
Are Forward Designed or Reverse-Engineered UML

Diagrams More Helpful for Code Maintenance?: A

Controlled Experiment
Ana M. Fernández-Sáez

Leiden Institute of Advanced Computer Science,
Leiden University

Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands
+31(0)715275772

fernande@liacs.nl

Marcela Genero
Instituto de Tecnologías y Sistemas de Información,

University of Castilla-La Mancha
Paseo de la Universidad 4, Ciudad Real, Spain

+34926295300 Ext.3740

Marcela.Genero@uclm.es

Michel R.V. Chaudron
Joint Computer Science and Engineering Department,

Chalmers University of Technology & University of
Gothenburg,

+46317721165

chaudron@chalmers.se

Isabel Ramos
Departamento de Lenguajes y Sistemas Informáticos,

University of Seville
Av. Reina Mercedes s/n, 41012, Seville, Spain

+34954552776

iramos@us.es

ABSTRACT
Context: UML has been the de facto standard notation for

modeling object-oriented software systems since its appearance in

1997. UML diagrams are important for maintainers of a system,

especially when the software was developed by a different team.

These diagrams of the system are not always available, however,

and are commonly recovered using Reverse Engineering (RE)

techniques. When obtained through RE, UML diagrams have a

high level of detail as compared to those developed in the forward

design activity. Method: In this paper we report on a comparison

of the attitude and performance of maintainers when using these

two kinds of diagrams during the maintenance of source code.

Our findings were obtained by carrying out a controlled

experiment with 40 students of a Master’s degree in Computer

Science. Results: The results show a preference for forward

design diagrams but do not display significant differences in task

performance. The post-experiment survey results have led us to

conclude that the subjects did not consider RE diagrams helpful;

they found them difficult to understand, particularly the sequence

diagrams. In the case of forward design diagrams, subjects

considered sequence diagrams as useful, but they did not really

employ them. Conclusions: Based on our findings, as regards

performance of maintainers, there are no objective results which

favor the use of one of these types of diagram in particular, i.e.,

UML diagrams which come from forwards design, on the one

hand, and diagrams obtained from RE, on the other. Subjective

opinions do, however, lead us to recommend the use of diagrams

created during design. Nevertheless, we realize that the results

should be considered as preliminary ones; further replications of

this experiment are planned, using students and professionals, the

aim being to obtain more conclusive results.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – Documentation, and D.2.10 [Software

Engineering]: Design - Representation

General Terms
Documentation. Design. Experimentation. Languages.

Keywords
Software Maintenance; UML Diagrams; Reverse Engineering;

Controlled Experiment; Survey.

1. INTRODUCTION
The current increasing complexity of software projects [34] has

led to the emergence of UML [25] as the de facto standard

modeling notation. It first appeared in 1997 and has now become

one of the most widely-used modeling languages in industry, as a

tool with which to increase the understanding between customer

and developer and to improve communication among team

members [23]. Despite this, not all UML diagrams have the same

complexity, layout, level of abstraction, origin, etc. [21],

depending on many factors such as designers' experience, time-

pressure and client conventions. Previous studies have shown that

the style and rigor used in the diagrams may vary considerably

throughout software projects [21], in addition to affecting the

source code of the system in a different way [24].

We focus our research on the maintenance phase, because we

know that this phase takes up the greater part of software

development resources [10, 27]: “Maintenance typically

consumes 40 percent to 80 percent of software costs. Therefore, it

is probably the most important life cycle phase of software”; what

is more: “60 percent of the budget is spent on software

maintenance, and 60 percent of this maintenance is to enhance

existing software”. Forward design diagrams, i.e., the diagrams

generated during forward development, are sometimes available

Copyright 2013 ACM 978-1-4503-1848-8/13/04…$15.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/132463995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:fernande@liacs.nl
mailto:Marcela.Genero@uclm.es
mailto:chaudron@chalmers.se
mailto:iramos@us.es

for maintainers in the maintenance phase, but when this is not the

case, the diagrams may be reconstructed through an RE technique.

The difference in the origin of the diagrams (i.e., forward design

diagrams or RE diagrams) and the different techniques that can be

used to generate an RE diagram result in different styles of

diagrams that may influence the quality of the product being

maintained.

RE diagrams are easy to obtain without investing lots of developer

effort. Given the ease of their generation and that they may be

generated automatically at any time, maintainers can have up-to-

date diagrams modeling the system when they need them. The

problem these diagrams present is their very high level of detail,

which may make them not very understandable. There are some

issues related to the obtainment of diagrams with a high level of

detail when they come from source code, after applying a reverse

engineering technique:

• The level of abstraction is very low, due to the fact that every

element from the source code is represented in the UML

diagrams. The benefit of this is that there is a very high

traceability from the diagrams to the source code.

• The business rules allow the designers to create UML diagrams

following a specific design objective. After that, developers

implement the source code following those diagrams. RE

diagrams do not represent these rules, due to the fact that they

are obtained from source code and these diagrams only reflect

how the code was implemented, rather than why.

• These RE diagrams are platform-dependent, compared to

forward design diagrams. For that reason, RE diagrams contain

details about implementation patterns and frameworks used,

which would not appear in forward design diagrams.

• After obtaining the RE diagrams, a cleaning and lay-outing

process need to be performed, in order to adapt the diagram to

the corresponding audience.

However, there is another option when up-to-date diagrams are

required: the maintainer may keep the source code and the

diagrams in-synch manually by applying the corresponding

changes incurred by maintenance to both. This option requires

more manual effort than the RE process, because the process is

not as automated as the RE approach is. Nevertheless, when the

diagrams are generated by people and not by automated tools,

they can contain different levels of abstraction and detail,

depending on the importance of diagram elements; this may make

diagrams more understandable, and hence more effective.

All these facts lead us to pose our main research question:

“Should software maintenance companies spend time updating

their UML diagrams or should they rather use reverse engineered

ones?” Our results might be useful for companies which are

performing software maintenance and yet are unsure if they

should continue updating their UML diagrams (as part of the

project documentation) or if they might rather save that time, by

generating RE diagrams in an automatic way. In this work we

therefore analyze whether the different Origins of UML diagrams

(RE vs. Forward Design) affect the work that must be carried out

by a maintainer, in terms of the effectiveness and efficiency of the

maintenance of source code. We carry out our analysis by means

of a controlled experiment with students. Our aim is to find out if,

in order to have an up-to-date version of diagrams, an effort

should be made to maintain diagrams or not.

On the one hand, if we obtain better results with design UML

diagrams we will have empirical results to encourage companies

and software developers to follow a model-centric approach. This

implies beginning the development of a software system by

building the corresponding UML diagrams and keeping them up-

to-date, thereby facilitating maintenance tasks. On the other hand,

if we obtain better results with RE diagrams, we will have

empirical evidence to suggest that maintainers should obtain the

UML diagrams needed by using RE techniques. This thus avoids

having to maintain the available diagrams (wherever these are

available) reducing the time involved in maintenance tasks.

