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FREDHOLM MAPPINGS AND BANACH MANIFOLDS

José Maŕıa Soriano Arbizu

Abstract. Two C1-mappings, whose domain is a connected compact
C1-Banach manifold modelled over a Banach space X over K = R or C
and whose range is a Banach space Y over K, are introduced. Sufficient
conditions are given to assert they share only a value. The proof of the
result, which is based upon continuation methods, is constructive.

1. Preliminaries

Scientific phenomena are locally described by parameters, whose choice
is sometimes arbitrary. This implies the importance of the availability of a
methodology for the comparison of results of measurements. Locally, a Banach
manifold looks like a Banach space. For a local description, different Banach
(or coordinate or parameter) spaces are allowed and transformation rules exist
for these coordinates.

Let X,Y be two Banach spaces. Let u : U ⊂ X → Y be a continuous
mapping. One way of solving the equation

(1) u(x) = y

for any fixed y ∈ Y, is to embed (1) in a continuum of problems

(2) H(x, t) = y, (0 ≤ t ≤ 1),

which is solved when t = 0. When t = 1, problem (2) becomes (1). If it is
possible to continue the solution for all t ∈ [0, 1], then (1) is solved. This is
the continuation method with respect to a parameter [1-25]. A continuation
method was introduced to solve (1) when u : M → Rn, where M is a connected
compact C1-Banach manifold modelled on Rn, andH(·, ·) is a C1-mapping [25].

Here M is a Banach manifold modelled on an infinite-dimensional Banach
space X over K = R or C and u ranges over an infinite-dimensional Banach
space Y over K.
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Sufficient conditions are given to prove that two C1-mappings, of which
one is Fredholm of index zero, share only one value on a Banach manifold by
using continuation methods on charts. Other conditions, sufficient to guarantee
the existence of zero points, have been given by the author in several other
papers [7-25]. This shared value can be estimated following a curve. The proof
supplies the existence of a curve which leads to the point whose image is the
shared value. The keys are the use of the chart spaces [27], the compactness
and connectness of M, together with the use of the Continuous Dependence
Theorem (Theorem 2) [26] and Theorem 1 [28].

We briefly recall some theorems and notation to be used.

Definitions and Notation. [26-28]. Let F : D(F ) : X → Y, where X,Y
are Banach spaces over K. If D(F ) is open, then mapping F is said to be a
Fredholm mapping if and only if both F is a C1-mapping and F ′(x) : X → Y
is a Fredholm linear mapping for all x ∈ D(F ). That L : X → Y is a linear
Fredholm mapping means that L is linear and continuous and both the num-
bers dim(ker(L)) and codim(R(L)) are finite, where dim signifies dimension,
codim codimension, ker kernel and R(L) stands for the range of mapping L.
Therefore ker(L) = X1 is a Banach space and has topological complement X2,
since dim(X1) is finite. The integer number ind(L)= dim(ker(L))-codim(R(L))
is called the index of L. Let F(X,Y ) denote the set of all linear Fredholm map-
pings L : X → Y.

Let M be a topological space. A chart (U,ϕ) in M is a pair where the set
U is open in M and ϕ : U → Uϕ is a homeomorphism onto an open subset Uϕ
of a Banach space Xϕ. We call ϕ a chart map, Xϕ is called chart space, and
Uϕ chart image. For x ∈ U , xϕ = ϕ(x) is called the representative of x in the
chart (U,ϕ) or the local coordinate of x in the local coordinate system ϕ. The
point x ∈M may have different local coordinates xϕ = ϕ(x) and xψ = ψ(x) for
two different charts (U,ϕ) and (V, ψ), respectively. The transformation rules
between them are xϕ = ϕ(ψ−1(xψ)) and xψ = ψ(ϕ−1(xϕ)).

Two charts, (U,ϕ) and (V, ψ) in M , are called Ck-compatible if and only if
U ∩ V = ∅, or both ϕ ◦ψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ) and ψ ◦ϕ−1 : ϕ(U ∩ V ) →
ψ(U ∩ V ) are Ck-mappings, k ≥ 0.

