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Abstract

In this paper we address the problem of visualizing in a bounded region a set of individu-
als, which has attached a dissimilarity measure and a statistical value. This problem, which
extends the standard Multidimensional Scaling Analysis, is written as a global optimization
problem whose objective is the difference of two convex functions (DC). Suitable DC de-
compositions allow us to use the DCA algorithm in a very efficient way. Our algorithmic
approach is used to visualize two real-world datasets.
Keywords: Data Visualization, DC functions, DC algorithm, Multidimensional Scaling
Analysis

1 Introduction

In the Big Data era, Data Visualization is an area of interest to specialists from a wide variety of
disciplines, [14, 15, 26, 27]. The information managed must be processed and, what is even more
important, understood. Data Visualization techniques arise to respond to this requirement by
developing specific frameworks to depict complex data structures as easy-to-interpret graphics,
[40, 50].

Mathematical Optimization has contributed significantly to the development of this area
during recent years, see [13, 30, 42] and the references therein. Nowadays, complex datasets
pose new challenges in order to visualize the data in such a way that patterns are captured and
useful information is extracted. Special attention is paid to represent the underlying dissimi-
larity relationships that data may have. Classical dimensionality reduction techniques, such as
Principal Component Analysis, [43], or Multidimensional Scaling (MDS), [29, 34, 52], have been
customized to deal with more complex data structures, [1, 5, 16], and to make the interpretability
of the results easier via, for instance, sparse models, [9, 8, 18].

Apart from adapting existing methods, specific problems may call also for new approaches.
For instance, in addition to the dissimilarity measure, the data may have attached a statistical
variable, to be related with the size of each object in the graphical representation of the dataset,
[20]. This is the case for geographical data, to be visualized on a map in which countries are re-
sized according to, for instance, population rates, but maintaining the neighboring relationships
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of countries. This type of representations, known as cartograms, [51], leads to plots in which
countries are replaced by geometrical objects, frequently circles or rectangles, while the neigh-
borhood relationships and the size of the objects are sought to be well represented. A key issue
is how such problems are expressed as optimization programs, and which optimization tools are
available to cope with them. For uses of optimization applied to cartograms construction and
related visualization frameworks we refer the reader to [6, 10, 11, 20, 21, 28, 31, 47, 49] and
references therein.

In this paper we present a new mathematical programming framework to build a visualization
map, in which a set of N individuals are depicted as convex objects in a bounded region Ω ⊂ Rn,
usually n ≤ 3. These objects must have a volume proportional to a given statistical value
associated with the individuals, ω = (ω1, . . . , ωN ), and they should be placed accordingly to
a dissimilarity measure attached to the individuals, δ = (δij)i,j=1,...,N . In order to locate the
objects in Ω, a reference object B is used, to be translated and expanded. However, since our
final goal is to obtain a visualization map which allows the analysts to understand the data they
are working with, a criterion which somehow controls the appearance of the plot needs to be
also considered. We will deal with this paradigm by focusing on how the objects are spread out
over Ω.

Leaving aside the statistical values ω, the purpose of representing dissimilarities between
individuals reminds to MDS, [5, 16, 18, 29, 34, 35, 39, 52], which aims to represent the dissimi-
larity between individuals as empirical distances between points in an unbounded space of lower
dimension. Although our visualization model may seem very close to MDS, it has the special
feature of representing in the bounded region Ω not only dissimilarities as distances between
objects, but also the statistical measure ω through the volumes of the objects in Ω. Our visual-
ization tool is able to rescale the dissimilarities between the individuals and the statistical values
associated to them to fit in Ω. Observe that fitting the objects into Ω may yield representations
in which the objects intersect if their sizes are not small enough, but, on the other hand, too
small objects obstruct the visualization of the statistical measure. Ideally the objects should be
spread out across the visualization map. This aim will be also taken into account when modeling
the problem.