This paper is organized as follows. Section 2 presents the related

work. Section 3 gives the description of the experiment. The

results obtained in the experiment are set out in Section 4, whilst

the threats to validity are summarized in Section 5. Finally,

Section 6 outlines the main conclusions and future work.

2. RELATED WORK
Our work is mainly related to: (i) studies analyzing the

comprehension of software systems, including those related to the

comprehension of the UML diagrams, and (ii) empirical studies

which focus on the comparison of the use or non-use of UML

diagrams during the maintenance of software systems.

It is possible to find many papers related to the comprehension of

the UML diagrams, which is directly related to the comprehension

of the software system [5, 9]. For example, [22] analyzed the

understandability of diagrams with different Levels of Detail

(LoD) in the development phase. The results reflect a better

understanding of diagrams when they have a high LoD. The

authors of [11] investigate whether the comprehension of source

code increases in the case of novice software engineers using

abstract software diagrams produced in the early phase of the

software development. Results show that there is no significant

difference in the comprehension of source code achieved by the

use or non-use of abstract software diagrams (although analysis

diagrams are expected to have a lower LoD than design

diagrams). An experiment similar to that presented in [22], but

focusing solely on the maintenance phase, appears in [8]; i.e., it

studies whether different LoD in UML diagrams might influence

the maintenance of source code. In [8, 22] there is an assumption

that the higher amount of information put into a diagram, the

more is known about the concepts/knowledge described in it. That

being the case, a higher LoD would improve maintainers’

performance, due to the fact that they understand the system they

have to maintain better. The results from [8] are not conclusive,

but show a slight tendency in favor of high LoD diagrams.

If we focus on studying the comprehension of UML diagrams,

which is extremely relevant when performing maintenance tasks,

we should highlight those studies which focus solely on

maintenance tasks and the benefits of using different kinds of

UML diagrams during this phase.

In [6], an experiment was performed to investigate whether the

use of UML influences performance of maintenance tasks, in

comparison to the use of source code only. This experiment

investigated the costs of maintaining, as well as the benefits of

using, UML documentation during the maintenance and evolution

of a nontrivial system, with 20 professional developers used as

subjects. These developers had to perform 5 maintenance tasks,

consisting of adding new functionalities to an existing system;

correctness, time and quality of the solution were measured.

Source code, as well as UML diagrams, when available, had to be

maintained. The results of this work show a positive influence of

the presence of UML for maintainers. In terms of time, the UML

subjects took more time if the UML documentation was to be

updated, but that difference was not statistically significant. UML

was, however, always beneficial in terms of functional correctness

(introducing fewer faults into the software) because the subjects in

the UML group had, on average, a practically and statistically

significant 54 percent increase in the functional correctness of

changes. UML also helped produce code of better quality when

the developers were not yet familiar with the system. This

experiment is a replication of a previous work performed with

students, which is presented in [1]; this experiment obtained

similar results.

In the work presented in [19], the experiment performed focuses

on the comprehension of, and the difficulties involved in,

maintaining the source code of object-oriented systems. UML

diagrams were also presented to the subjects of the experiment,

but they took as their sole focus an exploration of the participants’

strategies and problems while they were conducting maintenance

tasks on an object-oriented application. The results show that the

major difficulties were related to understanding program logic,

algorithms, discovering the impacts of changes, and the

inheritance of the functionality. Based on one of the conclusions

drawn from their work, the authors suggest a teaching technique

by which to avoid these difficulties.

Finally, we should mention the use of UML diagrams as part of a

Model Driven Engineering (MDE), out of which source code is

generated automatically (and updated/maintained) through

performing changes on the diagrams. The influence of this kind of

approach on maintenance is studied in [15], where industrial

experiences are summarized, based on the results of a

questionnaire and an interviewing process. The authors concluded

that use of MDE for maintenance might have positive and

negative aspects at the same time. The time for stakeholders to

understand each other can be reduced, thanks to the fact that it is

easier for new staff to understand existing systems and the code is

“self-documenting”. But this time can also be increased, since the

code generated may be difficult to understand. In relation to the

time needed to maintain the software, their conclusions in

summary form assert that this can be reduced. That is because the

maintenance is done at the modeling level, and the traceability

links are automatically generated. As before, however, this time

can also be increased, since there is a need to keep models/code

synchronized. In addition, the same work reports some

percentages about the increase of the maintainability effort of a

system when diagrams, UML or not, are used for different

purposes (team communication, understanding of a problem, code

generation, etc.).

As mentioned previously, there are several studies which deal

with different points of view as regards the influence of UML on

the software life cycle, but no study focuses on the differences

between using forward design diagrams as opposed to RE

diagrams in the maintenance phase. This fact, along with the

importance that the results might have to the industry, has

motivated us to perform a controlled experiment on this topic.

3. EXPERIMENT DESCRIPTION
The experiment was carried out at the University of Seville

(Spain) in November 2011. In order to run and report this

experiment, we followed the recommendations provided in

several pieces of work [17, 18, 37]. The experiment followed the

guidelines for reporting empirical research in software

engineering [17] as closely as possible. The experimental material

is available for downloading at:

http://alarcos.esi.uclm.es/originUMLmaintenance/

In the following subsections we shall describe the main

characteristics of the experiment, including goal, context,

variables, subjects, design, hypotheses, material, tasks, experiment

procedure and analysis procedure.

3.1 Goal
The principal goal of this experiment was to investigate whether

the Origin of UML diagrams influences the maintenance of source

code. The GQM template for goal definition [2, 3] was used to

define the goal of our experiment as follows: “Analyze the

maintainability of source code from the point of view of software

maintainers with respect to the Origin of the UML diagrams, in

the context of Computer Science students at the University of

Seville”.

We considered two possible Origins of the diagrams: the design

phase and an RE technique. In the first case, our intention was to

maintain the source code using the UML diagrams built at the

design phase. In the second case, we set out to maintain a source

code for which the UML diagrams are not available, which meant

that they would have to be obtained from the source code using an

RE technique.

We decided to consider class diagrams and sequence diagrams

because they can be obtained from an RE technique, and due to

the fact that they are also two of the most commonly used

diagrams when designing a system [5, 7, 12].

3.2 Context selection
The experimental objects consisted of class and sequence

diagrams and the Java code of one system. The diagrams were

obtained from different Origins:

• RE: Reverse Engineering UML diagrams, which are totally

automated diagrams.

• D: UML diagrams obtained at the Design phase (i.e., forward

design diagrams). These are totally manual designs.

RE diagrams are diagrams with a high level of detail since they

represent all the elements in the source code. The D diagrams

might also be considered as diagrams with a high level of detail

because their class diagrams contain class names, attributes,

operations and relationships, and their sequence diagrams

contained lifelines, messages and parameters of messages.

