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Abstract. We provide a qualitative description of microstructure for-
mation and coarsening phenomena for the solutions of a singularly per-
turbed fourth order evolution equation arising in the study of phase
transitions. In particular we study stationary and traveling wave solu-
tions and we construct a class of approximate solution which mimics
the principle features of the dynamics. Finally we present several simu-
lations in order to illustrate the results.
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1. Introduction

Forward-backward equations ([12], [18] and references cited therein) arise in
many contexts such as nonlinear elasticity ([15]), image processing and phase
transitions, the interest of researchers in this problem is motivated by the
rich observed phenomenology. The evolution equation

ut = W ′′(ux)uxx, (1.1)

is ill-posed due to the change of sign of the diffusion coefficient (see [6]), or
analogously, the corresponding minimum problem for the energy

F (u) =

∫
I

W (ux)dx,

admits infinite many minimizers. Here, the function W (p) = (p2 − 1)2 is the
so called double well potential and I = (0, 1).
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In general it is convenient to consider a regularized version of the problem,
such as

ut + ε2uxxxx = W ′′(ux)uxx, (1.2)

where 0 < ε << 1. If the parameter ε is sufficiently small, it is natural to
expect that we have a good approximation of the original problem. Equation
(1.2) has been studied in [1] and [2], where the authors pointed out the exis-
tence of three well separated time scales with different dynamical behavior.
In a first time scale of order Tε = O(ε2) they observed the formation of mi-
crostructure (see [14]) of spatial wave length of order O(ε). Microstructure
appears in regions where the first derivative of the initial datum u0 falls in
the non convex region of the potential W (·) (or equivalently in the region in
which the diffusion coefficient of (1.1) is negative).
In the second time scale of order O(1) ,regions without microstructure exhibit
heat equation-like behavior. The separation between regions with and with-
out microstructures may give rise to a free boundary problem. In the third
time scale of order T −1

ε = O(ε−2), the equation exhibits a finite dimensional
behavior, the solutions are approximately the union of segments with slopes
±1 and the number of degrees of freedom for the system is approximately
represented by the number of jumps of ux. This time scale is characterized
by very slow motion and the number of jumps decreases very slowly giving
rise to the so called coarsening phenomenon.

In this paper we consider the third time scale, that is the long term behavior.
This is well described by the global attractor A ([19]), in the sense that any
fixed trajectory, for a large time, is well approximated by portions of trajec-
tories which lie in the attractor (see [16], corollary 10.15 pag. 277, termed as
tracking property). For this reason, it is very interesting to study the struc-
ture of the global attractor and the dynamics on it. For gradient systems,
such as (1.2), whose Lyapunov function is given by

Fε(u) =
1

2
ε2

∫
I

u2
xxdx+

1

2

∫
I

W (ux)dx,

it is well known (see [16]) that the attractor is given by the unstable manifold
of the set E = E(ε) of stationary solutions:

A = Wu(E),

if E is discrete we have an even simpler expression:

A =
⋃
z∈E

Wu(z).

Unfortunately, in our case, we cannot conclude that the set E is discrete.
However, we still consider interesting enough to study the set E in order to
obtain some information on the structure of the attractor and, as a conse-
quence, of the long term behavior of the solutions of (1.2).
In [3]-[10] the problem of microstructure formation and finite dimension dy-
namics have been studied. In particular, the following upper bound of the
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fractal dimension of the global attractor Aε of (1.2) has been obtained (to-
gether with the existence and dimension estimate of exponential attractor,
[13] and inertial manifold, [11] ):

dF (Aε) ≤ O(ε−1),

where dF (X) is the fractal dimension of X which is based on counting the
number of ball of a fixed radius that are necessary to cover X (see [16], [17]
for a detailed discussion).
This is in accordance with what we expected by looking at the numerical
experiments and, in particular, the estimate of the spatial wave length of
microstructure. In fact, as the degrees of freedom of the system are well
represented by the number of jumps Jx of ux, we obtain an upper bound of
their number by

Jx ≈
|I|
ε

= O(ε−1)

(see [7] for a more detailed discussion).
In Section 2 below we will prove that it is possible to recover many of these

ideas by studying some properties of stationary solutions. Among the general
solutions of (1.2) we decided to dedicate some effort to the study of traveling
waves on the whole R, since this will allow us to describe some of the pre-
viously mentioned phenomenology. In Section 3 we deal with traveling wave
analysis, we will see that, in full accordance with the above cited corollary in
[16], these kind of solutions will be very close to stationary periodic solutions
for a time of order smaller than O(ε2), while for time of order O(ε−2) we have
that ux goes to 1 (−1 respectively) as (x − ct) → ∞, and u will be close to
a class of unbounded solutions associated to heteroclinic connections in the
plane (ux, uxx) (see figure 3 below). This means that ux starts to loose its
oscillatory behavior and converges to ±1 as expected by the observed coars-
ening phenomenon.
In Section 4 we construct an approximate solution which will describe what
has been obtained in Section 3. Moreover, we present several numerical sim-
ulations to illustrate the results.