The methodology proposed in this paper has applications in fields others than Data Visu-
alization, such as for instance, Location Analysis or Distance Geometry. In location problems,
the facilities to be located are usually considered as points. However, a natural extension is to
consider facilities as dimensional structures, see [19], and DC techniques have been specifically
applied to this generalization, [3, 12]. Ours can also be seen as a problem in Distance Geometry
optimization, as carefully reviewed in [39]. In Distance Geometry, a graph realization problem
consists of finding a configuration of points such that their (Euclidean) distances fit a given
dissimilarity matrix. Among them is the Sensor Network Location problem, [46, 48, 54, 58], in
which one assumes that some individuals are anchors (their location is known) and the remain-
ing ones are sensors, whose location is to be obtained so that their Eculidean distances fit the
dissimilarities. Thus, our method can also be applied to the Sensor Network Location problem,
in which sensors and anchors have a nonnegligible area.

In this paper, the construction of a visualization map with the three characteristics mentioned
above is written as a global biobjective optimization problem with convex constraints. We show
that the objective function of the aggregate problem can be expressed as a difference of convex
(DC) function, and thus DC optimization tools can be used to solve the optimization program.

The rest of the paper is organized as follows. In Section 2 the biobjective optimization
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program to build the visualization map is formalized. In Section 3, structural properties of
the optimization problem are analyzed. In Section 4, we present our algorithmic approach.
Numerical results for two datasets of different size and nature are included in Section 5. Some
conclusions and extensions are presented in Section 6.

2 The visualization model

In our model we have a reference object B, which is a compact convex subset of Rn, symmetric
with respect to the origin, interior to B. Each individual i is associated with a set of the form
ci + τriB, where ri ≥ 0 is chosen so that the volume of riB is proportional to the statistical
value ωi ≥ 0, ci is a translation vector and τ is a common positive rescaling for all objects. We
seek the values of the variables ci, i = 1, . . . , N , and τ so that objects ci + τriB are contained
in Ω. The previously described representation is illustrated in Figure 1.

Ω

B

ci + τriB

ci

cj + τrjB
cj

ck + τrkB
ck

Figure 1: Example in R2 of a visualization region Ω, a reference object B and three individuals
i, j and k defined through the translation vectors ci, cj and ck, which are scaled via τri, τrj
and τrk.

Henceforth, we deal with a biobjective optimization problem: the distances between the
objects representing the individuals i and j must resemble the dissimilarities δij between such
individuals, and the objects must be spread out in Ω to make the visualization easier. The two
criteria are formalized in what follows.

2.1 First objective: distances resemble dissimilarities

Regarding the first objective, a function d, which gives us a strictly positive distance between
two non-intersecting objects representing individuals i and j and zero otherwise, needs to be
considered. Thus, we define the function g, which assigns such distance to two individuals i and
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j, as follows
g : Rn × Rn × R+ −→ R+

(ci, cj , τ) 7−→ d(ci + τriB, cj + τrjB).
(1)

Then, to quantify the resemblance between the distances in the visualization map and the
dissimilarities, the summation over all the individuals of the squared differences between the
distances and the rescaled dissimilarities through a positive variable κ will be minimized. Thus,
we consider as first objective the function F1 defined as

F1 : Rn × . . .× Rn × R+ × R+ −→ R+

(c1, . . . , cN , τ, κ) 7−→
∑

i,j=1,...,N
i 6=j

[g(ci, cj , τ)− κδij ]2 .

Observe that for simplicity all pairs (i, j) are considered in the summation in F1, but our
analysis remains valid if only some (i, j) pairs of objects, as done e.g. in [53].

2.2 Second objective: spread

To avoid that the objects collapse in a small subregion of Ω, we encourage objects to be spread out
all over Ω. There are several ways to model spread. For instance, we could use the overall volume
occupied by the objects, the amount of intersections between them, or the distances between
the objects. This last option is the one analyzed in detail in this paper, and therefore, our aim
is to maximize the sum over all the individuals of the distances between the objects representing
them. Let F2 be a function which, given the translation vectors ci, and the rescaling parameter,
τ , computes the spread of the visualization map in such way. Then, written in minimization
form, one has

F2 : Rn × . . .× Rn × R+ −→ R+

(c1, . . . , cN , τ) 7−→ −
∑

i,j=1,...,N
i 6=j

g2(ci, cj , τ).

