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Abstract

Numerical solution of high-order di&erential equations with multi-boundary conditions is discussed in this
paper. Motivated by the discrete singular convolution algorithm, the use of 4ctitious points as additional
unknowns is proposed in the implementation of locally supported Lagrange polynomials. The proposed method
can be regarded as a local adaptive di&erential quadrature method. Two examples, an eigenvalue problem and
a boundary-value problem, which are governed by a sixth-order di&erential equation and an eighth-order
di&erential equation, respectively, are employed to illustrate the proposed method.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

High-order di&erential equation arises in many 4elds. For example, the free vibration analysis of
beam structures is governed by a fourth-order di&erential equation, and that of ring structures by
a sixth-order di&erential equation. Moreover, when considering the instability setting in an in4nite
horizontal layer of >uid, which is heated from below and is subject to the action of rotation, we
model the instability as ordinary convection and overstability by a sixth-order ordinary di&erential
equation (ODE) and an eighth-order ODE, respectively. Even higher-order ODEs can be involved
when a uniform magnetic 4eld is applied across the >uid in the same direction as gravity. Ordinary
convection and overstability yield a 10th-order and a 12th-order ODE, respectively. Such problems
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modeled by high-order di&erential equations are often associated with multi-boundary conditions,
so that the problem is well posed. For example, the beam vibration problem, which is governed
by a fourth-order di&erential equation, has four boundary conditions. It is noted that for well-posed
problems, the number of boundary conditions is the same as the order of the di&erential equation,
and in general, they are evenly given at each boundary.
When interpolating polynomials are employed as approximation kernels, three types of implemen-

tations of multi-boundary conditions have been proposed in the literature [1–8,11,13,15,16]. The 4rst
type builds the boundary conditions into the approximation kernel, i.e., interpolating polynomials.
The discretization of a one-dimensional computational domain with N nodes results in N unknowns.
The satisfaction of the governing equation at each node leads to N linear equations. These lin-
ear equations have to be linearly independent for a boundary value problem, but not necessary
for an eigenvalue problem, so that a solution can be obtained. Huang and Sloan [7] presented the
pseudospectral method of this kind to solve di&erential eigenvalue problems. One example is the
fourth-order eigenvalue problem

u′′′′ + Ru′′′ = su′′; −1¡x¡ 1; (1)

u(−1) = u′(−1) = u(1) = u′(1) = 0; (2)

where u is the unknown function, R is a real parameter, s is the eigenparameter, and a prime
denotes di&erentiation with respect to x. After discretization, N grid points are yielded. A polynomial
expression is sought to satisfy all the boundary conditions. Hence, it is represented as the summation
of some interpolating polynomials,

u(x) ≈ uN (x) =
N−1∑
k=2

ukhk(x); (3)

where uk = u(xk) and

hk(x) =
(1− x2)
(1− x2k)

lk(x): (4)

Here lk(x) is the Lagrange interpolating polynomial given by

lk(x) =
N∏

i=1; i �=k

x − xi
xk − xi

: (5)

It is seen that, the boundary conditions have been accounted into the construction of the polynomial,
i.e.,

uN (±1) = (uN )′(±1) = 0: (6)

However, this technique is hardly useful when the boundary conditions become complicated as in
the higher-order di&erential equation.
The second and the third types of implementation separate the approximation kernel from boundary

conditions. Therefore, N + p linear equations are obtained, where N is the number of nodes (or
unknowns) and p is the number of boundary conditions (or order of the di&erential equation), i.e., N
linear equations are from the governing equation, p linear equations are from boundary conditions.
For the second type of methods, it is noted that the N equations obtained from discretizing the