A Ck-atlas for M, 0 ≤ k ≤ ∞ is a collection of charts (Ui, ϕi), where i ∈ I,
which satisfies the following conditions:

(i) the Ui cover M,
(ii) any two charts are Ck-compatible,
(iii) all chart spaces Xi are Banach spaces over K.
If there is a Ck-atlas for M, then M is said to be a Ck-Banach manifold. If

all chart spaces are equal to a fixed Banach space X, M is called a Ck-Banach
manifold modelled on X. Here manifolds without boundaries will be considered,
such as the surface of a ball in Rn, an open set in a Banach space X, etc.

Let M and N be Ck-Banach manifolds with chart spaces over K, k ≥ 1. The
mapping f : M → N is called a Cr-mapping, where r ≤ k, if and only if f is Cr
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at each point x ∈ M in fixed admissible charts. This means the following: If
(U,ϕ) and (V, ψ) are charts in M and N respectively, with x ∈ U and f(x) ∈ V,
then the mapping f = ψ ◦ f ◦ ϕ−1, which is well defined in a sufficiently small
neighbourhood of xϕ, is Cr in the usual sense. f is called a representative of
f.

Two C1-curves in M, which pass through the point x ∈M, are called equiv-
alent the point x if and only if the representatives have the same tangent vector
at x in some fixed admissible chart. A tangent vector v (otherwise known as
x′(t0)) to M at x consists of all C1-curves which are equivalent at x to a fixed
C1-curve. The tangent “abstract” vector v of the previous definition to the
curve x(·) : U(t0) ⊂ R→M, x = x(t) at the point x(t0), has its representative
or local coordinate vϕ = x′ϕ(t0) in the chart (U,ϕ), where xϕ = xϕ(t) = ϕ(x(t)).

The tangent space TMx to M at the point x is by definition the set of all
tangent vectors. It is proven that this is a topological vector space which is
linear homeomorphic to each chart space Xϕ at the point x.

The map f ′(x) : TMx → TNf(x) is called the tangent map of f : M → N
at point x, which is clearly the normal F -derivative in local coordinates.

A mapping f : M → N is called a Fredholm operator at x if and only if the
linearization f ′(x) : Mx → Nf(x) is a Fredholm operator. Furthermore, f is a
Fredholm operators at x if and only if the representatives of f in local charts
are Fredholm operator at the corresponding points.

Let f : M → N be a Ck-mapping, k ≥ 1, where M and N are Ck-Banach
manifolds with chart space over K. The mapping f is called a submersion at x
if and only if f ′(x) is surjective and the null space ker(f ′(x)) splits the tangent
space of M at point x (which is automatic when ker(f ′(x)) = {0}). A point
x ∈ M is called a regular point of f if and only if f is a submersion at x. A
point y ∈ N is called a regular value of f if and only if the set f−1(y) is empty
or consists only of regular points.

If X,Y are Banach spaces, let L (X,Y ) denote the set of all linear contin-
uous mappings L : X → Y . Let Isom(X,Y ) denote the set of all the linear
homeomorphisms L : X → Y. Let B(x0, ρ) be the open ball of centre x0 and
radius ρ. If u : X → Y is a linear continuous bijective operator, then the
inverse linear continuous operator will be denoted by u−1.

Mapping Hx(xϕ, t) denotes the partial F-derivative of mapping H with re-
spect to X at the point (xϕ, t), where H : Uϕ × [0, 1] ⊂ X × R→ Y.

A representative point always has its corresponding chart map as subindex.

Theorem 1 ([28], p. 300). If S ∈ F(X,Y ), where X,Y are Banach spaces
over K, then there is a number ε > 0 such that

T ∈ F(X,Y ) and IndT = IndS

for all linear Fredholm mappings T ∈ L(X,Y ) with ‖ T − S ‖< ε.

Theorem 2 (Continuous Dependence Theorem [26], pp. 18–19). Let the fol-
lowing conditions be satisfied:
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(i) P is a metric space, called the parameter space.
(ii) For each parameter p ∈ P, mapping Tp satisfies the following hypotheses:

(1) Tp : M →M, i.e. M is mapped into itself by Tp.
(2) M is a closed non-empty set in a complete metric space (X, d).
(3) Tp is k-contractive for any fixed k ∈ [0, 1).