Note that F2 does not distinguish between how much the objects intersect, since it penalizes
in the same way two objects one on top of the other as two tangent objects. A possible way
to quantify the amount of intersection between two objects is by measuring the minimum-norm
translation of such objects which makes them not to intersect. This leads to the concept of
penetration depth, [23, 56].

Let ‖ · ‖ be a norm in Rn. Given two convex compact sets, A1, A2 ∈ Rn, the penetration
depth of A1, A2 is defined as

π(A1, A2) = min
p
{‖p‖ : int(p+A1) ∩A2 = ∅} ,

where int denotes the interior of a set.
Thus, the amount of intersection between the objects in the visualization map can be quanti-

fied as the sum over all the individuals of the squared penetration depth between pairs of them,
yielding the function FΠ

2 defined as
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FΠ
2 : Rn × . . .× Rn × R+ −→ R+

(c1, . . . , cN , τ) 7−→
∑

i,j=1,...,N
i 6=j

π2 (ci + τriB, cj + τrjB) .

However, the penetration depth does not measure how separated the objects are. Then, an
alternative to the two previous spread criteria, namely F2 and FΠ

2 , which does take into account
both the amount of intersection and the separation of the objects, consists of measuring the
distance between the centers of the objects. Maximizing the sum over all the individuals of the
squared distances between the centers gives an alternative spread criterion, namely

F c2 : Rn × . . .× Rn × R+ −→ R+

(c1, . . . , cN , τ) 7−→ −
∑

i,j=1,...,N
i 6=j

‖ci − cj‖2.

2.3 Problem statement

The problem of building a visualization map in which a set of convex objects in the form
ci+τriB are represented in a region Ω, satisfying that the distances between the objects resemble
the dissimilarities between the individuals and the map is spread enough, can be stated as a
biobjective optimization problem. By proceeding in the usual way, we consider the convex
combination of the objectives and solve the aggregate problem, see [22]. Thus, given λ ∈ [0, 1],
the Visualization Map problem, (VM), is stated as follows

min
c1,...,cN ,τ,κ

λF1(c1, . . . , cN , τ, κ) + (1− λ)F2(c1, . . . , cN , τ)

s.t. ci + τriB ⊆ Ω, i = 1, . . . , N
τ ∈ T
κ ∈ K,

(VM)

where K,T ⊂ R+.

3 Properties

In this section we study the structure of problem (VM). We will prove that its objective function
is DC, by considering distance functions d, defined in the space of compact convex sets of Rn,
which satisfy the following:

Assumption 1. The function d, defined on pairs of compact convex sets of Rn, satisfies for
any A1, A2

(i) d ≥ 0 and d is symmetric

(ii) d(A1, A2) = d(A1 + z,A2 + z), ∀z ∈ Rn

(iii) The function dz : z ∈ Rn 7−→ d(z + A1, A2) is convex and satisfies for all θ > 0 that
dz(θA1, θA2) = θd 1

θ
z(A1, A2).

Typical instances of d satisfying (i)-(iii) are
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1. The infimum distance, defined as

d(A1, A2) = inf{‖a1 − a2‖ : a1 ∈ A1, a2 ∈ A2} (d1)

2. The supremum distance, defined as

d(A1, A2) = sup{‖a1 − a2‖ : a1 ∈ A1, a2 ∈ A2} (d2)

3. The average distance, defined as

d(A1, A2) =
1

voln(A1)voln(A2)

∫
‖a1 − a2‖dµ1dµ2, (d3)

where voln(·) denotes the volume of a set in Rn and µ1, µ2 are probability distributions with
support A1 and A2.

Note that the functions d defined in (d1)–(d3). correspond with the well-known single linkage,
complete linkage and the average distances in Cluster Analysis, [30].

Observe that, thanks to the Assumption 1, the distance between two objects representing
individuals i and j, given by the function g in (1), can be expressed as

g(ci, cj , τ) = τd 1
τ

(ci−cj)(riB, rjB), (2)

and thus g is the perspective of the convex function f(ci, cj) = dci−cj (ωiB, ωjB). Hence, g is
convex as well, see e.g. [32] for the proof.