Y. Wang et al. / Journal of Computational and Applied Mathematics 159 (2003) 387–398 389

governing equation are always linearly dependent. The rank of the coeMcient matrix is usually
N − p, for a pth-order di&erential equation. Note that the number of multi-boundary conditions is
usually the same as the order of the di&erential equation, we can take out a number of N −p linear
equations and join them with p linear equations yielded from boundary conditions and proceed for
a solution. The di&erential quadrature method (DQM) and the generalized di&erential quadrature
(GDQ) method all belong to this type. Typical examples of this kind may refer to Refs. [6,11].
For the third type of methods, it is noted that there is a di&erence between the number of

unknowns and the number of linear equations. Alternatively, one can introduce additional unknowns.
For example, the generalized di&erential quadrature rule (GDQR) method introduces higher-order
derivative values of the boundary nodes. The involvement of these higher-order derivative values
requires the GDQR to use the Hermite interpolating polynomials, instead of the Lagrange ones. The
4nite di&erence method developed by Boutayeb and Twizell [1–3,5,13] can be regarded as a special
case of this kind, in which a local formulation with low-order approximation is considered. Liu and
his co-workers have presented some results on the GDQR method for solving high-order di&erential
equations, such as Refs. [8,16,15]. The GDQR formulations for two-dimensional problems are quite
di&erent from that of one-dimensional ones [16], while the conventional DQM formulations have
the same form for both two-dimensional and one-dimensional problems. In this paper, we propose
an alternative solution method of the third type, called local adaptive di&erential quadrature method
(La-DQM). Stimulated by using 4ctitious points in our discrete singular convolution (DSC) algorithm
[14], we construct 4ctitious points outside the boundary as additional unknowns. The La-DQM has
its root in the 4nite di&erence approach. Chen [4] mentioned the 4ctitious point technique when he
presented his di&erential quadrature 4nite di&erence method. However, how to construct La-DQM
for the solution of high-order di&erential equations has not been explored yet. Using the Lagrange
polynomials, the proposed method is found to have much simpler formulations than the GDQR
method, while its accuracy is close to that of the GDQR method. Furthermore, it is noticed that the
use of 4ctitious points outside the boundary guarantees the stability of the approximation kernel. This
can be observed when it is compared with spline solutions [12] for some eighth-order boundary-value
problems, which fail to converge at some nodes next to the boundary.
The paper is organized as follows. Section 2 presents the formulation of the proposed solution

method, including the explicit weighting coeMcient formula, and the details of the implementation of
the multi-boundary conditions. A local adaptive GDQ method is thus developed. In Section 3, two
examples are used, including an eigenvalue problem governed by a six-order di&erential equation
and a boundary value problem governed by an eighth-order di&erential equation. Results obtained
by the proposed method are compared with some of the existing ones, such as the DQM [6], spline
[12] and GDQR [8] solutions. This paper ends with a conclusion.

2. Formulation

In this section, a local adaptive di&erential quadrature method (La-DQM) is developed in associ-
ation with the implementation of multi-boundary conditions by using 4ctitious points. The problem
under consideration is assumed to be governed by a one-dimensional pth (p¿ 4)-order di&erential
equation, with p boundary conditions, including two Dirichlet type of boundary conditions (one at
each boundary).
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2.1. Weighting coe4cients

The La-DQM states that, to approximate the derivative of a function with respect to a space
variable at a given discrete point, a weighted linear combination of the function values at some
of the neighboring discrete points in the direction of the space variable within the computational
domain is employed. For example, u(m)x (xi), the mth derivative of a function u(x) at the ith point,
xi, is approximated as

u(m)(xi) =
Ri∑

j=−Li

c(m)i; j u(xi+j); (7)

where c(m)i; j ; (j = −Li; : : : ; Ri), are the weighting coeMcients for the mth derivative approximation
of the ith point, Li and Ri denote the number of function values of the neighboring points on the
left and right, respectively. These weighting coeMcients have to be pre-determined. When Li and
Ri are speci4ed, formulation similar to the explicit GDQ [10] for the weighting coeMcients can be
used to determine the weighting coeMcients for the ith node. For each node, a system of Lagrange
interpolating polynomials are used. For example, for the ith point, one has [10]

gi; j(x) =
i+Ri∏

k=i−Li; k �=i+j

x − xk
xi+j − xk

; j =−Li; : : : ; Ri: (8)

