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The Potential of Demand Management as a Short-Term Means of Relieving Airport Congestion 
 

By Terence P. C. Fan and Amedeo R. Odoni 
Massachusetts Institute of Technology  

  
Abstract 
 

Rapid air traffic growth combined with limited airport airside capacities have led to ever-increasing delays. When 
the demand for air travel and the general economy recover from the current crisis, it is conceivable that air traffic congestion 
may again come to the fore. Given the rather bleak prospects for significant near-term increases in airport runway system 
capacity, it is likely that demand for runway access may need to be carefully managed to keep flight delays under control. 
While various approaches to demand management have been suggested in the research literature, few studies to date have 
provided quantitative evidence on two major questions: the magnitude of the impact that demand management may have; and 
the extent to which the current weight-based landing fee systems under-price airside access to busy airports. In this paper, we 
address in quantitative terms these issues, using as case studies for illustration, New York's LaGuardia, Boston’s Logan 
International and Austin’s Bergstrom International airports. We furher propose a framework for developing future demand 
management policies.  

 
Introduction  
 

Rapid growth in demand combined with limited 
airport airside capacities have contributed to increasing 
incidence of delays at many major commercial airports 
worldwide, at least until September, 2001. Faced with the 
prospect of limited near-term expansion of runway 
capacity, policy- makers in both the United States and 
Europe were considering the need for carefully managing 
demand for access to busy airports to keep flight delays 
under control.  New York's LaGuardia Airport (LGA), 
where delays reached nearly catastrophic proportions 
between September 2000 and January 2001, provides a 
dramatic case in point.  The ongoing work of the authors 
at LGA and at Boston’s Logan International Airport 
(BOS) will serve as the basis for much of the material and 
illustrations presented in this paper. 
 

Since 1969, four airports in the United States, 
LGA and JFK International in New York, O’Hare in 
Chicago (ORD) and Reagan (National) in Washington 
(DCA) have been declared “high density rule” (HDR) 
airports and have been operated with controls that restrict 
access to slot holders only. Approximately 140 airports 
outside the United States, including practically all of the 
busiest ones in Europe, have similarly been designated as 
“fully coordinated” with access limited to slot holders.  
The administrative slot allocation practices developed by 
the International Air Transport Association (IATA) for 
allocating slots at fully coordinated airports have come 
under increasing attack in both Europe and the United 
States, as anti-competitive and running contrary to air 
transport deregulation and liberalization policies. 
 

In 2000, the Wendell H. Ford Aviation 
Investment and Reform Act for the Twenty- first Century, 
or “Air 21”, provided for immediate slot exemption at 
LGA, JFK and ORD for regional aircraft with 70 or fewer 
seats operating to small communities.  Air 21 also calls 
for the elimination of the slot system at these airports 

within five years. While requests for new flights under this 
exemption have so far stayed at a manageable level for 
JFK and ORD (Moorman, 2000), requests for new flights 
at LGA at one point totalled to more than 600 additional 
movements per day, compared to the 1,100 operations a 
day scheduled up to Summer 2000.  In September 2000, 
LGA had a 15% increase in the number of operations 
compared to September 1999 (Fiorino, 2001), 
contributing to a 60% increase in nationwide air traffic 
control delays, according to the FAA (Woodberry, 2000) 
and making LGA by far the most congested airport in the 
US – and probably the world. 
 

In response, the Port Authority of New York and 
New Jersey (PANYNJ), which manages and operates 
LGA, announced on September 19 a moratorium on 
additional flights there, starting in October.  In November 
2000, the Federal Aviation Administration (FAA) 
announced that a lottery would be used to reduce the 
number of flights at LGA, effective on January 31, 2001, 
until a more permanent method can be established by Sep-
tember 2001 (Kennedy, 2000).  Under the FAA plan, an 
average of 75 commercial airline operations per hour 
would be allowed at LGA until September 2001.  The 
lottery, combined with administrative prioritizing, was 
used to determine which of the newly added flights could 
continue to operate at LGA until then.  This, in effect, 
constitutes a temporary demand management action 
designed to keep delays to a tolerable level until a more 
permanent (and less arbitrary than the lottery) demand 
management system is put in place.  
 