(iii) For each p0 ∈ P, and any x ∈M, lim
p→p0

Tp(x) = Tp0(x).

Then for each p ∈ P, the equation xp = Tpxp has exactly one solution xp, where
xp ∈M and lim

p→p0
xp = xp0 .

2. Fredholm mappings on compact Banach manifolds

Theorem 3. Let f, g : M → Y be two C1-mappings, where M is a compact,
connected, C1-Banach manifold modelled on X, where X,Y are two Banach
spaces over K = R or C. Let (Ui, ϕi)i∈I , I = 1, 2, . . . , N be a C1-atlas for M.
Suppose that the following conditions hold:

(i) Mapping f has only one zero x? in M , with x∗ ∈ Uj, and f is a Fredholm
mapping of index zero at x∗.

(ii) For any fixed t ∈ [0, 1], zero is a regular value of any mapping

H(·, t) : M × {t} → Y, H(·, t) := f(·)− tg(·).
Hence the following statement holds true:

(a) The mappings f and g share only one value x∗∗ on M.
(b) There is a C1-mapping α(·) : [0, 1] →M, with

H(α(t), t) = 0, ∀t ∈ [0, 1], α(0) = x∗, α(1) = x∗∗, where

H : M × [0, 1] → Y, H(x, t) = f(x)− tg(x).

Proof. L(X,Y ) is provided by the topology given by its operator norm and
X × R is provided by a product topology.

The point x∗ belongs to Uj , j ∈ I, and x∗ϕj
= ϕj(x∗) is its representative

point in the chart (Uj , ϕj). The representative mapping of the mapping H in
this chart (Uj , ϕj) is the C1-mapping

H : Ujϕj × [0, 1] ⊂ X×R→ Y, H(xϕj , t) := (H ◦ (ϕ−1
j , Id))(xϕj , t),

with Id(t) := t. This mapping verifies that H(x∗ϕj
, 0) = 0.

The representative mapping of mapping H on any chart is also written as
H for simplicity, and the same criterium will be used for any mapping. Any
extended mapping will be denoted as the original mapping.

(a) By hypothesis (i), f is a Fredholm mapping of index zero at x∗, i.e., the
representative of f in local charts f are Fredholm mappings of index zero at the
corresponding representative points. Since f is a C1 mapping and since index
is an integer, therefore Theorem 1 implies that Ind f ′(x) is locally constant.
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Hence, since M is connected, f is a Fredholm mapping of index zero on M.
Hence

(3) f ′(x) ∈ F(X,Y ), and Ind f ′(x) = 0, ∀x ∈M.

Since H is a C1mapping, therefore

∀ε > 0, ‖ f ′(xϕi
)− (f

′
(xϕi

)− tg′(xϕi
)) ‖=| t |‖ g′(xϕi

) ‖< ε,when | t |< δ(ε),

and since the index is an integer and [0, 1] is connected, Theorem 1 and Equa-
tion (3) imply for any fixed x ∈M in local charts, that

f
′
(xϕi

)− tg′(xϕi
) ∈ F(X,Y )

and
Ind(f

′
(xϕi

)− tg′(xϕi
)) = 0, ∀i ∈ I, ∀t ∈ [0, 1].

Hence for any fixed t ∈ [0, 1], H(·, t) is a Fredholm mapping and Ind(Hx(x, t)) =
Ind(f ′(x)) = 0, and

(4) Ind(Hx(xϕi
, t)) = 0, i ∈ I, x ∈ Ui, t ∈ [0, 1].

By hypothesis (ii), since zero is a regular value of the mapping H(·, t) for
any fixed t ∈ [0, 1], therefore the mapping

Hx(xϕi , t)(·) ∈ L(X,Y )

maps X onto Y for any fixed (xϕi , t) ∈ (Uϕi × [0, 1])∩ H
−1

(0), therefore

(5) codim(range(Hx(xϕi , t))) = 0,

and hence
Ind(Hx(xϕi , t)) = dim(ker(Hx(xϕi , t))).