The weighting coeMcients for the 4rst derivative can be obtained from the exact di&erentiation of
the above polynomial systems. Consequently, one has

c(1)i; j = g(1)i; j (xi) for j =−Li; : : : ; Ri; j �= 0 (9)

and as for j = 0,

c(1)i;0 =−
Ri∑

j=−Li; j �=0
c(1)i; j : (10)

The weighting coeMcients for higher-order derivatives can be obtained using a recurrence formula:

c(m)i; j = m

(
c(1)i; j c

(m−1)
i; i − c(m−1)i; j

xi − xi+j

)
; j =−Li; : : : ; Ri; j �= 0 (11)

and

c(m)i;0 =−
Ri∑

j=−Li; j �=0
c(m)i; j : (12)

2.2. Implementation of multi-boundary conditions by 6ctitious points

In view of the di&erence between a boundary value problem and an eigenvalue problem, the
implementation of boundary conditions may change accordingly. First, we consider a boundary value
problem. Assume that the one-dimensional pth-order di&erential equation is de4ned in an interval
[a; b], with p(=pl + pr) boundary conditions, where pl and pr represent the number of boundary
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conditions on the left and right boundaries, respectively. We also assume that pl¿ 2 and pr¿ 2,
and there is one Dirichlet type of boundary condition on each boundary. The proposed method
introduces pl − 1 and pr − 1 4ctitious points outside the left and the right boundaries, respectively.
Therefore, we have

x2−pl ¡ · · ·¡x1 = a¡x2¡ · · ·¡xN = b¡ · · ·¡xN+pr−1: (13)

In view of the existence of the two Dirichlet type of boundary conditions, we have the following
solution procedure. For a pth-order di&erential equation under the discretization of N +p−2 nodes,
the satisfaction of the governing equation on each point yields N + p − 2 linear equations. As
mentioned early, we choose (N + p− 2)− p, i.e., N − 2 equations from them. Here, we use those
equations obtained from the satisfaction of the governing equation on the inner points of the interval
[a; b], i.e., x2; : : : ; xN−2. Together with the p linear equations obtained from the boundary conditions,
we have N +p− 2 linear equations to solve the N +p− 2 unknowns, including the values for the
p− 2 4ctitious points.
For an eigenvalue problem, the solution procedure slightly di&ers from the boundary value problem.

The 4ctitious points’ values and the boundary points’ values are 4rst solved in terms of those of
inner points, using the linear equations obtained from the boundary conditions, i.e. p equations are
used to solve p unknowns. Subsequently, substituting the solution of these p variables into the N−2
linear equations obtained from the governing equations, we obtain the eigenvalue problem in the
form

Ax = �x; (14)

where A is an (N − 2)× (N − 2) square matrix, x is a column vector consisting of the N − 2 inner
points’ values, i.e., values on x2; : : : ; xN−2.

3. Application

Two examples are used to illustrate the results of the proposed method. Both a boundary value
problem and an eigenvalue problem are presented, which are governed by an eighth-order and a
sixth-order di&erential equations, respectively.

3.1. Example 1: a sixth-order eigenvalue problem

In this example, a circular ring structure with constraints (see Refs. [6,15]), which has rectangular
cross-sections of constant width and parabolic variable thickness is studied. Considering half of the
ring structure, this problem is an eigenvalue one formulated by the following sixth-order di&erential
equation:

�1w(6) + �2w(5) + �3w(4) + �4w(3) + �5w(2) + �6w(1) = �2(fw(2) + f(1)w(1) − �2fw); (15)

where w(r) = drw=dxr; � is the dimensionless frequency, w is the tangential displacement, and

�1 = ’=�4;

�2 = 3’(1)=�4;
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�3 = (2’=�2) + (3’(2)=�4);

�4 = (4’(1)=�2) + (’(3)=�4);