Demand management, in the air transport 
context, refers to the collection of strategic administrative 
and economic policies designed to ensure that demand for 
access to some element of the ATM system is kept at a 
manageable level.  This is distinct from air traffic flow 
management (ATFM) which operates on a more tactical, 
day-to-day basis.  
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While various approaches to demand 
management have been suggested in the research lit-
erature, few studies to date have provided quantitative 
evidence on two major questions: the magnitude of the 
impact that demand management may have; and the extent 
to which the current weight-based landing fee systems 
under-price airside access to busy airports.  In this paper, 
we address in quantitative terms these issues, using tools 
drawn from queuing theory.  After briefly describing our 
methodology and tools, we discuss, first, the question of 
the relative impacts of reductions in the total demand at an 
airport vs. a shifting in the distribution of demand by time 
of day.  We then demonstrate, how at congested airports, 
such as LGA and BOS, the current system of assessing 
weight-based landing fees contributes to congestion by 
greatly under-pricing access to scarce economic resources 
– a busy airport’s runways.  By contrast, these same 
weight-based landing fees are appropriate for un-
congested airports, as a means for cost recovery that takes 
ability-to-pay in consideration.  Overall, the analysis 
suggests that, in the short-run, well-designed demand 
management schemes can be far more effective than any 
other types of alternatives, in relieving instances of 
serious actual or pending congestion. These observations 
lead to a proposed framework for assessing demand 
management alternatives and developing future policies in 
this direction. 
 
Methodology 
 

The focus of the paper is on airside congestion, 
with an operation’s (landing or take-off) delay defined as 
the waiting time for access to an airport’s runway system, 
absent other potential constraints such as en route or 
terminal area airspace congestion or “bottlenecks” on the 
taxiways or aprons.  To obtain estimates of such delays, 
one has the choice between using computer-based, 
numerical queuing models or a simulation tool.  We have 
chosen the former, as our objective is to conduct a policy-
oriented study that needs to examine numerous cases at 
multiple airports and to obtain estimates of several 
statistical measures, including estimates of the probability 
distribution of delays.  To this purpose, an advanced 
dynamic and stochastic queuing model has been used.  
The model, developed and improved over the years by 
successive researchers (Koopman, 1972; Kivestu, 1976; 
Malone, 1995; Malone and Odoni, 2001; Stamatopoulos, 
2000) models the dynamic behavior of a queuing system 
over time by solving numerically and iteratively a large 
set of first-order differential equations, known as the 
Chapman-Kolmogorov equations, that describe the 
system.  
 

In this model, the time-varying demand for 
runway access, obtained from published flight schedules, 
is approximated as a non-homogeneous Poisson process, 
while the time-varying runway capacities are 
approximated by k-th order Erlang probability density 

functions (see, e.g., Larson and Odoni, 1981). Starting 
with initial conditions at time t=0, the model solves the 
equations describing the evolution of queues and 
computes the probabilities of having 0, 1, 2, 3, ... aircraft 
in queue at different time intervals. The model outputs 
various statistics about the queue, including the average 
queue length, average waiting time, total delay, fraction of 
flights delayed by more than a user-specified amount of 
time, the probability of having flight delays of a specified 
magnitude at a particular time t, etc.  The model runs on 
PCs and takes less than a second to compute a dynamic 
24-hour delay profile at a large airport such as LGA.  
 
Inputs 
 
 To apply the numerical queuing model to various 
airports, two sets of information inputs are needed.  The 
first is the demand for runway access as represented by 
the list of flight operations scheduled by airlines on a 
representative weekday.  For LGA, the schedules for 
Monday, November 13, 2000, just prior to the moratorium 
of flight addition, and for August 7 , 2001 (after 
implementing schedule changes subsequent to the FAA 
slot lottery), were selected from the Official Airline 
Guides (OAG). For BOS, the typical schedules for the 
summer of 1998; for Austin (AUS), the schedules for 
November, 2000 were used.  It is assumed for simplicity 
that all of the scheduled flights will operate, when in fact a 
small percentage may be cancelled on any given day due 
to a variety of operational concerns.  It is further assumed 
that the scheduled departure and arrival times will not be 
affected by congestion delays.  While seemingly over-
simplifying, this last assumption may still be reasonable, 
since i) airlines do design some "slack" in their schedules, 
and ii) significant runway congestion in a given period is 
likely to increase the probability of congestion in the 
subsequent period (aircraft arriving late on an inbound 
flight is likely to face congestion delay on departure on 
the outbound flight in any case). 
 