Elementary tools of DC optimization enable us to show that objective function in (VM),
namely λF1 + (1− λ)F2, is DC, and a DC decomposition can be given. The result is presented
in Proposition 1 and the proof is included in the Appendix for the sake of completeness.

Proposition 1. One has that λF1 + (1− λ)F2 is DC, and a decomposition is given by

λF1 + (1− λ)F2 = u− (λF1 + (1− λ)F2) ,

where
u =

∑
i,j=1,...,N

i 6=j

max{3λ− 1, 0}g2(ci, cj , τ) + 2λ(κδij)
2

The two alternative functions for the spread presented in Section 2, namely FΠ
2 and F c2 , are

also DC functions, as stated in the following results.

Proposition 2. Let hij be defined as the penetration depth between ci + τriB and cj + τrjB,
namely

hij : Rn × Rn × R+ −→ R+

(ci, cj , τ) 7−→ π (ci + τriB, cj + τrjB) .

Denoting as γ◦B the dual norm with unit ball B, one has that hij is DC, and it has a decomposition
in hij = u− (u− hij), where

u = max

max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)γ

◦
B(ξ), 0

} ,
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Proof. See Appendix.

Corollary 1. One has that the function λF1 + (1− λ)FΠ
2 is DC.

Proof. The function F1 is DC. Indeed, it is sufficient to take λ = 1 in Proposition 1. FΠ
2 is

also DC by using Proposition 2 and Proposition 3.7 in [55]. Then, since the summation of DC
function is also DC, the result holds.

Corollary 2. One has that the function λF1 + (1− λ)F c2 is DC.

Proof. Since the function F1 is DC (take λ = 1 in Proposition 1) and F c2 is concave, since it is
minus the summation of squares of a nonnegative convex function, the result holds.

Corollaries 1–2 state that the functions λF1 + (1− λ)FΠ
2 and λF1 + (1− λ)F c2 are DC. DC

decompositions for them are readily available from the DC decomposition of F1 in Proposition
1 (λ = 1), Proposition 2 and the concavity of F c2 .

Showing that a function is DC and giving explicitly a DC decomposition enables us to use
DC optimization algorithms. It is well known that the performance of the procedures may
strongly depend on the choice of the DC decomposition, [2, 4, 24]. We give now an alternative
DC decomposition of the form of those addressed in [37, 45], namely, a DC decomposition
involving a quadratic convex separable function. In the rest of the paper, we work with the
expression of d given by (d1), namely the infimum distance. We will show in Section 4 that such
alternative decomposition yields a simple DCA algorithm, whose convergence follows from the
general convergence results of DCA, [36, 38, 44].

Proposition 3. The function λF1 + (1 − λ)F2, where d is the infimum distance (d1), can be
expressed as a DC function, λF1 + (1− λ)F2) = u− (u− λF1 + (1− λ)F2), where the quadratic
separable convex function u is given by

u = max{3λ− 1, 0} ·

 ∑
i=1,...,N

8‖ci‖2 + τ2
∑

i,j=1,...,N
i 6=j

βij

+ 2λκ2
∑

i,j=1,...,N
i 6=j

δ2
ij ,

where βij satisfies βij ≥ 2‖ribi − rjbj‖2 for all bi, bj ∈ B.

Proof. See Appendix.

4 The algorithmic approach

Propositions 1-3 and Corollaries 1-2 show that (VM), as well as its variants, is an optimiza-
tion problem with a DC objective function, with a DC decomposition available, and simple
constraints. Then, DC optimization tools can be used, either of exact nature for very low di-
mensional problems, [2, 3], or heuristics, as the DCA, [36, 38, 44]. This is the approach we
are following in this paper, and we refer the reader to [17, 35] for alternative mathematical
optimization approaches to MDS.