�5 = ’+ 3’(2)=�2;

�6 = ’(1) + ’(3)=�2; (16)

in which

’= [f(x)]3;

f = f(x) =−4(r − 1)x2 + 4(r − 1)x + 1 (17)

for x∈ [0; 1] and ’(i) = di’=dxi; f(i) = dif=dxi, and r is the variable related to the thickness of the
cross-section of the ring.
Rewriting Eq. (15), we have(

�1
d6

dx6
+ �2

d5

dx5
+ �3

d4

dx4
+ �4

d3

dx3
+ �5

d2

dx2
+ �6

d
dx

)
w

=�2

(
f
d2

dx2
+ f(1)

d
dx

− �2f
)

w: (18)

The discretization of operators yields a generalized eigenvalue problem.
The ring structure has three boundary conditions at each end. Altogether, it has six boundary

conditions. Two di&erent settings of boundary conditions are considered.

Example 1.1.

w(0) = w(1)(0) = w(3)(0) = 0; w(1) = w(1)(1) = w(3)(1) = 0: (19)

Example 1.2. This example is also taken from Refs. [6,15]. Instead of considering a half ring struc-
ture, a quarter of the ring structure without constraints is considered. The governing equation is quite
similar to (15), but the last term is changed from �2fw to �2fw=4. Other changes include

�1 = 16’=�4;

�2 = 48’(1)=�4;

�3 = (8’=�2) + (48’(2)=�4);

�4 = (16’(1)=�2) + (16’(3)=�4);

�5 = ’+ 12’(2)=�2;

�6 = ’(1) + 4’(3)=�2;

’= [f(x)]3;

f(x) =−(r − 1)x2 + 2(r − 1)x + 1 (20)
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and

w(0) = w(2)(0) = 0; ’(1)(0)[w(1)(0) + 4w(3)(0)=�2] + 4’(0)w(4)(0)=�2 = 0;

w(1) = w(2)(1) = 0; ’(1)(1)[w(1)(1) + 4w(3)(1)=�2] + 4’(1)w(4)(1)=�2 = 0: (21)

A standard eigenvalue solver can be used to solve the eigenvalue problem and to obtain the
frequency �.

3.2. Example 2: an eighth-order boundary value problem

Here, an eighth-order boundary-value problem with four di&erent settings solved in [12,8] are
dealt with again to obtain accurate results in the entire domain. They have the form of

y(8) + !(x)y =  (x); −∞¡a6 x6 b¡∞; (22)

y(a) = A0;

y(2)(a) = A2;

y(4)(a) = A4;

y(6)(a) = A6;

y(b) = B0;

y(2)(b) = B2;

y(4)(b) = B4;

y(6)(b) = B6; (23)

where y=y(x) and !(x) and  (x) are continuous functions de4ned in the interval x∈ [a; b]. Ai and
Bi; (i=0; 2; 4; 6), are 4nite real constants. Analytical solutions with various constants and functions
for all four examples are listed in Table 1.

3.3. Results and discussion

For simplicity, a uniform grid is considered in all the calculations. Moreover, the Li and Ri are
given by the following criterion:

Li =min{M; i − 2 + pl}; Ri =min{M;N + pr − 1− i}: (24)

In other words, the derivative at a point is approximated by 2M + 1 neighboring points or all the
points, depending on which is smaller. To compete with the GDQR solutions, a large M value is
chosen in all the calculations (see Tables 2–7).
The frequencies of the ring structure, i.e., Examples 1.1 and 1.2, are calculated and listed in Tables

2 and 3. In Table 2, it is noted that the present method converges to the same frequency parameter
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Table 1
Variables for di&erential equations and boundary conditions in four examples