 The second set of information relates to the 
supply of runway capacity in flight movements per hour 
for the selected airports.  For simplicity, the approximate 
sustainable capacities under visual flight rules (VFR) are 
used.  Moreover, since there is little public information on 
cargo, general aviation and other non-scheduled 
operations at LGA and BOS, the capacities used for these 
two airports reflect a reasonable estimate of the capacity 
available for scheduled passenger operations, at 75 and 
115 operations per hour respectively.  As for AUS, the 
sustainable VFR capacity is divided proportionally into 
different categories of flight operations depending on the 
number of total operations recorded in 1999, and a 
capacity of 54 operations per hour (54% of the 
approximate VFR capacity) is used.  As we shall 
demonstrate, the precise airport runway capacity is an 
important factor in causing delays at congested airports.  
It is assumed that the mix of departure and arrival 
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operations will not significantly affect the airport runway 
capacity. 
 
Results - Potential Delay Reduction through Demand 
Management 
 
 In this section, we quantitatively demonstrate the 
relative impacts on delays of  demand management 
approaches aimed at i) reducing the total demand for 
runway capacity at a severely congested airport, and ii) 
shifting the distribution of demand by time of day.  
 
Effect of a small reduction in demand at a congested 
airport 
 
 Figure 1 shows the combined take-off and 
landing profiles by hour-of-day on a typical weekday at 
LGA in November, 2000 and in August, 2001.  Between 
these two months, the total number of scheduled airline 
operations decreased by about 10% (from 1,348/day to 
1,205/day) primarily as a result of the lottery results that 
became effective on January 31, 2001.  The peaks and 
troughs in demand are still visible in both schedules, yet 
the overall demand has moved closer to the 75-operations-
per-hour capacity. 
 
 Figure 2 compares average delay per flight, using 
the flight schedules in November, 2000, and August, 
2001.  Assuming that no flights are cancelled, each flight 
scheduled to depart or arrive at the evening peak period 
between 8 pm and 10 pm in November can expect to be 
delayed for 1 hour and 20 minutes, even if the VFR 
capacity is maintained throughout the day.  In contrast, 
flights scheduled to operate during the same period in 
August, are only delayed for an average of 20 minutes per 
flight.  This represents an 80% reduction in average 
delays during peak evening hours.  Figure 3 shows the 
total delay in aircraft-hours during the day, suffered by 
operations scheduled in each hour.  Similar to average 
delays, the total delay during evening peak hours rose 
beyond 140 aircraft-hours in November, compared with 
about 25 aircraft-hours in August for the same time 
period.  The area under the August aircraft delays in 
Figure 3, representing the total delays for the entire day, 
totaled 210 aircraft-hours, compared with 1,160 aircraft-
hours for the November schedule. 
 
 While Figures 2 and 3 demonstrate the enormous 
reduction potential in flight delays when excess demand is 
reduced to a manageable level, it is equally important for 
the airport concerned to accurately determine its true 
capacity in handling aircraft operations.  For a congested 
airport with demand for runway capacity close to or above 
its supply, the amount of delay is extremely sensitive to 
the precise capacity number used. Figures 4 and 5 show 
how the average and total delays in August, 2001 at LGA 
vary, if the capacity is at 5 operations per hour above and 
below the 75 operations per hour capacity used in the 

simulation.  For instance, reducing the 75 operations-per-
hour capacity by 5 per hour increases the total delays 
between 6 pm and 9 pm from 73 aircraft-hours to almost 
200; increasing the capacity by 5 per hour halves the total 
delays to about 30 aircraft-hours. 
 
 The relationship between delay and the demand-
to-capacity ratio can be further illustrated by comparing 
LGA with BOS and AUS. Figure 6 shows the number of 
scheduled airline operations per hour as a percent of the 
respective approximate, sustainable VFR capacity for 
these airports.  Note that while demand is at or above 
100% of the VFR capacity at LGA for several periods of 
time during the day, demand is about equal to capacity at 
BOS for only the evening peak period.  At AUS, the 
demand barely reaches 40% of its VFR capacity. As a 
result, the amount of average and total runway congestion 
delays (in Figures 7 and 8 respectively) at BOS and AUS 
are noticeably less than in LGA, with BOS showing large 
average delays only during the evening peak.  
 