Equations (4) and (5) imply that

Ind(Hx(xϕi , t)) = 0 = dim(ker(Hx(xϕi , t))),

i.e., (Hx(xϕi , t)) is injective. Therefore Hx(xϕi , t)(·) is a linear continuous
bijective mapping, and since X,Y are Banach spaces, the linear mapping
Hx(xϕi , t)

−1(·) is continuous. Hence Hx(xϕi , t)(·) is a linear homeomorphism,
i.e.,

Hx(xϕi , t)(·) ∈ Isom(X,Y ).
(b) Let us fix any chart of the atlas (Uj , ϕj), j ∈ I, which will be called

(U,ϕ), whose corresponding chart image is Uϕ. Let us suppose that (xa, ta) ∈
H−1(0) with xa ∈ U. Such a point (xa, ta) will be call a “starting point”.

The representative mapping of H in the chart (U,ϕ)

H : Uϕ × [0, 1] ⊂ X × R→ Y,

clearly has as zero (xaϕ,ta) with xaϕ, = ϕ(xa).
The representative point of (xa, ta) in the chart (U × [0, 1], (ϕ, Id)) verifies

(xaϕ , ta) ∈ H
−1

(0) ∩ (Uϕ × [0, 1]). Such a point (xaϕ , ta) will be called a
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“representative starting point” in Uϕ× [0, 1], and there is a positive number R
such that the ball B(xaϕ

, R) ⊂ Uϕ, and furthermore

‖ Hx(xaϕ , ta)
−1 ‖= C.

(b1) Two positive numbers ra, r0a
must be found for later use.

Let us construct the set

B = B(xaϕ
, R)× [0, 1],

and define the mapping

h : B ⊂ Uϕ×R→ Y,

h((xaϕ + xϕ), t) := Hx(xaϕ , ta)((xaϕ + xϕ)− xaϕ)−H((xaϕ + xϕ), t).

Since h is a continuous mapping as a composition of continuous mappings,
therefore for any r > 0 and for C given above, there is a

(6) δ
( r

2C

)
> 0,

such that, if ((xaϕ + xϕ), t),∈ B with

‖ xϕ, t− ta ‖< δ
( r

2C

)
then

(7) ‖ h((xaϕ + xϕ), t)− h(xaϕ , ta) ‖<
r

2C
.

On the other hand, another mapping can be defined as

hx : B → L(X,Y )

hx((xaϕ + xϕ), t) := Hx(xaϕ , ta)−Hx(xaϕ + xϕ, ta)

and is also continuous in the set B, and therefore there is an

(8) r := δ

(
1

2C

)
> 0

such that, if ((xaϕ + xϕ), t) ∈ B with

‖ (xϕ, t− ta) ‖< δ

(
1

2C

)
, then

(9) ‖ hx((xaϕ + xϕ), t)− hx(xaϕ , ta) ‖<
1

2C
.

By taking r given by Equation (8) and fixing r′0 := δ( r
2C ), given by Equation

(6), the number r0 := min{r, r′0} can be defined. We select ra := min {R, r}
and r0a = min {R, r0} .

(b2) The sets

Ia := {t ∈ [0, 1] :| t− ta |≤ r0a}, Aa := {xϕ ∈ X :‖ xϕ ‖≤ ra},
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will be associated to the “representative starting point” (xaϕ
, ta). Since

‖ xϕ ‖≤ R, ∀xϕ ∈ Aa, therefore

(xϕ + xaϕ
) ∈ Uϕ ⊂ Xϕ.

Given a “starting point” (xa, ta) and its “representative starting point” (xaϕ ,
ta), the existence of two continuous mappings are proved:

α(·) : Ia ⊂ R→Aa+xaϕ
⊂ Uϕ ⊂ X, such that H(α(t), t) = 0, ∀t ∈ Ia

and
α(·) : Ia ⊂ R→U ⊂M

such that
H(α(t), t) = 0, ∀t ∈ Ia.