Example 2.1 2.2 2.3 2.4

[a; b] [0,1] [− 1; 1] [− 1; 1] [− 1; 1]
!(x) x −x −1 −1
 (x) −(48 + 15x + x3)ex −(55 + 17x + x2 − x3)ex −8[2x cos(x) + 7 sin(x)] 8[2x sin(x)− 7 cos(x)]
A0 0 0 0 0
A2 0 2=e −4 cos(1)− 2 sin(1) −4 sin(1) + 2 cos(1)
A4 −8 −4=e 8 cos(1) + 12 sin(1) 8 sin(1)− 12 cos(1)
A6 −24 −18=e −12 cos(1)− 30 sin(1) −12 sin(1) + 30 cos(1)
B0 0 0 0 0
B2 −4e −6e 4 cos(1) + 2 sin(1) −4 sin(1) + 2 cos(1)
B4 −16e −20e −8 cos(1)− 12 sin(1) 8 sin(1)− 12 cos(1)
B6 −36e −42e 12 cos(1) + 30 sin(1) −12 sin(1) + 30 cos(1)
Analytical
Solution y(x) x(1− x)ex (1− x2)ex (x2 − 1) sin(x) (x2 − 1) cos(x)

Table 2
Comparison of fundamental frequencies for Example 1.1 of the sixth-order eigenvalue problem

r DQM [6] Rayleigh– GDQR Present
Ritz [6]

7a 8a 9a 10a 11a 7a 8a 9a 10a 11a

1.0 2:268(12a) 2.274 2.2631 2.2669 2.2667 2.2667 2.2667 2.2624 2.2647 2.2669 2.2668 2.2667
1.1 2:417(12a) 2.416 2.4133 2.4137 2.4137 2.4137 2.4137 2.4135 2.4136 2.4137 2.4137 2.4137
1.2 2:561(12a) 2.557 2.5597 2.5565 2.5567 2.5568 2.5568 2.5583 2.5576 2.5570 2.5569 2.5568
1.3 2:701(12a) 2.697 2.7139 2.6944 2.6962 2.6966 2.6966 2.7019 2.6995 2.6976 2.6972 2.6968
1.4 2:839(14a) 2.834 2.8946 2.8242 2.8318 2.8336 2.8335 2.8452 2.8400 2.8364 2.8353 2.8341
1.5 2:976(14a) 2.970 3.1297 2.9407 2.9623 2.9681 2.9678 2.9878 2.9791 2.9738 2.9715 2.9694

aNumber of the grid points, N ; M = N + 1.

Table 3
Comparison of fundamental frequencies for Example 1.2 of the sixth-order eigenvalue problem

r DQM [6] Rayleigh–Ritz [6] GDQR Present

6a 7a 8a 9a 10a 6a 7a 8a 9a 10a

1.0 2:686(12a) 2.687 2.6828 2.6833 2.6833 2.6833 2.6833 2.6956 2.6828 2.6830 2.6833 2.6833
1.1 2:849(12a) 2.846 2.8452 2.8452 2.8452 2.8452 2.8452 2.8523 2.8488 2.8488 2.8489 2.8489
1.2 3:010(12a) 3.006 3.0062 3.0062 3.0062 3.0062 3.0062 3.0199 3.0181 3.0182 3.0181 3.0181
1.3 3:171(12a) 3.167 3.1666 3.1665 3.1665 3.1665 3.1665 3.1917 3.1884 3.1887 3.1884 3.1884
1.4 3:332(12a) 3.326 3.3267 3.3263 3.3262 3.3263 3.3263 3.3595 3.3577 3.3579 3.3578 3.3578
1.5 3:493(12a) 3.486 3.4861 3.4858 3.4857 3.4858 3.4858 3.5150 3.5251 3.5230 3.5252 3.5248

aNumber of the grid points, N ; M = N + 1.
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Table 4
Maximum absolute errors of Example 2.1 of the eighth-order boundary-value problem