Roughly speaking, DCA consists of an iterative process in which a sequence of convex pro-
grams are solved. Given a DC program of the form min{f(x) = u(x)− v(x) : x ∈ Rn}, at each
iteration, the concave part (−v(x)) is replaced by its affine majorization at a certain x0 ∈ Rn,
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and the resulting convex problem is then solved. However, running times would be dramatically
reduced if a DC decomposition of the objective were available so that the convex optimization
problems to be solved at each stage were trivial, in the sense that an explicit expression for the
optimal solution is available. This idea has been studied in [37, 45] and it will be customized to
our problem in what follows.

When the DCA scheme is applied to problem (VM) with the DC decomposition given in
Proposition 3, we see that the convex subproblems to be solved at each stage have the form

min
c1,...,cN ,τ,κ

 ∑
i=1,...,N

Mc
i ‖ci‖2 +Mκκ2 +M ττ2 +

∑
i=1,...,N

ci
>qci + pκκ+ pττ


s.t. ci + τriB ⊆ Ω, i = 1, . . . , N

τ ∈ T
κ ∈ K,

for scalars Mc
i , Mκ, M τ ≥ 0, vectors qci and scalars pκ and pτ .

Such problem is written as a two separate problems,

min
κ∈K

{
Mκκ2 + pκκ

}
+ min
ci+τriB⊆Ω

τ∈T

 ∑
i=1,...,N

Mci
i ‖c‖

2
i + ci

>qci +M ττ2 + pττ2

 (3)

The first problem in (3) is a convex problem in one variable, for which a closed form can
be given for its optimal value. The second problem in (3) is separable in the variables ci if the
linking variable τ were fixed at τ0. For this reason, an alternating strategy seems to be plausible,
in which one alternates the optimization of τ for c1, . . . , cN fixed, (and this is a one dimensional
quadratic problem and thus a closed formula for the optimal solution is readily obtained), and
then for τ fixed, the centers ci are to be optimized. But this is done by solving separately N
optimization problems of the form

min
ci

Mci
i ‖ci‖2 + ci

>qci

s.t. ci ∈ Ω− τriB.
(4)

Two particular cases of (4) have an amenable structure, yielding a closed formula for the
optimal solution, and thus avoiding any call to numerical optimization routines. Indeed, suppose
Ω is a rectangle, for simplicity taken as [0, 1]n, and B is the disc centered at the origin with radius
r0. Then, the constraint in (4) can be rewritten as

τ0r0ri ≤ cij ≤ 1− τ0r0ri, j = 1, . . . , n,

and thus (4) is expressed as∑
j=1,...,n

min
cij

{
Mci
i c

2
ij + qcijcij : τ0r0ri ≤ cij ≤ 1− τ0r0ri

}
(5)

In other words, (4) is decomposed into n one dimensional quadratic problems on an interval,
and thus a closed formula is readily obtained for the optimal solution of each problem of the
form (5), and thus also for (4).
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Similarly, suppose Ω and B are discs centered at the origin, and radius 1 and r0 respectively.
Then, (4) is rewritten as

min
ci

Mci
i ‖ci‖2 + ci

>qci

s.t. ‖ci‖ ≤ 1− τ0r0ri.
(6)

Karush-Kuhn-Tucker conditions immediately yield an expression for the optimal solution of (6).
Summarizing, while DCA could be applied to solve (VM) for an arbitrary DC decomposition

of the objective function, we see that the DC decomposition of Proposition 3 is particularly
attractive, since, for some convenient choices of Ω (a rectangle or a disc) and B (a disc) yield a
closed formula for the optimal solution of the subproblems to be addressed at each stage of the
DCA, thus avoiding the need of using numerical optimization routines. See [37] also for other
problems in which this strategy has been successful.

5 Numerical illustrations

The methodology in Section 4 is illustrated using two real-world datasets of diverse nature, to be
plotted in two different visualization regions Ω ⊆ R2. The DCA algorithm has been coded in C

and the experiments have been carried out in a Windows 8.1 PC Intelr Core
TM

i7-4500U, 16GB
of RAM. The first dataset consists of N = 11 financial markets across Europe and Asia. The
statistical value ωi relates to the importance of market i relative to the world market portfolio,
[25], and the dissimilarity δij is based on the correlation between markets i and j, [5]. The
second dataset is a social network of N = 200 musicians, modeled as a graph, where there is an
arc connecting two nodes if one musician was influential on the other, [20]. The statistical value
ωi represents the out degree of node i and the dissimilarity between musicians i and j is based
on the shortest distance from node i to j.

