in dimension 7, where the bipartite
associated graph has 4 and 6 vertices.

As examples of the application of this procedure, let us see the following ones in which a simple graph
and a multi-graph are involved, respectively.

Let g ∈ F2
6 be an algebra whose law is given by [e4, e5] = e2, [e4, e6] = e3, [e5, e6] = e2 + e4.

The matrix associated with g is

Mg =

 1 0 0
0 1 0
1 0 1


The image of g by the map F is a bipartite graph G ∈ B6 of vertices e2, e3, e4, [e4, e5], [e4, e6], [e5, e6]

and adjacency matrix MG.

MG =



0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0



Then the corresponding graph G is
e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

Let now h ∈ F3
6 be another algebra whose law is given by [e4, e5] = e2, [e4, e6] = e3, [e5, e6] =

e2 + 2e4. The matrix associated with h is
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Mh =

 1 0 0
0 1 0
2 0 1


The image of h by the mapF is a bipartite multi-graphH ∈ B6 of vertices e2, e3, e4, [e4, e5], [e4, e6], [e5, e6]

and adjacency matrix

MH =



0 0 0 1 0 2
0 0 0 0 1 0
0 0 0 0 0 1

1 0 0 0 0 0
0 1 0 0 0 0
2 0 1 0 0 0



Then the corresponding multi-graph H is
e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

Next, to classify filiform Lie algebras we study the matrices Mg and compute the possible values of
coefficients ckij by using Jacobi identities.

Proposition 1 The matrix Mg is the following, where a, b, c ∈ Z/pZ

Mg =

 a 0 0
b a 0
c b a


Proof:
It is straightforward by using J(e1, e4, e6) = 0 and J(e1, e5, e6) = 0. �

Note that this result allows us to set the following

Corollary 1 There exists a bijective map between matrices Mg and the set of three-dimensional vectors
(a, b, c), with a, b, c ∈ Z/pZ.

In turn Corollary 1 permits us to justify the following relationship between three-dimensional vectors:
two three-dimensional vectors with component in Z/pZ are equivalent (denoted by ∼) if their correspond-
ing matrices are associated with isomorphic filiform Lie algebras.

As a consequence of Proposition 1 and Corollary 1 it follows that the vector (a, b, c) is related with the
initial filiform Lie algebra g if the matrix associated with g is Mg.

Now, considering these results, 6-dimensional filiform Lie algebras over Z/pZ can be classified into
equivalence classes according to the field of definition. For computations we have used the symbolic
computation package Singular, due to that it is very suitable to deal with Gröbner basis which could be
used in related works in future. Three different cases were studied.

3.2 The case p = 2. In this case the following result is held

Theorem 1 Up to isomorphism, there exist six 6-dimensional filiform Lie algebras over Z/2Z. They are
shown in the following table, in which the corresponding vector, the graph and the law of each algebra are
indicated
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(0, 0, 0)

µ1
6,2 :

[e4, e5] = 0
[e4, e6] = 0
[e5, e6] = 0

e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

(0, 0, 0)

µ1
6,2 :

[e4, e5] = 0
[e4, e6] = 0
[e5, e6] = 0

e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

(0, 0, 1)

µ2
6,2 :

[e4, e5] = 0
[e4, e6] = 0
[e5, e6] = e2

e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

(0, 1, 0)

µ3
6,2 :

[e4, e5] = 0
[e4, e6] = e2
[e5, e6] = e3

e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

(0, 1, 1)

µ4
6,2 :

[e4, e5] = 0
[e4, e6] = e2
[e5, e6] = e2 + e3

e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

(1, 0, 0) ∼ (1, 0, 1)

µ5
6,2 :

[e4, e5] = e2
[e4, e6] = e3
[e5, e6] = e4

e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

(1, 1, 0) ∼ (1, 1, 1)

µ6
6,2 :

[e4, e5] = e2
[e4, e6] = e2 + e3
[e5, e6] = e3 + e4

e2 e3 e4

[e4, e5] [e4, e6] [e5, e6]

3.3 The case p = 3. Similarly, we have obtained the following result in Z/3Z (only the corresponding
vectors of the algebras are indicated).

Theorem 2 Up to isomorphism, there exist six 6-dimensional filiform Lie algebras over Z/3Z. They are

1. (0,0,0) 2. (0,0,1) ∼ (0,0,2) 3. (0,1,0) ∼ (0,1,1) ∼ (0,1,2) 4. (0,2,0) ∼ (0,2,1) ∼ (0,2,2)

5. (1,0,0) ∼ (1,0,1) ∼ (1,0,2) ∼ (2,0,0) ∼ (2,0,1) ∼ (2,0,2)

6. (1,1,0) ∼ (1,1,1) ∼ (1,1,2) ∼ (1,2,0) ∼ (1,2,1) ∼ (1,2,2) ∼ (2,1,0) ∼ (2,1,1) ∼ (2,1,2) ∼ (2,2,0) ∼
(2,2,1) ∼ (2,2,2)

Using a similar procedure we have also obtained the classification of 6-dimensional filiform Lie alge-
bras over Z/5Z.