However, D diagrams do not represent all the elements in the

source code, but those elements which are represented (based on

human selection) are completely represented. D diagrams can

therefore be considered as high level of detail diagrams while RE

are higher level of detail diagrams.

The diagrams described a sports center system from which users

can rent services (tennis courts, etc.). The system is a Sports

center application which was created as part of the Master’s

degree Thesis of a student from the University of Castilla-La

Mancha, and we therefore consider it to be a realistic system. It is

a desktop application created with the client-server paradigm. The

system contains 5123 Lines of Code (LoC) (Table 1), so it might

be considered a small realistic system. In fact its size is almost

double the LoC of other systems used in previous work which

have nevertheless been considered as realistic systems, for

example in [6]. The maintenance requirements were formulated

http://alarcos.esi.uclm.es/originUMLmaintenance/

by the Master’s supervisor. In the case of D diagrams, 4 class

diagrams are available, with a total of 16 classes, and 21 sequence

diagrams, with 226 messages. In the case of RE diagrams, 4 class

diagrams are available, with 21 classes, and 11 sequence

diagrams, with 191 messages. The number of classes in class

diagrams is a good deal smaller than in class diagrams of systems

used in other previous work. This is caused by the use of different

levels of abstraction for modeling, but their diagram size is still

representative of realistic systems [13]. Note that the number of

sequence diagrams in the RE group is 11 and the number of

diagrams in D group is 21. Hence, the number of messages per

diagram (226 messages for 21 diagrams in D group, and 191

messages for 11 diagrams in RE group) gives an indicator which

suggests that RE diagrams should be considered as being larger

and more complex. The RE diagrams were generated using the

tool IBM Rational Software Architect, employing the default RE-

functionality provided by this tool, followed by auto-lay-outing

(also offered by the same tool). These experimental objects were

presented in Spanish.

Table 1. Description of the system received.

#Class diagrams #classes #Sequen. diagrams #messages LoC

D 4 16 21 226
5123

RE 4 21 11 191

We conducted the experiment in a classroom under controlled

conditions. It was carried out with 40 Computer Science students

from the University of Seville (Spain) who were taking the

Software Engineering III course in the second-year of their

Master’s Degree, from which they had acquired training in UML

diagrams (as they also had from previous Software Engineering

courses). Their knowledge was sufficient for them to understand

the given system, and they all had roughly the same background

(which was tested with a background questionnaire). The students

who participated in the experiment were volunteers selected for

convenience (the students available in the corresponding course).

Social threats caused by evaluation apprehension were avoided by

not grading the students on their performance. Absenteeism was

avoided by performing similar tasks to the exercises that would

appear in their final exam.

The tasks to be performed did not require high levels of industrial

experience, so we believed that the use of students could be

considered appropriate, as suggested in literature [2, 14]. Working

with students also implies various advantages, such as the fact that

their prior knowledge is fairly homogeneous, there is the possible

availability of a large number of subjects [36], and there is the

opportunity to test experimental design and initial hypotheses

[31]. An additional advantage of using novices as subjects in

experiments on maintainability is that the cognitive complexity of

the objects under study is not hidden by the subjects’ experience.

Nonetheless, we also wish to test the findings with practitioners,

in order to strengthen the external validity of the experiment.

3.3 Variable Selection
The independent variable (also called “main factor”) is the Origin

of diagrams, which is a nominal variable with two values

(treatments): Design (D) or Reverse Engineering (RE). We also

considered a further independent variable (called “co-factor” from

nw on): Ability. We considered this co-factor in our efforts to

investigate whether subjects’ ability plays any role in the

maintenance of source code, i.e., we discriminate between users

according to the respective level of Ability, with the purpose of

testing the hypothesis that this is a relevant influencing factor that

should be taken into account when adopting such kinds of

diagrams. A quantitative assessment of the participants’ Ability

was obtained by computing the final mark of the course they were

taking. Those students with a final mark of below 5.7/10 (that

number represents the median of the group) were classified as low

Ability participants; those above that mark were given the

classification of high Ability students. The instructor of the course

(the last author of the paper), who was not one of the

experimenters, was asked to provide the marks.

The dependent variable is the maintainability. We measured this

dependent variable by defining the following measures:

• Maintainability Effectiveness (MEffec): This measure is

related to the correctness of the response, and it therefore

reflects the ability to maintain the system presented correctly. A

higher value of this measure reflects better maintainability

effectiveness. It is calculated with the following formula:

• Maintainability Efficiency (MEffic): This measure is related to

the timing of the response, but also reflects the ability to

maintain the system presented correctly. Its unit of measure is

“the number of correctly-performed modification tasks per time

unit”. The unit of time used was seconds. A higher value of this

measure reflects better maintainability efficiency. It is calculated

with the following formula:

3.4 Hypotheses Formulation
The following hypotheses have been formulated and tested:

• H1,0: There is no significant difference in the subjects’

maintenance effectiveness when working with UML diagrams

which have originated from the design phase or with diagrams

which originated from a Reverse Engineering technique.

H1,1:H1,0

• H2,0: There is no significant difference in the subjects’

maintenance efficiency when working with UML diagrams

which have originated from the design phase or with those

which originated from a Reverse Engineering technique. H2,1:

H2,0

The goal of the statistical analysis is to reject the null hypotheses

and possibly to accept the alternative ones. Both of the hypotheses

are two-sided, because we did not postulate any effect arising

from the origin of the diagrams.

3.5 Experimental Design
We selected a between-subjects balanced design in which each

treatment has an equal number of subjects [20]. We decided to use

a between-subjects design rather than a within-subjects design,

owing to time constraints. The inherent threats of a between-

subjects design were thus alleviated, taking into account the

suggestions provided in [37]. In an attempt to alleviate experience

effects, we provided the subjects with a background questionnaire

in the training session which took place before carrying out the

experiment. We then assigned them to the 2 groups in a random

manner (see Table 2), based on the marks obtained in the

background questionnaire (blocked design by experience).

To avoid skewing the results of the tasks as a result of their being

of different levels of difficulty, the tasks were randomized. The

subjects in each group therefore received the same tasks but in a

different order. In order to alleviate learning effects, the order of

the tasks was the same for each treatment, i.e., one subject from

each group received the tasks in the same order, but in a different

order from the rest of his/her group.

Table 2. Experimental design.

Origin of UML diagrams

RE D

Group 1 Group 2

3.6 Experimental tasks
There were two kinds of maintenance tasks (Table 4) forming part

of the modification questionnaires; both of these activities involve

the changing of the source code:

• Adaptive maintenance task: these maintenance activities were

intended to enhance the system by adding features, capabilities,

and functions, in response to new technology, upgrades, new

requirements, or new problems, i.e., it is a modification of a

software product performed after delivery to keep a software

product usable in a changed or changing environment [16]. In

our case, new requirements had to be added to the system, with

the subjects receiving a list of requirements which had to be

used to modify the code of the system and thus add/change

certain functionalities. This part of the experiment contained 3

tasks.