2. Stationary Solutions

In this section we study some properties of the stationary solutions of equa-
tion (1.2) in order to have some qualitative description of the dynamics. A
more complete study of the set of stationary solutions is postponed for future
investigation. In details we look for the solutions of

ε2(uxxxx) =
1

2
[W ′(ux)]x, (2.1)

which can be rewritten, after integration, in the following form

ε2uxxx =
1

2
W ′(ux) +K,



4 Tomás Caraballo and Renato Colucci

where K is a real constant.
We rewrite the above third order ordinary differential equation as a first order
three dimensional system by using the usual identification

u = x1, ux = x2, uxx = x3, (2.2)

obtaining  ẋ1 = x2,
ẋ2 = x3,
ẋ3 = 1

ε2

{
2x2(x2

2 − 1) +K
}
.

(2.3)

If K 6= 0 the system has no fixed points. We note that in this case, by
integrating the quotient of the last two equations, we obtain

1

2
x4

2 − x2
2 +Kx2 + S =

1

2
(x2

2 − 1)2 +Kx2 + S − 1

2
=

1

2
ε2x2

3,

where S is another real constant. For simplicity we rewrite the previous ex-
pression in the following way:(

x2
2 −

3

2

)2

+ (x2 +K)2 +

(
2S −K2 − 9

4

)
= ε2x2

3. (2.4)

We note that, if S > K2

2 + 9
8 , the previous expression is defined for all x2 ∈ R

then there are no periodic orbits in the plane x2 x3. In figure 2 below we
represent the level curves of the difference between the r.h.s. and the l.h.s. of
(2.4) for a fixed value of K and several values of S. We observe the existence
of a region with periodic orbits (see figure 2) on the plane x2 x3.
For example if K = 1

2 and S = 0 we have

x2(x2 − 1)(x2
2 + x2 − 1) = ε2x2

3,

which is defined if x2 <
−1−

√
5

2 , if x2 ∈ [0, −1+
√

5
2 ] or if x2 > 1. In particular

the periodic orbit correspond to the interval x2 ∈ [0, −1+
√

5
2 ]. We have x3 = 0

for x2 ∈ {0, −1+
√

5
2 } while the maximum of x3 is obtained at (see figure 1

below)

4x2(x2
2 − 1) + 1 = 0, that is x2 ≈ 0.26.

Remark 2.1. A periodic orbit in the (x2, x3) plane corresponds to an oscil-
latory stationary solution, that is, a solution with both oscillatory first and
second derivatives.

If K = 0 we have a line of fixed points for the three dimensional system:

l = {(x, 0, 0) : x ∈ R} ,
and the Jacobian of the system at any point of the line l is given by 0 1 0

0 0 1
0 − 2

ε2 0

 ,

with trace and determinant

Tr(J) = 0, Det(J) = 0.
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Figure 1. The periodic orbit for K = 1
2 and S = 0.
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Figure 2. The orbits (x2, x3) for K = 1
4 , several values of

S and ε = 1.

We consider the following change of variables in order to deduce the canonical
form for the Jacobian of the system:

x1 = X, x2 = Y, x3 =

√
2

ε
Z. (2.5)
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Then the system takes the form: Ẋ

Ẏ

Ż

 =

 0 1 0

0 0
√

2
ε

0 −
√

2
ε 0


 X

Y
Z

+

 0
0√

2
ε Y

3

 , (2.6)

and the Jacobian at any point of l is 0 1 0

0 0
√

2
ε

0 −
√

2
ε 0

 . (2.7)

Of course we have again zero trace and determinant, while the eigenvalues
are

λ1 = 0, λ2,3 = i

√
2

ε
:= iω.

We note that the second and third equations of system (2.6), do not depend
on X. Moreover the system restricted on the plane (Y,Z) can be written in
Hamiltonian form: {

Ẏ = ∂H
∂Z ,

Ż = −∂H∂Y .
(2.8)

with the first integral (see figure 3 below)

H(Y,Z) =
1√
2ε

[
−1

2
(Y 2 − 1)2 + Z2

]
. (2.9)

The projection of solutions on the Y Z plane are the level curves of the func-
tion H (see figure 3 below).

We note that if we are looking for bounded solutions, we need to restrict
the analysis to the case in which the system on the plane Y Z possesses
bounded solutions.
In general we have the following result:

Theorem 2.2. System (2.6) admits the following classes of solutions depend-
ing on the values of (2.9).