Throughout this section, we set λ = 0.9 and B equal to the circle centered at (0, 0) with
radius equal to one. Since (VM) is a multimodal problem and the DCA may get stuck at a local
optimum, 100 runs of a multistart are executed. At each run, 3 steps of an alternating procedure
are performed, where each step executes 50 iterations of the DCA to optimize c1, . . . , cN , κ for
τ fixed, and then τ is solved analytically for the so-obtained c1, . . . , cN , κ.

Figure 2 plots the financial markets dataset on the visualization region Ω = [0, 1] × [0, 1],
with the scaling parameters ranging in the intervals K = T = [0.4, 0.6]. Observe that, the
European markets are clustered above the Asian ones, covering the upper half rectangle. These
two clusters are represented with different colours. Figure 3 plots the musicians’ social network
taking a circular visualization region, namely Ω = B, with the scaling parameters ranging in
the intervals K = [0.075, 0.100] and T = [0.015, 0.030], respectively. In the plot at the top, we
find all musicians. In the plot at the bottom, we have highlighted one of the most influential
nodes, the Rolling Stones, and the connected nodes: musicians influencing the Rolling Stones
(respectively, those influenced by them) can be found in a lighter (respectively darker) colour.

6 Concluding remarks and extensions

In this paper we have addressed the problem of representing, in a so-called visualization region
Ω, a set of individuals by means of convex objects so that the distance between the objects fits
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Figure 2: Visualizing financial markets

as close as possible a given dissimilarity matrix, the volume of the objects represents a statistical
variable, and, at the same time, the spread of the objects within Ω is maximized.

The problem has been formulated as a DC optimization problem, and the powerful heuristic
DCA has been proposed as solution approach. For particular choices of the visualization region Ω
(a rectangle and a disc), the reference object (a disc) and the function d (the infimum distance),
closed formulas for the optimal solutions of the DCA subproblems are obtained, thus avoiding
the need to use numerical optimization routines. The examples presented demonstrate the
usefulness of our approach.

Several extensions deserve further analysis.
In the algorithmic section, we have considered the infimum distance (d1). Instead, one can

consider the supremum distance (d2) or the average one (d3). It should be observed that the
average distance between two convex sets may not have an easy expression, and thus approxi-
mations may be needed, [33, 57].

We have assumed the reference object B to be convex, to guarantee the convexity of the
function giving the infimum distance and thus allowing us to express (VM) as a DC optimization
problem. For arbitrary sets B the infimum distance function may not be DC, see [2]. However,
as discussed e.g. in [3], important classes of nonconvex sets (e.g. finite union of convex sets)
make the infimum distance function DC, and thus the analysis in this paper extends gracefully
to such cases. It should be observed that if the supremum distance or the average distance are
used instead, then the distance function is convex for arbitrary reference objects, and thus the
objective function is DC regardless of the shape of B.

Another promising extension to be modeled is the case in which objects have associated
not a dissimilarity δ, but a time series of dissimilarities {δs : s = 1, . . . , S}. In this case, we
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Figure 3: Visualizing the musicians’ social network
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seek each individual to be represented at each time instant s = 1, . . . , S by an object so that
distances between objects are as close as possible to those in δs, but, at the same time, smooth
transitions take place between the representation at time s and s + 1, s = 1, . . . , S − 1. The
approach developed in this paper can be adapted to include such smoothness criterion too.

Regarding the optimization, we have proposed DCA as a plausible approach, which can
quickly handle problems of non-negligible size since, for convenient choices of Ω and B, (costly)
numerical routines are not needed to solve the subproblems at each stage of the DCA.