• Corrective maintenance task: these maintenance activities

were “intended to remove errors or bugs from the software, the

procedures, the hardware, the network, the data structures, and

the documentation” [33]. In our case, bugs from source code

had to be detected and fixed. We consequently analyzed the list

of bugs reported by a professional Dutch IT development

company (we will not give its name, due to terms of privacy)

and introduced these kinds of defects into our system, giving the

subjects a list of functional defects which had to be detected and

corrected. All this explains why we considered these tasks to be

common, realistic tasks; this part of the experiment contained 2

such tasks. The subjects were provided with answer sheets for

this kind of questions, to allow them to structure their

responses.

These two kinds of tasks needed to be answered using some data

collection forms, i.e., templates which had to be filled with pieces

of code. We used these data collection forms to obtain a

structured response which facilitated the correction of the results.

The subjects were provided with answer sheets to allow them to

structure their responses to do with the maintenance tasks. The

reason for doing so is that maintaining source code on paper is not

easy, due to space constraints, so the subjects were required to

write changes to the source code in a structured manner on the

answer sheets (format: line-no, change type, Java code, etc.).

They had to fill in a different form depending on the element that

they wished to maintain (a class, a method, an attribute, etc.). The

answer sheets can be found at:

http://alarcos.esi.uclm.es/originUMLmaintenance/

The largest change consisted of adding a class which would need

at least 22 lines of code. In general, between 1 and 3 classes

needed to be modified. The complexity of the task might seem not

to be too complex, due to the number of LoCs which have to be

changed, but the complexity of the task lies in the difficulty of

detecting where change is to be performed on the source code, as

well as how it should be carried out. It should also be taken into

account that 5 tasks had to be completed in 2 hours, using a

system that had never been seen by subjects. We limited the time

of the experiment, to fit in with availability of subjects. Subjects

are only required to maintain the system, i.e., they do not need to

update diagrams according to their changes or to create test cases.

Table 3. Post-Experiment Survey.

Id Question/Issue
Possible

Answers

Ex1 The difficulty of tasks (1-5)

Ex2
The training was sufficient to be able to perform

the tasks

(1-5)

Ex3 The clarity of the material provided (1-5)

Ex4 The task objectives were perfectly clear to me. (1-5)

Ex5 The tasks I performed were perfectly clear to me. (1-5)

Ex6
I did not experience difficulty in reading the

diagrams

(1-5)

Ex7
I did not experience difficulty in reading the

source code

(1-5)

Ex8
The LoD of the diagrams was correct enough for

me to be able to perform the tasks

(1-5)

Ex9 The available class diagrams were helpful (1-5)

Ex

10

In the event that you do not think that the class

diagrams have been useful, indicate why

Open

question

Ex

11
The available sequence diagrams were helpful

(1-5)

Ex

12

In the event that you do not think that the

sequence diagrams have been useful, indicate

why

Open

question

Ex

13
I had enough time to perform the tasks.

Multiple

choice

question

Ex

14

How much time (as a percentage) did you spend

looking at the diagrams?

Multiple

choice

question

Ex

15

How much time (as a percentage) did you spend

looking at the source code?

Multiple

choice

question

1 = strongly agree; 2 = agree; 3 neutral; 4 = disagree; 5 = strongly

disagree (Ex2, Ex3, Ex4, Ex5, Ex6, Ex7, Ex9, Ex11)

1 = very high; 2 = high; 3 = correct; 4 = low; 5= very low (Ex8)

1= very difficult; 2=difficult; 3=medium; 4=easy; 5=very easy (Ex1)

1=very clear; 2=clear; 3=correct; 4=unclear; 5=very unclear (Ex3)

A=more time needed; B=less time needed; C=enough time (Ex13)

A. <20%; B. >=20% and <40%; C. >=40% and <60%; D. >=60% and

<80%; E. >=80% (Ex14, Ex15)

Table 4. Summary of maintenance tasks.

Task Summary of task descriptions Type of

maintenance

Maximum

mark

T1 When one of the sport center’s services

is not available (owing to a breakdown,

for example) all reservations for this

service should be cancelled.

Corrective 4 points

T2 The sport center’s system should store

its customers’ telephone numbers.

Adaptive 5 points

T3 A ticket showing a customer’s

reservations at a specific time should be

generated by the system.

Adaptive 5 points

T4 When we delete one of the sport

center’s members, his/her pending

payments sometimes remain in the

system.

Corrective 2 points

T5 The information about the sport center’s

instructors should be stored by the

system.

Adaptive 6 points

In addition, at the end of the experiment execution the subjects

were asked to fill in a post-experiment survey (see Table 3),

whose goal was to obtain feedback about their perception of the

experiment execution, feedback which could be used to explain

http://alarcos.esi.uclm.es/originUMLmaintenance/

the results obtained. The answers to the questions were based on a

five-point Likert scale [26]. During the experiment execution, the

subjects had to perform 5 maintenance tasks, in different orders,

which are summarized in Table 4.

3.7 Experimental Procedure
In order to check the experimental material and the time duration,

a pilot study was carried out before the execution of the

experiment, with 6 PhD students from the University of Castilla-

La Mancha in Spain. The pilot study was similar to the

experiment described in this section, but with no time limit. The

results of the pilot study were used as a basis for adapting the

number of tasks and their complexity to the experimental time

constraints. Some spelling mistakes were also corrected and some

requirement statements were rewritten in order to make them more

understandable.

We did not provide details on the experimental hypotheses, and

informed the participants that their grade on the course would not

be affected by their performance.

The experiment took place in the second session, in a classroom,

where the students were supervised by the instructor of the course

and one experimenter, and no communication between students

was allowed. In order to carry out the experiment, the subjects

first received the material needed to perform the maintenance

tasks, and when they had finished they were given the post-

experiment survey.

After the execution of the experiment, the data collected from it

were placed on an excel sheet, following an answering diagram

constructed before the experiment was carried out. On this sheet,

each task has a maximum mark (see Table 4), depending on the

correctness of the answer provided. This means that for each task,

a mark was given to the subject depending on the number of

correct lines of code added to the solution. We did not provide

negative marks to incorrect answers, i.e., lines of code which do

not solve the task.

3.8 Analysis Procedure
The data analysis was carried out by considering the following

steps:

1. We first carried out a descriptive study of the measures of the

dependent variable, i.e., MEffec and MEffic in order to obtain

a general overview of the results

2. We performed a Kolmogorov-Smirnov test [29] to determine

the normality of distributions and a Levene [29] test to

determine the homogeneity of variances. These analyses are

useful for determining which parametric or non-parametric

test it would be better to use.

3. Based on the results of the previous test, we tested the

hypotheses formulated using the non-parametric Mann

Whitney test [37] for the data collected in the experiment.

This test was performed because the data obtained did not

satisfy the restrictions of the ANOVA test [4] (we did not

obtain normal distributions, there is no homogeneity of

variances, and a sample is not greater than 30).