1. If H > 0, there exist unbounded solutions in the Y Z plane. As a conse-
quence, the X component is unbounded too.

2. If H = 0 it follows that:
� If (Y0, Z0) = (±, 1, 0), which correspond to the fixed points of the
Y Z system, we obtain the following unbounded solutions:

(X,Y, Z) = (X0 ± t,±1, 0).

� The heteroclinic connections which connect the fixed points (±1, 0)
of the Y Z system correspond to unbounded solutions of the three
dimensional system since Y remains near ±1 asymptotically and
as a consequence X → ±∞.

� There exist unbounded solutions for |Y0| > 1.
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Figure 3. The orbits of the Hamiltonian systems (2.8) with
ε = 1√

2
and with several values for H. We observe that for

K = 0 the set of level curves is symmetric with respect to
the vertical axis.

3. If the energy is negative and satisfies

− 1

2
√

2ε
< H < 0, (2.10)

there exists a family of periodic orbits inside the region |Y | < 1 (Observe
that the fixed point (0, 0) for the restricted system is a center).

Proof. The proof is a straightforward consequence of what we have observed
above and can be rigorously proved using standard Hamiltonian methods. �

In the sequel, we will provide a brief description of these kinds of solu-
tions.

2.1. Periodic Solutions

We rewrite for simplicity the condition of existence of periodic solutions in
the Y Z plane in the following way:

(Y 2 − 1)2 − 2Z2 = p2,

where p2 = −2
√

2εH ∈ (0, 1).
Then we look for a periodic orbit (Y, Z) that satisfies(

Y 2 − 1

p

)2

− 2

(
Z

p

)2

= 1, (2.11)

with p ∈ (−1, 1) and p 6= 0. As a consequence we have:
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Remark 2.3. The maximum and minimum values of (Y,Z) for the periodic
orbits satisfy:

YMAX,MIN = ±

√
1−

√
2
√

2|H|ε = ±
√

1− p,

and

ZMAX,MIN = ±
√

1

2
−
√

2ε|H| = ± 1√
2

√
1− p2.

Remark 2.4. Recalling that |H| = O(ε−1) and taking into account the change
of variable (2.5), we have

x2 = O(1), x3 = O(ε−1),

which means
maxux = O(1), maxuxx = O(ε−1).

This is in complete accordance with similar results obtained in [5] for the
functional

Fε,µ(u, ū; I) =
1

2
ε2

∫
I

u2
xxdx+

1

2

∫
I

W (ux)dx+
µ

2ε2

∫
I

(u− ū)2dx,

whose minimizers share many properties with solutions of (1.2) (see [5] for
a detailed discussion).

Then, to obtain a parametrization of the periodic orbits, for any p2 ∈ (0, 1)
we set: (

Z

p

)2

=

(
1− p2

2p2

)
sin2 θ, Z = ±

√(
1− p2

2

)
sin θ.

This expression is suggested by that of ZMAX obtained for θ = π
2 .

We substitute it in (2.11), yielding

(Y 2 − 1)2 = p2 + (1− p2) sin2 θ, Y = ±
√

1−
√
p2 + (1− p2) sin2 θ,

which, in particular, satisfies the expression of YMAX for θ = 0.
In figure 4 below we represent the parametrization for p = 1

2 .
It is possible to obtain an estimate of the time period of the orbits that
corresponds to the wave length of microstructure. Using the first integral
and the second equation of the system we can write

dY

dt
=

√
2

ε
Z = ±

√
2

ε

√
1

2
(Y 2 − 1)2 −

√
2ε|H|.

Then, if we integrate it between (YMIN , YMAX), we obtain the spatial period

TH = 2ε

∫ YMAX

YMIN

1√
(Y 2 − 1)2 − 2

√
2ε|H|

dY = 2ε

∫ YMAX

YMIN

1√
(Y 2 − 1)2 − p2

dY,

where the integrand does not depend on ε, indeed p = O(1) since |H| =
O(ε−1) (see [2] for a discussion of the case ε→ 0+).
We therefore have:
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Figure 4. The parametrization of a periodic solution with
p = 1

2 .

Proposition 2.5. For H ∈ (− 1
2
√

2ε
, 0), the spatial period satisfies

TH = O(ε),

(as suggested in [1]).
For the energy value H = − 1

2
√

2ε
there exists the fixed point P = (0, 0, 0)

and then TH = 0, while if H = 0, there are “heteroclinic connections” and
henceforth TH =∞.

Finally we obtain the expression of X as a function of Y :

dX

dY
=

Y ε√
2

±
√

1
2 (Y 2 − 1)2 −

√
2ε|H|

,

from which

X(Y ) = ± ε√
2

∫
Y√

1
2 (Y 2 − 1)2 −

√
2ε|H|

dY + C

= ±ε
2

∫
1√

Q2 − 1
dQ+ C,

= ± ε√
2

log |Q+
√
Q2 − 1|+ ω,

where ω is a constant and

Q =
Y 2 − 1√
2
√

2ε|H|
.