Let us solve the equation

(10) H((xaϕ
+ xϕ), t) = 0,

for fixed t ∈ Ia when xϕ is in Aa. Obviously, H(xaϕ , ta) = 0. Equation (10) is
equivalent to the following equation

(11) Hx(xaϕ , ta)
−1[Hx(xaϕ , ta)(xϕ)−H((xaϕ + xϕ), t)] = xϕ,

which leads us to define the mappings

ht : Aa × {t} → Y for fixed t ∈ Ia,
ht(xϕ) := Hx(xaϕ , ta)(xϕ)−H((xaϕ + xϕ), t) = h((xaϕ + xϕ), t),

and
T t : Aa → X,T t(xϕ) := Hx(xaϕ , ta)

−1ht(xϕ).

Observe that ht(xϕ) is h((xaϕ + xϕ), t) defined in (b1) when t is fixed and
belongs to Ia. Let us also observe that t in the definitions of ht and T t is an
index to highlight that t is fixed.

Evidently

(12) hta(0) = 0,

and

(13) h
′
ta(0) = 0.

Equation (11) is equivalent to the following key Fixed Point Equation

(14) T t(xϕ) = xϕ,

which is studied below.
Let xϕ, x′ϕ ∈ Aa, t ∈ Ia, and hence the Taylor Theorem together with Equa-

tions (9) and (13) imply that

(15)
‖ ht(xϕ)− ht(x′ϕ) ‖

≤ sup
{
‖ h′t(x′ϕ + θ(xϕ − x′ϕ)) ‖: θ ∈ [0, 1]

}
· ‖ xϕ − x′ϕ ‖ ≤

1
2C

ra.



470 JOSÉ MARÍA SORIANO ARBIZU

Equations (12) and (15) imply that

‖ ht(xϕ) ‖ ≤ ‖ ht(xϕ)− hta(0) ‖ + ‖ hta(0) ‖ ≤ ra
2C

,

hence

(16) ‖ T t(xϕ) ‖ ≤ ‖ Hx(xaϕ , ta)
−1 ‖‖ h(xϕ, t) ‖ ≤ ra.

We will apply Theorem 2 to the sets and mappings which have just been defined.
The metric space (Ia, | · |) is the parameter space of hypothesis (i) needed in
Theorem 2. The set Aa is considered as the closed and non-empty set and X
as the complete metric space of hypothesis (ii), which is verified below:

From Equation (16), for any fixed t ∈ Ia, and for all xϕ ∈ Aa, we have
‖ T txϕ ‖≤ ra, therefore T txϕ ∈ Aa, and hence T t : Aa → Aa, i.e., T t maps the
closed and non-empty set Aa of the Banach space X into itself.

From Equations (9), (13), and the Taylor Theorem, for any xϕ, x
′
ϕ ∈ Aa,

and for any t ∈ Ia, the following holds:

‖ T t(xϕ)− T t(x′ϕ) ‖ ≤ ‖ Hx(xaϕ
, ta)−1 ‖‖ h′t(x′ϕ + θ(xϕ − x′ϕ)) ‖‖ xϕ − x′ϕ ‖

≤ C ‖ h′t(x′ϕ + θ(xϕ − x′ϕ))− h
′
ta(0) ‖‖ xϕ − x′ϕ ‖

≤ 1
2
‖ xϕ − x′ϕ ‖, (θ ∈ [0, 1]).

Therefore T t is half-contractive for any fixed t ∈ Ia. Hence hypothesis (ii) of
Theorem 2 is verified.

For any fixed t0 ∈ Ia and for all xϕ ∈ Aa, the following holds:

T t(xϕ) = Hx(xaϕ , ta)
−1(Hx(xaϕ , ta)(xϕ)−H(xaϕ + xϕ, t))

→ Hx(xaϕ , ta)
−1(Hx(xaϕ , ta)(xϕ)−H(xaϕ + xϕ, t0))

= T t0(xϕ) as t→ t0, t ∈ Ia,
therefore hypothesis (iii) of Theorem 2 is also verified. Hence Theorem 2 im-
plies, for any t ∈ Ia, that T t has a unique fixed point xϕ ∈ Aa, T t(xϕ) = xϕ :=
xϕ(t), and xϕ(t) → xϕ(t0) while t → t0; t, t0 ∈ Ia, i.e., xϕ(·) is a continuous
mapping. Thus for any t ∈ Ia there is only one xϕ ∈ Aa, i.e.,