4. We analyzed the influence and the interaction of the co-factor

(i.e., Ability) with the main factor (i.e., Origin). We used

interaction plots [4] to study the interaction of the method

with the co-factor. Interaction plots are simple line graphs in

which the means on the values of a dependent variable for

each level of one factor are plotted over all the levels of the

second factor. The resulting lines are parallel when there is no

interaction and nonparallel when an interaction is present.

5. The data collected from the post-experiment survey was

analyzed finally using bar graphs. In the cases in which we

detected any pattern on data, we also tested these with a T-test

[37], due to the nature of the data.

In all the statistical tests, we decided to accept a probability of 5%

of committing a Type-I-Error [37].

3.9 Documentation and Communication
Issues such as documentation [30] and communication among

experimenters [35] may influence the success or the failure of the

experiment performance and future replications. We used

laboratory packages and knowledge-sharing mechanisms to

handle these issues. The material was originally written in

Spanish, and the parts that would have to be understood by non-

Spanish speakers were then translated into English. The material

included: the post-experiment survey, the modification

questionnaires, the data collection forms, the source code and the

UML diagrams (two versions: D and RE). The groups of

experimenters also shared a document to provide a common

background so as to be able to communicate all terms related to

the design and analysis of the experiment.

The experimenters (the three first authors of the paper) began with

an initial face-to-face meeting in which the main ideas of the

experiments were discussed and reported in an agreement

document. All the experimenters then exchanged the agreement

documents of the meeting by e-mail, to reach a shared common

research plan. This phase was played a significant role in sharing

knowledge among the experimenters and in the discussions on

possible issues related to the study that might arise.

The experimenters used instant messaging tools and e-mails to

establish a communication channel in all phases of the study. We

also held teleconferences to share knowledge among the research

groups and to discuss the experimental procedure that the

participants had to follow.

4. RESULTS
The following subsections show the results of the data analysis

using SPSS [32].

Descriptive Statistics and Exploratory Analysis

Table 5 shows the descriptive statistics of the Maintainability

measures (i.e., number of subjects (N), mean (), median, and

standard deviation (SD)), grouped by the Origin of the UML

diagrams.

At a glance, we can observe that when the subjects used design

UML diagrams they obtained better values in both measures when

comparing means. This indicates that forward design diagrams

may, to some extent, improve the maintenance of the source code

but that the differences are very slight.

In order to test the formulated hypotheses we analyzed the effect

of the main factor (i.e. Origin) on the measures considered (i.e.,

MEffec and MEffic) using the non- parametric Mann-Whitney test.

Table 5. Descriptive statistics for MEffec and Meffic.

Origin N
MEffec MEffic

Median SD Median SD

RE 20 0.641 0.6818 0.165 0.00270 0. 00283 0.00079

D 20 0.650 0.6818 0.148 0.00273 0. 00303 0.00072

4.1 Influence of Origin of Diagram
In Table 6 and Table 7 we show the results for each measure of

Mann-Whitney U tests, in which the Origin column describes the

independent variable, p-value is the statistical significance

obtained, op is the estimated observed power of the test, es is the

effect size, and r describes whether we can reject the null

hypothesis with the data obtained.

All these values were calculated using standard configuration of

SPSS. The results obtained for each hypothesis will be

commented on in their corresponding subsections.

For each measure, we first decided to analyze the data related to

maintenance in general, as is presented in the formulated

hypothesis. We then made the decision to analyze the results by

dividing them by the type of maintenance, since there may have

been differences between the results from the adaptive and the

corrective maintenance.

As a final step, with each measure (MEffec and MEffic), we also

tested the influence of the following co-factor: Ability.

4.1.1 Testing Maintenance Effectiveness: MEffec

(H1,0)
Taking into account the results shown in Table 6, we cannot reject

H1,0, given that the p-value is 0.957, which is greater than 0.05.,

i.e., it would appear that the different origins of UML diagrams

had no effect on the subjects´ effectiveness when performing the

source code maintenance tasks. The observed power of the test is

low, probably because of a small effect size, so we would be

assuming a 0.946 (or 1-0.054) estimated probability of a Type II

error in our assertions. Given the low value of the observed power

we cannot obtain strong conclusions.

Table 6. Mann-Whitney test results for MEffec.

MEffec

p-value op es R

Origin 0.957 0.054 0.001 NO

We also performed an analysis of the influence of the Origin on

maintenance effectiveness per type of maintenance, i.e. adaptive

and corrective maintenance. The results were not significant

(0.606 and 0.119 p-values, respectively).

Finally as regards MEffec, we tested whether the Ability of

subjects influenced the results, but, as we expected, this did not

happen, (the p-value obtained was 0.226). The interaction plot

shown in Fig. 1a indicates that there was no interaction between

Origin and Ability for MEffec. In this case, high ability

participants achieved better scores than low ability ones, when

both of them were using RE and D diagrams. The interaction plot

also suggests that the results achieved with D diagrams are better

than those obtained with RE diagrams, for high and low ability

participants. This might be caused by the fact that RE diagrams

contain too many details when compared with D diagrams. In

particular, RE sequence diagrams are twice as large in terms of

messages when compared to D diagrams. This could be because

forward design diagrams only contain logical messages between

objects, obviating messages between other kinds of objects, such

as objects from Java packages, which are shown in RE diagrams.

This difference between RE and D diagrams is based on their

nature, owing to the fact that human based diagrams contain less

technical details than RE diagrams because of human preferences.

4.1.2 Testing Maintenance Efficiency: MEffic (H2,0)
We can observe (see Table 7) that there is no significant effect (p-

value is 0.534, which is not smaller than 0.05) as regards the

Origin of UML diagrams on maintenance efficiency and that, in

this case, the statistical power is still very low. But, if we accepted

the null hypothesis, we would be assuming a 0.949 (i.e., 1-0.051)

estimated probability of a Type II error.

Table 7. Mann-Whitney test results for MEffic.

MEffic

p-value op es R

Origin 0.534 0.051 0.0003 NO

We also performed an analysis of the influence of the Origin on

maintenance efficiency per type of maintenance, i.e. adaptive and

corrective maintenance; again, the results were not significant

(0.449 and 0.290 p-values, respectively).

We also tried to measure MEffic through the time spent

maintaining the system, without relating this to the number of

correct answers (as was done before). In this case, the p-value was

again higher that 0.05 (i.e., p-value=0.725) but with a higher

statistical power (i.e., op=0.5).

Figure 1. Interaction between Origin and Ability for a) MEffec; and b) MEffic

4.2 Influence of Ability
As with MEffec, the influence of Ability of subjects was also

tested for MEffic, obtaining similar results (p-value=0.914), i.e.,

there was no statistical influence on the results of the experiment

caused by the subjects’ Ability. Once more, this was as we

expected. The interaction plot shown in

Figure 1.b indicates that there was a clear interaction

between Origin and Ability (both variables at the same time) for

MEffic. In this case, high Ability participants achieved better

scores using the D diagrams, and low Ability participants did

better using the RE diagrams. This might be explained by the fact

that RE diagrams have a very high traceability with source code,

so inexperienced maintainers would prefer this kind of diagrams.