Convergence to the algorithm to the global optimum is not guaranteed, and thus DCA
may get stuck at a local optima. A better performance can be obtained if instead of a uniform
multistart, a more guided strategy is used, or if DCA is plugged, as a local search routine, within
a strategy which avoids local optima, such as (continuous) Variable Neighborhood Search, [7, 41].
This extension calls for further analysis and testing.
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Appendix

Proof of Proposition 1

One has

λF1 + (1− λ)F2 =

=
∑

i,j=1,...,N
i 6=j

{
λ
[
g2(ci, cj , τ)− κδij

]2 − (1− λ)g2(ci, cj , τ)
}

=
∑

i,j=1,...,N
i 6=j

{
(3λ− 1)g2(ci, cj , τ) + 2λκ2δ2

ij − λ(g(ci, cj , τ) + κδij)
2
}

In Section 2.1, the convexity of the function g was stated. Moreover, since g, λ, δij ≥ 0, then
g2(ci, cj , τ), 2λκ2δ2

ij and (g(ci, cj , τ) +Kδij)
2 are convex. Finally, (3λ− 1)g2(ci, cj , τ) is convex

for 3λ− 1 ≥ 0 and concave otherwise. �

Proof of Proposition 2

For convex sets A1, A2, the condition in Definition 2.2 is equivalent to the existence of a sepa-
rating hyperplane between the sets p+A1 and A2, i.e., of some ξ 6= 0, such that

ξ>(p+ a1) ≤ ξ>a2 ∀a1 ∈ A1,a2 ∈ A2.

Without loss of generality, we can consider ‖ξ‖ = 1 and thus we have

π(A1, A2) = min
p,ξ∈Rn

‖p‖

s.t. ξ>(p+ a1) ≤ ξ>a2 ∀a1 ∈ A1,a2 ∈ A2

‖ξ‖ = 1.

Thus, hij can be written as follows

hij(ci, cj , τ) = min
p,ξ∈Rn

‖p‖

s.t. ξ>(p+ ci + τrixi) ≤ ξ>(cj + τrjxj) ∀xi,xj ∈ B
‖ξ‖ = 1.

Equivalently, the first constraint, i.e.,

ξ>(p+ ci + τrixi) ≤ ξ>(cj + τrjxj) ∀xi,xj ∈ B,
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can be written as follows,

ξ>(p+ ci) + τri max
x∈B

ξ>x ≤ ξ>cj + τrj min
x∈B

ξ>x.

Let γ◦B denote the dual of the norm with unit ball B, i.e.,

γ◦B(z) = max
y
{y>z : y ∈ B}

Since B is assumed to be symmetric with respect to the origin, we have

max
x∈B

ξ>x = γ◦B(ξ)

min
x∈B

ξ>x = −γ◦B(ξ).

Hence, by replacing the expression of the dual norm in the constraint above, one has

hij(ci, cj , τ) = min
p,ξ∈Rn

‖p‖

s.t. ξ>p ≤ ξ>(cj − ci)− τ(ri + rj)γ
◦
B(ξ)

‖ξ‖ = 1.

For ξ fixed with ‖ξ‖ = 1, let η(ξ) = ξ>(cj − ci) − τ(ri + rj)γ
◦
B(ξ). It follows that the

inner minimum in hij(ci, cj , τ), i.e., for ξ fixed, is the distance from the origin to the halfspace
ξ>p ≤ η(ξ), and such distance equals 0, if 0 belongs to the halfspace, i.e., if 0 ≤ ξ>(cj − ci) −
τ(ri + rj)γ

◦
B(ξ), and −η(ξ) else. Hence

hij(ci, cj , τ) = min
ξ∈Rn
‖ξ‖=1

max
{

0,−ξ>(cj − ci) + τ(ri + rj)γ
◦
B(ξ)

}

= max

0, min
ξ∈Rn
‖ξ‖=1

−ξ>(cj − ci) + τ(ri + rj)γ
◦
B(ξ)


But, for ξ fixed, the function (ci, cj , τ) 7−→ −ξ>(cj − ci) + τ(ri + rj)γ

◦
B(ξ) is affine, and

thus the function (ci, cj , τ) 7−→ min
ξ∈Rn
‖ξ‖=1

−ξ>(cj − ci) + τ(ri + rj)γ
◦
B(ξ) is the minimum of affine

functions, and is thus concave. Hence, hij is the maximum between 0 and a concave function,
which is DC, whose decomposition is

hij(ci, cj , τ) =

= max

0, min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)γ

◦
B(ξ)

}
= max

− min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)γ

◦
B(ξ)

}
, 0

+ min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)γ

◦
B(ξ)

}

= max

max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)γ

◦
B(ξ), 0

}− max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)γ

◦
B(ξ)

}
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= u(ci, cj , τ)− (u(ci, cj , τ)− hij(ci, cj , τ)).