3.4 The case p = 5. In this case it is deduced

Theorem 3 Up to isomorphism, there exist six 6-dimensional filiform Lie algebras over Z/5Z. They are

1. (0,0,0) 2. (0,0,1) ∼ (0,0,2) ∼ (0,0,3) ∼ (0,0,4)

3. (0,1,0) ∼ (0,1,1) ∼ (0,1,2) ∼ (0,1,3) ∼ (0,1,4) ∼ (0,4,0) ∼ (0,4,1) ∼ (0,4,2) ∼ (0,4,3) ∼ (0,4,4)

4. (0,2,0) ∼ (0,2,1) ∼ (0,2,2) ∼ (0,2,3) ∼ (0,2,4) ∼ (0,3,0) ∼ (0,3,1) ∼ (0,3,2) ∼ (0,3,3) ∼ (0,3,4)

5. (1,0,0) ∼ (1,0,1) ∼ (1,0,2) ∼ (1,0,3) ∼ (1,0,4) ∼ (2,0,0) ∼ (2,0,1) ∼ (2,0,2) ∼ (2,0,3) ∼ (2,0,4) ∼ (3,0,0) ∼
(3,0,1) ∼ (3,0,2) ∼ (3,0,3) ∼ (3,0,4) ∼ (4,0,0) ∼ (4,0,1) ∼ (4,0,2) ∼ (4,0,3) ∼ (4,0,4)

6. (110)∼ (111)∼ (112)∼ (113)∼ (114)∼ (120)∼ (121)∼ (122)∼ (123)∼ (124)∼ (130)∼ (131)∼ (132)∼
(133) ∼ (134) ∼ (140) ∼ (141) ∼ (142) ∼ (143) ∼ (144) ∼ (210) ∼ (211) ∼ (212) ∼ (213) ∼ (214) ∼ (220)
∼ (221) ∼ (222) ∼ (223) ∼ (224) ∼ (230) ∼ (231) ∼ (232) ∼ (233) ∼ (234) ∼ (240) ∼ (241) ∼ (242) ∼
(243) ∼ (244) ∼ (310) ∼ (311) ∼ (312) ∼ (313) ∼ (314) ∼ (320) ∼ (321) ∼ (322) ∼ (323) ∼ (324) ∼ (330)
∼ (331) ∼ (332) ∼ (333) ∼ (334) ∼ (340) ∼ (341) ∼ (342) ∼ (343) ∼ (344) ∼ (410) ∼ (411) ∼ (412) ∼
(413) ∼ (414) ∼ (420) ∼ (421) ∼ (422) ∼ (423) ∼ (424) ∼ (430) ∼ (431) ∼ (432) ∼ (433) ∼ (434) ∼ (440)
∼ (441) ∼ (442) ∼ (443) ∼ (444) (commas have been suppressed in this last item to save space).
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4 Some Conclusions and Open Problems

In this paper we have dealt with 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Our
intention is continue with this topic by increasing both the value of p prime and the dimension of the
algebras. As main results, we have obtained that there exist six 6-dimensional filiform Lie algebras in the
cases of p = 2, 3, 5. Remember that there exist six filiform Lie algebras of dimension 6 over C.

By considering the set of vectors belonging to the same equivalence class, we formulate the following
conjectures, all of them related to filiform Lie algebras of dimension 6 and whatever p prime is.

1. In Z/pZ there would be six equivalence classes whose representatives should be (0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 2, 0), (1, 0, 0), (1, 1, 0).

2. Let g ∈ Fp
6 with p > 2 be a non-model filiform Lie algebra and let (a, b, c) be its related vector.

The vector (a, b, c + 1) (module p) will relate with another Lie algebra h ∈ Fp
6 , which would be

isomorphic with g. In terms of graphs, it means to add an edge (module p) from vertex [e5, e6] to e2
in the graph associated with g.

3. Given a vector (a, b, c) corresponding with a Lie algebra g ∈ Fp
6 with c 6= 0, an isomorphic filiform

Lie algebra h would be obtained changing a by another d ∈ Z/pZ \ {0}. The graph associated with
g has the same number of edges from vertex [e4, e5] to e2, from [e4, e6] to e3, and from [e5, e6] to
e4. Then by adding the same number of edges (module p) between each pair of these vertices, a new
graph whose associated algebra would be isomorphic to g will be obtained. Similarly, it would be
satisfied (a, b, c) ∼ (a, d, c) for a, b, d ∈ Z/pZ \ {0}. It would be reflected by a natural operation
between the associated graphs.

We will hope to advance in the study of these conjectures in future works, as well as to increase the
dimension of the algebras.
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[3] L. Boza, E.M. Fedriani y J. Núñez, Una relación entre los pseudo-grafos dirigidos sin aristas repetidas
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