y(k)i Ref. [12] N = 32a GDQR Present
[x4; xN−4] Otherwise

N = 7a N = 11a N = 7a N = 11a

k = 0 8:113E− 8 1:820E3 2:92E− 10 4:95E− 14 7:47E− 9 5:27E− 10
k = 1 2:461E− 7 4:302E4 9:90E− 10 2:65E− 13 2:77E− 8 1:79E− 9
k = 2 8:451E− 7 3:667E6 2:80E− 9 7:93E− 13 8:56E− 8 5:41E− 9
k = 3 2:738E− 6 3:865E9 1:20E− 8 7:97E− 13 4:11E− 7 2:18E− 8
k = 4 1:153E− 5 9:013E13 5:04E− 8 3:07E− 14 1:41E− 6 6:99E− 8
k = 5 4:870E− 5 8:844E15 1:18E− 6 6:25E− 13 1:20E− 5 4:41E− 7
k = 6 5:307E− 4 4:430E17 4:74E− 6 2:41E− 12 5:09E− 5 1:75E− 6
k = 7 1:142E− 2 9:450E18 2:00E− 4 2:53E− 10 1:79E− 3 5:42E− 5

aNumber of the grid points, N ; M = N + 2.

Table 5
Maximum absolute errors of Example 2.2 of the eighth-order boundary-value problem

y(k)i Ref. [12] N = 64a GDQR Present
[x4; xN−4] Otherwise

N = 7a N = 11a N = 7a N = 11a

k = 0 9:443E− 5 4:948E3 3:13E− 6 1:54E− 11 7:58E− 5 2:71E− 9
k = 1 1:454E− 4 1:169E5 5:09E− 6 2:75E− 11 1:30E− 4 4:83E− 9
k = 2 2:335E− 4 4:984E7 7:52E− 6 4:07E− 11 1:90E− 4 7:31E− 9
k = 3 3:578E− 4 1:050E10 1:50E− 5 9:28E− 11 4:10E− 4 1:66E− 8
k = 4 5:867E− 4 2:450E12 2:20E− 5 1:94E− 10 6:48E− 4 2:82E− 8
k = 5 8:612E− 4 2:404E14 1:83E− 4 1:58E− 9 2:34E− 3 1:18E− 7
k = 6 1:729E− 3 1:204E16 4:09E− 4 3:21E− 9 4:53E− 3 2:69E− 7
k = 7 1:206E− 2 2:569E17 8:81E− 3 1:70E− 7 7:77E− 2 6:93E− 6

aNumber of the grid points, N ; M = N + 2.

as that of the GDQR at N = 11 for smaller r values, r = 1:0; 1:1 and 1.2. For slightly higher r
values, the present method starts to deviate from the GDQR solution. However, the di&erence is
acceptable. The same trend is observed in Table 3. Since there is no exact solution for this problem,
the results obtained by the DQM and Rayleigh–Ritz methods are used as a reference.
For the eighth-order boundary-value problems, i.e., Examples 2.1–2.4, we present only maximum

absolute errors since no other error is available in the literature [12,8]. Detailed comparisons are
shown in Tables 4–7. The accuracy of the present method is slightly lower than that of the GDQR
method. This is because the use of a simple uniform grid in the present work, whereas a Cheby-
shev grid was used in the GDQR. The Chebyshev gird does improve the accuracy of slow-varying
solutions but can cause additional errors for high-order modes. Both the La-DQM and GDQR work
well at boundaries, whereas, the spline method failed to converge near the boundary.
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Table 6
Maximum absolute errors of Example 2.3 of the eighth-order boundary-value problem