�

Proof of Proposition 3

Before giving the proof of Proposition 3, the following technical result is needed.

Lemma 1. Let βij ∈ R be such that βij ≥ 2‖ribi−rjbj‖2, ∀bi, bj ∈ B. Then, g2 can be expressed
as a DC function, g2 = u− (u− g2), where

u = 2‖ci − cj‖2 + βijτ
2.

Proof.

g2(ci, cj , τ) =

= min
bi,bj∈B

‖ci − cj + τ(ribi − rjbj)‖2

= min
bi,bj∈B

{
‖ci − cj‖2 + τ2‖ribi − rjbj‖2 + 2τ(ci − cj)>(ribi − rjbj)

}
= min
bi,bj∈B

{
‖ci − cj‖2 + τ2‖ribi − rjbj‖2

+‖ci − cj‖2 + τ2‖ribi − rjbj‖2 − ‖ci − cj − τ(ribi − rjbj)‖2
}

= 2‖ci − cj‖2 + βijτ
2 + min

bi,bj∈B

{
−βijτ2 + 2τ2‖ribi − rjbj‖2 − ‖ci − cj − τ (ribi − rjbj) ‖2

}
= 2‖ci − cj‖2 + βijτ

2 + min
bi,bj∈B

{
τ2
(
2‖ribi − rjbj‖2 − βij

)
− ‖ci − cj − τ (ribi − rjbj) ‖2

}
= 2‖ci − cj‖2 + βijτ

2 − max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}
Observe that taking βij ∈ R such that

2‖ribi − rjbj‖2 − βij ≤ 0 ∀bi, bj ∈ B,

the function

(ci, cj , τ) 7−→ ‖ci − cj − τ (ribi − rjbj) ‖2 − τ2
(
2‖ribi − rjbj‖2 − βij

)
is convex. Since the maximum of convex functions is convex, hence taking u = 2‖ci−cj‖2+βijτ

2,
we have obtained a DC decomposition for g2 as in the statement.

We proof now Proposition 3:

If λ <
1

3
, considering Proposition 1, one has

λF1 + (1− λ)F2 =
∑

i,j=1,...,N
i 6=j

{
2λκ2δ2

ij −
[
λ(g + κδij)

2 − (3λ− 1)g2(ci, cj , τ)
]}
,
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and thus u =
∑

i,j=1,...,N
i 6=j

2λκ2δ2
ij holds.

If λ ≥ 1

3
, by using the DC decomposition for g2 obtained in Lemma 1 and Proposition 1,

one has

λF1 + (1− λ)F2 =

=
∑

i,j=1,...,N
i 6=j

{
(3λ− 1)g2(ci, cj , τ) + 2λκ2δ2

ij − λ(g(ci, cj , τ) + κδij)
2
}

=
∑

i,j=1,...,N
i 6=j

{
2(3λ− 1)‖ci − cj‖2 + (3λ− 1)βijτ

2 + 2λκ2δ2
ij −

[
λ(g(ci, cj , τ) + κδij)

2

+ (3λ− 1) max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}]}
=

∑
i=1,...,N

8(3λ− 1)(N − 1)‖ci‖2 + (3λ− 1)τ2
∑

i,j=1,...,N
i 6=j

βij + 2λκ2
∑

i,j=1,...,N
i 6=j

δ2
ij

−
[
(3λ− 1)‖ci + cj‖2 + λ(g(ci, cj , τ) + κδij)

2

+ (3λ− 1) max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}]
�
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