Effect of shifting the time-of-day distribution of demand  
 
 For LGA, flight delays can conceivably be 
further reduced by leveling demand peaks, after the 
overall demand has been reduced to the level experienced 
in August, 2001.  Figure 9 shows what the flight 
operations profile at LGA would look like in the extreme 
case in which demand is evenly distributed throughout the 
period between 7 am and 10 pm (72 to 73 operations/hour 
during this period).  As shown in Figures 10 and 11 
respectively, the average and total delays resulting from 
the de-peaking of flights are reduced by a further 40% 
during peak evening hours and 20% during the morning 
peak hours.  Compared with the actual August schedules, 
this reduced the total delays on the typical weekeday from 
211 aircraft-hours to 168 aircraft-hours, representing a 
20% reduction. 
 

Note that even though the scheduled operations 
for the day never reached or exceeded the capacity of the 
airport (75 operations/hour), the average and total delays 
continued to increase until the demand drops abruptly 
after 10 pm.  This is a consequence of the probabilistic 
effects that the queuing model accounts for and a 
distinguishing feature from deterministic models.  
 
Results - Pricing of Airport Runway Capacity 
 
 Vickrey (1969) noted that optimal use of a 
congested transportation facility cannot be achieved 
unless each user pays for the marginal delay costs that 
(s)he imposes on all other users.  From the hour-by-hour 
delay profiles generated by the queuing model, the 
marginal delay attributable to an additional flight 
operation in a given period of time can be estimated.  
This, combined with an average per-hour cost of 
operations, can be used to estimate the amount of 
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marginal congestion cost caused by an additional flight.  
This estimate can then be compared with the current 
airport charge.  A similar procedure was first 
demonstrated by Carlin and Park (1970). 
 
 Figure 12 shows the marginal delay at the three 
sample airports.  The marginal delay graph for LGA's 
November schedule rises sharply for flight additions after 
6 am and then tapers off almost linearly for flights added 
after 9 am.  This pattern is characteristic of a saturated 
server system, where the servicing of an additional user 
(flight) would simply impart a delay equal to the service 
time on all subsequent users.  It was this phenomenon that 
spurred the declaration of a moratorium on additional 
flights in September, 2000.  In comparison, the marginal 
delay profile for the August schedules at LGA is a lot 
more restrained, peaking sustainably at around 4 aircraft-
hours of additional delay per additional flight operation 
for most of the day. This almost constant marginal delay 
increase is representative of an airport with demand 
extremely close to but not above its capacity for most of 
the day.  For BOS, the marginal delay is just under 2 
aircraft-hours during the evening peak period, while it is 
practically zero throughout the day for AUS. 
 
 To arrive at an order-of-magnitude estimate of 
the marginal cost of congestion, an average per-hour flight 
operating cost, as reported on the Department of 
Transportation Form 41, has been used.  This reported 
cost includes the costs of cockpit crew, fuel and oil, direct 
and contract maintenance, possession and insurance, but 
does not include the cost of inflight servicing and the cost 
of lost passenger time.  Further, this estimate is taken for 
the "average" aircraft given the scheduled airline fleet 
mix. 
 
 From the published airline schedules, an average 
fleet size at LGA is 102 in seating capacity and 52,000 kg 
in maximum take-off weight, corresponding roughly to a 
DC-9-30 or a small 737. Using an estimate of $1,600/hour 
operating cost for an aircraft of this size, the marginal 
delay costs can be computed from the marginal delay 
graph in Figure 12. The resulting marginal delay cost 
curve for the August 2001 schedule shown in Figure 13 
can then be compared with the current airport charge for 
each flight operation (the current charge is levied on each 
take-off and landing combination).  As shown in Figure 
13, from 8 am to 8 pm, the marginal delay cost caused by 
an extra flight operation is 10 to 20 times as large as the 
average airport charge (landing fee) levied (PANYNJ, 
2001).  In other words, runway access at LGA is severely 
under-priced for most of the day and this, in part, 
contributes to the observed flight delays. 
 
Implications for Demand Management in the U.S. 
 
 As illustrated in the preceding section, even a 
small reduction in or redistribution of the total demand for 

runway access can lead to significant reductions in flight 
delays. This has substantial implications for policy 
directions on demand management in the U.S.  In this 
section, we outline a tentative framework for discussing 
policy alternatives on demand management at different 
airports in the U.S., based on i) airports’ demand-capacity 
relationship and ii) the typology of airport users. 
 