In the case of experienced maintainers, they do not need very high

traceability, because using D diagrams might allow them to obtain

enough information to have a correct overview of how the system

works.

4.3 Post- Experiment Survey Results
The analysis of the answers to the post-experiment survey

revealed that the time needed to carry out the modification tasks

(Figure 2) was not considered to be sufficient (more time was

needed), and that the subjects considered that the performance of

the tasks was of more or less medium difficulty (Figure 3),

independently of the particular treatment received. The need for

more time to perform the tasks may have arisen from the fact that

the measurement of the time needed was derived from the pilot

study, which was performed by PhD students, who have more

experience than these Master’s students, signifying that the less

experienced subjects needed more time. We would also like to

note that there were some subjects who did not finish the

questionnaire, owing precisely to the lack of time. 10% more

subjects of the RE group experienced that problem, compared to

the D group.

Figure 2. Subjects' answers as regards adequacy of time

provided.

Figure 3. Subjects' answers as regards difficulty of task.

We also asked about the subjects’ perception of the level of detail

(LoD) of the diagrams used. The majority of the subjects who

received forward design diagrams agreed with the LoD of the

diagrams they received. In the case of those subjects who received

RE diagrams, a greater number of subjects required less, or much

less, LoD (Figure 4).

Figure 4. Subjects' answers as regards correctness of the LoD.

Subjects who received D diagrams experienced fewer difficulties

when reading the diagrams used, in comparison with the RE

group, as is shown in Figure 5. We tested if there was a difference

as regards the difficulties experienced by subjects depending on

the diagrams they used, by means of a T-test. We used that test

because our sample size is less than 30 and the data follow normal

distributions in this case. To carry this test out, we compared the

responses of the subjects (from 1 to 5) grouped by the UML

diagrams which they used (RE or D diagrams). The results of the

T-test show a significant difference, because we obtained a p-

value=0.001, which is lower than α=0.05. The power of the test is

very high (0.957), and this therefore allows us to state that the

subjects who received RE diagrams experienced more difficulties

when reading diagrams than those who received forward design

diagrams.

Figure 5. Subjects' answers as regards to difficulties when

reading diagrams.

As part of the post-experiment survey, the subjects were required

to indicate how useful the diagrams were, in general, for them as

regards solving tasks. Class diagrams are considered useful in

both groups, in more or less the same proportion. Having said

that, however, 15 subjects of the 20 who received the RE

diagrams commented that the sequence diagrams employed were

not useful and were very difficult to understand, as opposed to

only 6 subjects in the D group (Figure 6 and Figure 7). This

finding may have been caused by the different complexities and

varying LoD in the different kinds of diagrams as explained in

previous sections.

Figure 6. Subjects' answers as regards usefulness of class

diagram.

After performing each maintenance task, subjects were also

required to indicate which artifacts (source code, class diagrams

and/or sequence diagrams) were used to solve the task. We asked

subjects this in order to check if they used the diagrams to solve

the maintenance tasks or not (otherwise, the measured effect

would not be the influence of the different diagrams).

Source code was used by almost all subjects (i.e., 90% of subjects

of the RE group, and 86% of the D group) for solving the tasks.

This was expected by us, in the sense that source code is needed

when it is being maintained.

After that, we analyzed if subjects used the diagrams or not. Class

diagrams were also used by the majority of subjects (i.e., 80% of

subjects of the RE group, and 74% of the D group). This

percentage is consistent with the subjective response provided in

the post-experiment survey (see Figure 6). In the case of the RE

group, subjects used class diagrams in the same proportion for

corrective or perfective tasks, but in the case of the D group,

subjects used about 7% more class diagrams for perfective tasks.

This may have occurred because class diagrams provide the

structure of the system, thus allowing maintainers to obtain an

overview of the system faster, which would appear to be easier

with the D diagrams owing to their conciseness; this is more

important for perfective tasks. If we focus on the use of sequence

diagrams, we would like to highlight that its use was surprisingly

low; in general, only 33% of subjects used it (the same percentage

of use both in the RE and the D groups). That is consistent with

subjects’ opinion of the RE group (Figure 7), in which they

indicate that they did not use sequence diagrams, and they also

think that these are not useful diagrams for understanding the

system during its maintenance. In the case of the D group, there is

an inconsistency coming from the fact that subjects do not use

sequence diagrams in most of the tasks, even though they

considered them to be useful (see Figure 7). Subjects from both

groups used the sequence diagram more for corrective tasks

compared to perfective tasks (a difference of 20% and 27%,

respectively). The reason for this could be that for corrective

tasks, in which maintainers need to localize an error, structure and

behavior are needed, since the error might be caused by a

structural error or by a behavior error.

4.4 Summary and Discussion of the Data

Analysis
Descriptive statistic results show that subjects using forward

design UML diagrams obtained better values in both measures,

indicating that forward design diagrams may, to some extent,

improve the maintenance of the source code, but that the

differences are very slight.

Figure 7. Subjects' answers as regards usefulness of sequence

diagrams used.

As regards the results of the statistical test, in almost all of the

cases, the variables (i.e., MEffec and MEffic) are not significantly

affected by the Origin of the UML diagrams, i.e., the results of the

tests performed did not allow us to reject any of the null

hypotheses presented in section III, as all the significance levels

are above 0.05. The test powers are low, so the possibility of an

error occurring as a result of accepting the null hypothesis is high.

The results are therefore not conclusive. However, these results

are considered to be preliminary, and further replications are

needed.

Despite these drawbacks, we have ensured that the experimental

results were not influenced by other co-factors such as the Ability

of the subjects. If we focus on the interaction between Origin and

Ability, we can say that low ability users obtain more benefits

from RE diagrams than from forward design ones in terms of

efficiency. That may be due to the high traceability between RE

diagrams and code. In the case of high ability users, they prefer

forward design diagrams.

Moreover, if we study the results of the post-experiment survey,

we can see better subjective results for the forward design

diagrams. This is because the subjects who received RE diagrams

did not believe their sequence diagrams to be useful, since they

were not understandable. Significant results were obtained,

showing that subjects who received RE diagrams experienced

more difficulties when reading the diagrams used; this is

especially true with respect to sequence diagrams.

We would like to underline that UML diagrams, class diagrams at

least, are used as much as source code during maintenance tasks.

The sequence diagram is less widely-used, probably because of

the nature of the tasks presented during the course of this

experiment (a majority of perfective tasks were required compared

to corrective ones). As said before, UML diagrams are not usually

updated during maintenance tasks, due to time constraints on

realistic environments. But the high level of use of class diagrams

during this experiment leads us to recommend companies to keep

these up to date, in order to help their maintainers to perform the

required tasks efficiently.