T t(xϕ) = xϕ := xϕ(t)

and the mapping, we have just defined, xϕ(·) verifies

xϕ(t) → xϕ(t0), while t→ t0, ∀t, t0 ∈ Ia,
which implies that xϕ(·) is a continuous mapping. Thus for any t ∈ Ia there is
one xϕ(t) such that

(17) H(xaϕ + xϕ(t), t) = 0,

and furthermore

H(xaϕ + xϕ(t), t) → H(xaϕ + xϕ(t0), t0) = 0 while t→ t0, t, t0 ∈ Ia.
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Let us observe that T ta(0) = 0, xϕ(ta) = 0.
Equation (17) can be written as H(α(t), t) = 0, which is verified for all

t ∈ Ia, where α is the following curve on the chart space (U,ϕ),

(18) α : Ia → Uϕ ⊂ X,α(t) := xaϕ + xϕ(t), where α(ta) = xaϕ ,

which is one of the goals of this section.

The continuity of both α and ϕ−1 lets us construct the following curve α on
the topological space M.

(19) α : Ia ⊂ R→ U ⊂M,α(t) := (ϕ−1 ◦ α).

Equations (18) and (19) implies that

(20) α(ta) = xa

to be used in the next section.
Equation (17) implies that

H(α(t), t) = (H ◦ (ϕ−1, Id))(α(t), t) = H(α(t), t) = 0, ∀t ∈ Ia,
which is the another goal of this section.

(c) Conclusions (a) and (b) will be proved here.
Since f−1(0) = x∗ from hypothesis (i), then there exists Uj such that

H−1(0)∩ (Uj × [0, 1]) 6= ∅, therefore there is a point (x∗, 0) ∈ H−1(0), x∗ ∈ Uj ,
i.e., (x∗, 0) is a “starting point”.

Since (x∗ϕj
, 0) ∈ H

−1
(0) ∩ (Uϕj × [0, 1]), i.e., (x∗ϕj

, 0) is a “representative
starting point”, therefore from (b2) there exist a set I0, and two continuous
mappings α and α such that

α : I0 → Uϕj ⊂ X, which verifies H(α(t), t) = 0, ∀t ∈ I0,
and

(21) α : I0 → Uj ⊂M, which verifies H(α(t), t) = 0, ∀t ∈ I0.
We want to extend the continuous mapping α : I0 → M to be a continuous
mapping α : [0, 1] →M, and to extend Equation (21) to become

H(α(t), t) = 0, ∀t ∈ [0, 1].

Let us suppose that α(t) ∈ M, ∀t ∈ [0, b], b ∈ Ui. Mapping α is extended to
the right of b by taking (α(b), b), which belongs to H−1(0)∩(Ui×[0, 1]), i ∈ I, as
the following “starting point”. Equation (20) enables the continuous extension
of the continuous mapping α to the right. The continuous extended mapping
is also known as α.

Mapping α is successively extended to the right in the same way by using its
representative in the different charts of the atlas. Now we consider all intervals
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[0, b] = Iα such that H(α(t), t) = 0, has a solution, ∀t ∈ Iα. This solution is
unique with maximal interval of existence equal to

J =
⋃
α

Iα.

Since M is compact if J = [0, b), b < 1, it follows from the compactness of M
that α(t) → x ∈ M, while t → b−, with x ∈ Uj , j ∈ I. From the continuity
of H, we know that H(x, b) = 0, therefore the point (x, b) ∈ Uj × [0, 1], is a
“starting point” and the point (xϕj, , b) is a “representative starting point” in
Ujϕj

× [0, 1] and thus the solution of H(α(t), t) = 0 can be continued beyond b,
which is a contradiction. Hence we can continue α until t = 1, which leads to

H(α(1), 1) = f(α(1))− g(α(1)) = 0.

This provides an x∗∗such that f(x∗∗) = g(x∗∗) is reached by the continuous
mapping α : [0, 1] →M, with H(α(t), t) = 0, ∀t ∈ [0, 1].

If f and g shared more than one value, then the previous construction from
two different zeros of f − g, would lead us to conclude that there are two
zeros for f , which contradicts one of the hypotheses, and therefore it can be
concluded that there is only one single shared value. ¤
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