Level of total demand versus capacity 
 
 Based on the illustration and discussion above, 
Figure 14 illustrates the notional amount of flight delay 
reductions that may be achieved through a range of 
measures at airports with different demand-to-capacity 
ratios. On the far right is the case where the demand for 
airport runway access is close to or above the maximum 
(sustainable VFR) capacity all day, like LGA.  For 
airports in this category, a significant fraction of delay can 
be eliminated by reducing the total demand for the runway 
access.  A mere leveling of the demand at such airports 
without reducing total demand to a level at or below the 
sustainable capacity will not be particularly effective.  
Reducing total demand of course requires relatively 
strong demand management actions, such as the 
imposition of a flat surcharge on landing fees for the 
greatest part of the typical day. 
 
 Airports like BOS fit in a middle category, where 
the demand is close to or above maximum capacity for 
only some periods of the day.  In these cases, a mere 
leveling of peak-period demand will indeed lead to a 
sizable reduction in delays.  Policy actions, such as mild 
forms of demand management, encouraging the shift of 
peak-period demand to non-peak periods – without 
significantly reducing the total demand – may be 
sufficient.  Further, the delay reductions achieved through 
better management of demand and capacity during or after 
severe weather (when capacity falls sharply) may be as 
large and possibly much larger than delay reductions 
resulting from shifting demand or reducing total demand. 
 
 Finally, for airports like AUS with low demand-
to-capacity ratios throughout the day, demand 
management measures are obviously not appropriate.  For 
those cases where the airport demand is close to or above 
capacity under severe weather, efforts focusing on the 
efficient use of capacity during short periods of time on an 
infrequent basis may be most productive in reducing flight 
delays. 
 
 
Typology of high-volume users 
 
 As mentioned earlier, optimal use of a congested 
transportation facility is achieved only if each user pays 
for (“internalize”) the marginal costs (s)he imposes on all 
other users.  For airports like LGA and BOS, where there 
is a large number of high-volume users (or low industry 
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concentration) operating non-homogeneous, point-to-point 
services, the extent of such internalization is limited, 
absent a congestion-related charge.  Economic demand 
management measures can be very effective in moving 
toward a more efficient operating point in such cases.  
 
 In contrast, at airports like Chicago O'Hare, 
Dallas-Fort Worth and Minneapolis/St. Paul, dominated 
by only one or two high-volume users (airlines with hubs 
there) operating connecting services, the high-volume 
users already internalize a substantial portion of the 
marginal costs.  Economic demand management measures 
may therefore not be as effective in these environments. 
 
 This observation, combined with those in the 
previous section, lead to a tentative airport classification 
grid for the purpose of designing appropriate demand 
management measures (see Figure 15).  It should be clear 
at this point that a single set of demand management 
measures may not suit the needs of all airports.   
 
 
Concluding Thoughts 
 
 Using a numerical queuing model, we provided 
quantitative evidence on the magnitude of the impact that 
demand management measures may have.  In particular, 
we demonstrated the relative impact of reducing total 
demand on flight delays versus shifting the distribution of 
demand by time of day. We further demonstrated the 
extent to which the current weight-based landing fee 
systems under-price airside access to busy airports in the 
U.S.  Based on the empirical findings, we went on to 
describe a tentative framework that may be used to help 
evaluate potential demand management measures for 
different airports in the U.S.  Here, we discussed how 
different demand-to-capacity relationships, as well as the 
number of high-volume users at an airport, may influence 
the relative attractiveness of alternative demand 
management measures.  It is clear that any single set of 
demand management policy initiatives will not work 
equally well at airports with different characteristics. 
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 Figure 4. Average flight delays at LaGuardia under different capacities 
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 Figure 6. Demand profiles by time of day at sample airports 
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 Figure 8. Total flight delays at sample airports 
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Figure 9. Leveling the hourly distribution of flights at LaGuardia from August schedule 
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Figure 10. Average flight delays for leveled distribution of flights from August schedule 
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Figure 11. Total flight delays for leveled distribution of flights from August schedule 
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Figure 12. Marginal flight delays (incremental delays from adding one more flight) 

 9



 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 7 9 11 13 15 17 19 21 23 1 3

Marginal
delay cost
Actual
charge

 
Cost 
per  
aircraft 
operation 
($/flight) 
 
 
 
 
 
 
 
 
  Time of day (based on August, 2001 schedules) 
Figure 13. Comparison between marginal delay costs and actual charges at LaGuardia 
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Figure 14. Notional illustration of delay reduction for different airports 
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Figure 14. Typology of high-volume users and tentative positions of sample airports 
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