y(k)i Ref. [12] N = 64a GDQR Present
[x4; xN−4] Otherwise

N = 7a N = 11a N = 7a N = 11a

k = 0 1:203E− 6 1:616E3 9:58E− 8 9:09E− 13 2:72E− 6 1:65E− 9
k = 1 2:936E− 6 3:819E4 3:97E− 7 2:99E− 12 9:94E− 6 3:23E− 9
k = 2 7:182E− 6 1:628E7 9:32E− 7 9:72E− 12 2:74E− 5 5:26E− 9
k = 3 2:016E− 5 3:430E9 6:78E− 6 3:08E− 11 1:04E− 4 1:38E− 8
k = 4 5:920E− 5 8:000E11 1:08E− 5 1:28E− 10 2:92E− 4 2:78E− 8
k = 5 1:854E− 4 7:851E13 1:83E− 4 1:52E− 9 1:37E− 3 1:22E− 7
k = 6 5:749E− 4 3:932E15 3:21E− 4 2:73E− 9 3:34E− 3 3:05E− 7
k = 7 4:715E− 3 8:388E16 6:73E− 3 1:45E− 7 6:03E− 2 7:79E− 6

aNumber of the grid points, N ; M = N + 2.

Table 7
Maximum absolute errors of Example 2.4 of the eighth-order boundary-value problem

y(k)i Ref. [12] N = 64a GDQR Present
[x4; xN−4] Otherwise

N = 7a N = 11a N = 7a N = 11a

k = 0 1:313E− 4 2:239E3 2:61E− 6 1:49E− 11 7:38E− 5 4:05E− 9
k = 1 2:024E− 4 5:504E4 4:16E− 6 2:34E− 11 1:16E− 4 6:38E− 9
k = 2 3:238E− 4 4:692E6 6:23E− 6 3:64E− 11 1:81E− 4 9:97E− 9
k = 3 5:008E− 4 4:945E9 1:13E− 5 5:85E− 11 2:90E− 4 1:60E− 8
k = 4 7:937E− 4 1:153E12 1:47E− 5 8:49E− 11 4:36E− 4 2:41E− 8
k = 5 1:258E− 3 1:132E14 4:75E− 5 1:82E− 10 8:29E− 4 4:62E− 8
k = 6 1:853E− 3 5:668E15 9:11E− 5 4:66E− 10 8:94E− 4 5:21E− 8
k = 7 2:150E− 3 1:209E17 1:30E− 3 1:62E− 8 1:19E− 2 1:22E− 6

aNumber of the grid points, N ; M = N + 2.

4. Conclusion

This paper presents a La-DQM for the implementation of multi-boundary conditions in solving
high-order di&erential equations. In the principle of DSC, 4ctitious points are used as additional
unknowns in association with the La-GDQ method. Both the formulation for weighting coeMcients
and the details of implementing multi-boundary conditions are presented. Furthermore, two examples,
one sixth-order eigenvalue problem and one eighth-order boundary value problem, are utilized to
illustrate the performance of the proposed method.
Numerical results are compared with those of the generalized di&erential quadrature rule (GDQR)

[8,15,16] and the spline method [12]. The La-DQM gives much better results than the spline method.
It is found that the present results agree very well with those of the GDQR. For most of cases,
the GDQR slightly out performs the proposed method. However, in view of the complexity of the



Y. Wang et al. / Journal of Computational and Applied Mathematics 159 (2003) 387–398 397

GDQR method, which involves the Hermite interpolating polynomials, the proposed method is much
simpler. Moreover, the La-DQM can be easily extended into two-dimensional problems, which are
relatively diMcult for the GDQR method. Therefore, we believe that the proposed method is of great
merit for solving high-order di&erential equations.
It should be noted that, apart from the implementation of multi-boundary conditions, the grid

distribution used is another key factor that determines the performance, e.g., accuracy and stability,
of a numerical method. For example, the DQM and the GDQR methods mentioned in this paper
respectively employed the & technique and Chebyshev grid, which enhance the accuracy of slowly
varying solutions but are unfavorable for high-frequency vibration modes. For simplicity, the pro-
posed method is illustrated by a uniform grid. Of course, we can also use the Chebyshev points in
the proposed approach if a better accuracy is required for the lower-order eigenmodes. An extensive
analysis of accuracy and stability of the present La-DQM will be accounted elsewhere [9].

Note added in proof

After the paper was accepted, the authors learned that Fornberg discussed a similar treatment of
boundary conditions for pseudospectral methods [17].
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