5. THREATS TO VALIDITY
We must consider certain issues which may have threatened the

validity of the experiment [37]:

• External validity: External validity can be threatened when

experiments are performed with students, and the

representativeness of these subjects may be doubtful in

comparison to that of software professionals. In spite of this, the

tasks to be performed did not require high levels of industrial

experience, so we believe that this experiment could be

considered appropriate, as it follows suggestions in the relevant

literature [3]. Nevertheless, it would be immensely interesting to

carry out further replications of the experiment with

practitioners.

Another threat to external validity concerns the experimental

material used. There are no threats related to the material used,

since the UML diagrams and source code employed pertain to a

real case, representative of an industrial system (business

information system). The size of the experimental objects could

also threaten the external validity of the results. The rationale

for selecting the experimental objects used relies on the need

(due to time constraints) to simulate actual maintenance tasks

related to small maintenance operations that novice software

engineers and/or junior programmers may perform in a software

company. It is also the case that the small number of subjects

might influence the results of the experiment- This is common

in empirical software engineering, however, due to the nature of

the field (it is people who are required, rather than specific

software or hardware).

• Internal validity: Threats to internal validity were mitigated by

the design of the experiment. Each subject was grouped by

his/her results in the background questionnaire, so both groups

had subjects with a similar skill level. Furthermore, all the

participants found the material provided, the tasks, and the goals

of the experiment to be clear, as the post-experiment survey

questionnaire results showed. Another safeguard was that the

instrumentation was tested in a pilot study, to check its validity.

In addition, mortality threats were mitigated by offering the

subjects the possibility of performing similar tasks in the final

exam of the course that they were taking. Another issue that is a

potential threat is the exchange of information among the

participants. We must emphasize that participants were not

allowed to communicate with each other; we prevented this

happening by monitoring them during the run of the experiment.

When the experiment was concluded, the participants were

asked to give back all the experimental material.

• Construct validity: This validity may be influenced by the

measures used to obtain a quantitative evaluation of the

subjects’ performance, the maintenance tasks, and the post-

experiment survey, as well as by social threats. We performed

the experiment in a really short period of time, due to the

subjects’ constraints. The scarce amount of time allowed to the

subjects for them to perform the tasks could influence the

results of this experiment, as could the small number of tasks,

which was due once more to constraints on our subjects’ time.

The measures used were selected to achieve a balance between

the correctness and completeness of the answers, which are

well-known measures, widely-used in this kind of experiments.

The questionnaires were defined to obtain sufficiently complex

questions, without them being too obvious. The post-experiment

survey was designed using standard forms and scales. Social

threats (e.g., evaluation apprehension) have been avoided, since

the students were not graded on the results obtained.

• Conclusion validity: Conclusion validity concerns the data

collection, the reliability of the measurement, and the validity of

the statistical tests, all or any of which might affect the ability to

draw a correct conclusion. Statistical tests were used to reject

the null hypotheses, but the fact that subjects performed a small

number of tasks provided us with few data points to work with.

Those particular statistical tests were selected by checking that

they followed the specific assumptions related to their use. We

have explicitly mentioned and discussed all those cases in which

non-significant differences were present.

6. CONCLUSIONS AND FUTURE WORK
The main concern of the research presented in this paper is the use

of a controlled experiment to investigate whether the choice to use

either design or reverse engineered UML diagrams influences the

maintainer’s performance when modifying source code. The

importance of this research is based on the fact that software

maintenance takes up the greater part of software projects. The

use of reverse engineering techniques is an attempt to automate

the generation and/or update of documentation for these kind of

tasks, which could very well save time (and consequently money)

in maintenance projects.

The experiment was carried out by 40 Computer Science students

from the University of Seville (Spain) who were taking the

Software Engineering III course in the second year of their

Master’s Degree. The statistical results, specifically the

descriptive ones, show a very slight tendency towards getting

better results when using UML diagrams obtained in the design

phase; i.e. following a model-centric approach. Based on the

results of the post-experiment survey, it is also important to notice

that subjects preferred forward design diagrams for understanding

and maintaining a system. This is true even though their

performance is not so very much better with design diagrams,

compared to how they do with RE diagrams. Due to the fact that

software maintenance is still a human-based process in most

companies, this highlighting of maintainers’ perceptions, which

are in favor of using forward design diagrams, is very important.

Class diagrams are important artifacts which are widely used by

maintainers. However, UML diagrams are not usually updated

when changes are performed on the source code. This goes

against a proper use of the diagrams, a fact that obliges us to

recommend companies to keep them up to date and thus help their

maintainers to perform the required tasks efficiently.

It also needs to be said that significant results were obtained

which show that subjects who received RE diagrams experience

more difficulties when reading the diagrams used, especially the

sequence diagrams. Although subjects who received design

diagrams felt sequence diagrams to be highly useful, as they

expressed in the post-experiment survey, only a small number of

subjects actually used the diagrams. In the case of the RE

diagrams group, subjects did not use them, but they also point out

that they are not very useful, due to their low level of readability.

Even though the experiment showed no significant difference in

task performance, the subjective opinions of the participants do

favor forward design diagrams.

We are conscious that these results should be considered as

preliminary. Further replications of this experiment are planned,

with students and professionals, in an effort to obtain more

conclusive results. Nevertheless, the preferences expressed by the

subjects in this first experiment, through the post-experiment

survey, give us grounds to encourage software developers, albeit

with caution, to follow a model-centric approach. This implies

beginning the development of a software system by building the

corresponding UML diagrams, as well as keeping these up-to-

date, thereby making it easier to perform maintenance tasks.

It is also important to note that we expected a better performance

with design diagrams because something that requires effort

(totally manual diagrams, like D diagrams) would obviously

appear to be “better” than something that is totally automated;

however, the results did not support this to the extent expected.

According to the objective results of the experiment, there is only

a slight tendency in favor of D diagrams, while according to the

subjective results obtained from the post-experiment survey this

tendency appears to be greater. This forces us to consider the

return of the investment of UML modeling in software

maintenance, which will be taken into account in future research.

The UML is widely used in the software industry [5, 28]. The

results obtained are therefore useful for all those companies that

exploit this notation as a support for software maintainers when

performing maintenance tasks.

7. ACKNOWLEDGMENTS
This research has been funded by the following projects:

MEDUSAS (CDTI-MICINN and FEDER IDI- 20090557),

ORIGIN (CDTI-MICINN and FEDER IDI-2010043(1-5), and

GEODAS-BC (Ministerio de Economía y Competitividad y

Fondo Europeo de Desarrollo Regional FEDER, TIN2012-37493-

C03-01). The authors would like to thank the students who have

cooperated in the performance of the experiment.

8. REFERENCES
[1] Arisholm, E., Briand, L.C., Hove, S.E. and Labiche, Y. The

Impact of UML Documentation on Software Maintenance:

An Experimental Evaluation. IEEE Transaction on Software

Engineering, 32 (6). 365-381.

[2] Basili, V., Shull, F. and Lanubile, F. Building knowledge

through families of experiments. IEEE Transactions on

Software Engineering, 25 (4). 456-473.

[3] Basili, V. and Weiss, D. A methodology for collecting valid

software engineering data. IEEE Transactions on Software

Engineering, 10 (6). 728-738.

[4] Devore, J.L. and Farnum, N. Applied Statistics for Engineers

and Scientists. Duxbury, 1999.

[5] Dobing, B. and Parsons, J. How UML is used?

Communications of the ACM, 49 (5). 109-114.

[6] Dzidek, W.J., Arisholm, E. and Briand, L.C. A realistic

empirical evaluation of the costs and benefits of UML in

software maintenance. IEEE Transactions on Software

Engineering, 34 (3). 407-432.

[7] Erickson, J. and Siau, K. Theoretical and practical

complexity of modeling methods. Communications of the

ACM, 50 (8). 46-51.

[8] Fernández-Sáez, A.M., Genero, M. and Chaudron, M.R.V.

Does the level of detail of UML models affect the

maintainability of source code? Proceedings of the 2011th

international conference on Models in Software Engineering

(MODELS'2011), Experiences and Empirical Studies in

Software Modelling Workshop (EESSMod), Wellington, New

Zealand, 2011, 134-148.

[9] Genero, M., Fernández-Sáez, A.M., Nelson, H.J., Poels, G.

and Piattini, M. A systematic literature review on the quality

of UML models. Journal of Database Management, 22 (3).

46-70.

[10] Glass, R. Facts and fallacies of software engineering.

Addison-Wesley, 2002.

[11] Gravino, C., Tortora, G. and Scanniello, G. An empirical

investigation on the relation between analysis models and

source code comprehension ACM Symposium on Applied

Computing (SAC'2010), ACM, Sierre, Switzerland, 2010,

2365-2366.

[12] Grossman, M., Aronson, J. and McCarthy, R. Does UML

make the grade? Insights from the software development

community. Information and Software Technology, 47 (6).

383-397.

[13] Heijstek, W. and Chaudron, M.R.V. Empirical Investigations

of Model Size, Complexity and Effort in Large Scale,

Distributed Model Driven Development Processes - A Case

Study 35th Euromicro Conference on Software Engineering

and Advanced Applications (SEAA 2009), Patras, Greece,

2009.

[14] Höst, M., Regnell, B. and Wohlin, C. Using students as

subjects - a comparative study of students and professionals

in lead-time impact assessment. Empirical Software

Engineering, 5 (3). 201-214.

[15] Hutchinson, J., Whittle, J., Rouncefield, M. and

Kristoffersen, S. Empirical Assessment of MDE in Industry

Proceedings of the 33rd International Conference on

Software Engineering (ICSE'11), ACM, New York, NY,

USA, 2011, 471-480

[16] ISO/IEC ISO/IEC 14764-1999: Software Engineering

Maintenance.

[17] Jedlitschka, A., Ciolkowoski, M. and Pfahl, D. Reporting

experiments in software engineering. in Shull, F., Singer, J.

and Sjøberg, D.I.K. eds. Guide to Advanced Empirical

Software Engineering Springer Verlag, 2008.

[18] Juristo, N. and Moreno, A. Basics of software engineering

experimentation. Kluwer Academic Publishers, 2001.

[19] Karahasanovic, A. and Thomas, R. Difficulties experienced

by students in maintaining object-oriented Systems: an

empirical study Australasian Computing Education

Conference (ACE'2007) 2007, 81–87.

[20] Kirk, R.E. Experimental design. procedures for the

behavioural sciences. Brooks/Cole Publishing Company,

1995.

[21] Lange, C.F.J., Chaudron, M.R.V. and Muskens, J. In

practice: UML software architecture and design description.

IEEE Software, 23 (2). 40-46.

[22] Nugroho, A. Level of detail in UML models and its impact

on model comprehension: A controlled experiment.

Information and Software Technology, 51 (12). 1670-1685.

[23] Nugroho, A. and Chaudron, M.R.V. Evaluating the impact of

UML modeling on software quality: An industrial case study

12th International Conference on Model Driven Engineering

Languages and Systems (MODELS’09), Springer, Denver,

CO, USA, 2009.

[24] Nugroho, A. and Chaudron, M.R.V. A survey into the rigor

of UML use and its perceived impact on quality and

productivity Proceedings of the Second ACM-IEEE

international symposium on Empirical software engineering

and measurement (ESEM 2008), ACM, New York, NY,

USA, 2008, 90-99.

[25] OMG. The Unified Modeling Language. Documents

associated with UML version 2.3:

http://www.omg.org/spec/UML/2.3/, Object Management

Group, 2010.

[26] Oppenheim, A.N. Questionnaire design, interviewing and

attitude measurement. Pinter Publishers, 1992.

[27] Pressman, R.S. Software engineering: a practitioners

approach. McGraw Hill, 2005.

[28] Scanniello, G., Gravino, C. and Tortora, G. Investigating the

role of UML in the software modeling and maintenance - a

preliminary industrial survey 12th International Conference

on Enterprise Information Systems, Funchal, Madeira,

Portugal, 2010, 141–148.

[29] Sheskin, D. Handbook of Parametric and Nonparametric

Statistical Procedures. Chapman and Hall, 2007.

[30] Shull, F., Mendonça, M.G., Basili, V.R., Carver, J.,

Maldonaldo, J.C., Fabbri, S., Travassos, G.H. and Ferreira,

M.C. Knowledge-sharing issues in experimental software

engineering. Empirical Software Engineering, 9 (1-2). 111-

137.

[31] Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B.,

Karahasanovic, A., Liborg, N. and Rekdal, A.C. A survey of

controlled experiments in software engineering. IEEE

Transaction on Software Engineering, 31 (9). 733-753.

[32] SPSS. SPSS 12.0, syntax reference guide. SPSS Inc.,

Chicago, USA, 2003.

[33] Swanson, E.B. The dimensions of maintenance Proceedings

of the 2nd international conference on Software engineering

(ICSE 1976), IEEE Computer Society Press, San Francisco,

California, United States, 1976, 492-497.

[34] Van Vliet, H. Software engineering: principles and practices

Wiley, 2008.

[35] Vegas, S., Juristo, N., Moreno, A., Solari, M. and Letelier, P.

Analysis of the influence of communication between

researchers on experiment replication Proceedings of the

ACM/IEEE international symposium on Empirical software

engineering (ISESE'2006), 2006, 28-37.

[36] Verelst, J. The influence of abstraction on the evolvability of

conceptual models of information systems International

Symposium on Empirical Software Engineering (ISESE'04),

2004, 17-26.

[37] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell,

B. and Wesslén, A. Experimentation in software

engineering: an Introduction. Kluwer Academic Publishers,

Norwell, MA, USA, 2000.

http://www.omg.org/spec/UML/2.3/