We note that maxX = O(ε), that is maxu = O(ε) (see also [5]).
The solution X(Y ) is represented in figure 5 below for fixed values of all the
involved parameters.
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Figure 5. The function X(Y ) for H = − 1
4
√

2ε
in the plane

XY with ω = 0 and ε = 1√
2
.

We remark that stationary periodic solutions may be considered as a
good model for the description of microstructure formation.

2.2. Unbounded Solutions

Using hyperbolic functions it is possible to write u(x) for H > 0, that is,
from the above computation:

e±
√

2
ε (X−ω) = Q+

√
Q2 − 1,

and the following choice

Q = cosh

(√
2

ε
(X − ω)

)
,

satisfies the previous expression. For simplicity we set ux = u′, then

(u′)2 − 1√
2
√

2ε|H|
= cosh

(√
2

ε
(u− ω)

)
.

In order to understand the shape of the solution, let us fix the constants
ω = 0, ε =

√
2, H = 1

4 . Then:

(u′)2 = coshu+ 1 = cosh2
(u

2

)
,

and

u′ = ± cosh
(u

2

)
.

Finally, integrating, we deduce the expression of u(x):

u(x) = 4 arctanh
[
tan

(
±x

4

)]
+ const.
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All the unbounded solutions, (that correspond to values H > 0) have ap-
proximately the same shape and, as a consequence, the previous function
qualitatively describes the whole class of such solutions (see figure 6 below).
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-10
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5

10

x

Figure 6. The unbounded solution with const = 0.

3. Traveling wave analysis

In this section we deal with traveling wave solutions. We will see that the
corresponding system of ODE’s admit solutions that go to ±∞ eventually.
However we will be able to extract some interesting informations for the
qualitative behavior of the general solutions.
In particular, we look for traveling wave solutions of the following form

u(x, t) = ϕ(x− ct) = ϕ(ξ). (3.1)

Then

ut = −cϕ′(ξ), ux = ϕ′(ξ),

and the equation takes the form

−cϕ′(ξ) + ε2ϕ(IV )(ξ) =
1

2
[W ′(ϕ′(ξ))]ξ, (3.2)

where all the derivatives are computed with respect to the variable ξ.
Integrating (3.2) we obtain

−cϕ(ξ) + ε2ϕ(III)(ξ) =
1

2
W ′(ϕ′(ξ)) +K,

i.e.,

ε2ϕ(III)(ξ) = cϕ(ξ) + 2ϕ′(ξ)
[
(ϕ′(ξ))2 − 1

]
+K. (3.3)
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As usual, we rewrite the above third order ordinary differential equation as
a first order three dimensional system by using the following identification

ϕ(ξ) = x1, ϕ′(ξ) = x2, ϕ′′(ξ) = x3, (3.4) ẋ1 = x2,
ẋ2 = x3,
ẋ3 = 1

ε2

{
cx1 + 2x2(x2

2 − 1) +K
}
.

(3.5)

Since we are considering the case c 6= 0, system (3.5) only possesses one fixed
point:

P =

(
−K
c
, 0, 0

)
.

The Jacobian of the system at P is

J =

 0 1 0
0 0 1
c
ε2 − 2

ε2 0

 ,

and the trace and determinant are

Tr(J) = 0, Det(J) =
c

ε2
.

The functional Jacobian, as well as its trace and determinant, do not depend
on K, then without loosing generality we consider the case

K = 0.

As a consequence, the system admits the fixed point P = (0, 0, 0) for any
value of c.
Then it appears natural to look for solitons, that is, solutions of (3.5) such
that

lim
ξ→±∞

(ϕ(ξ), ϕ′(ξ), ϕ′′(ξ)) = (0, 0, 0). (3.6)

The task of proving the existence (or non existence) of such solutions can
be very hard and perhaps misleading since our main interest is to find so-
lutions which can reproduce the rich phenomenology described above (see
introduction). In any case, numerical experiments (see below) suggest the
existence of an unstable homoclinic cycle at (0, 0, 0). The rigorous proof of
this conjecture, even if it is far from the scope of the present article, could
be of mathematical interest and will be analyzed in future works.
Then, in the sequel we will put aside condition (3.6) and study the solutions
of system (3.5).
The characteristic polynomial of the Jacobian at P is

λ3 +
2

ε2
λ2 − c

ε2
= 0,

with roots

λ1 = U + V, λ2,3 = −1

2
(U + V )± i

√
3

2
(U − V ),
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where

U =
3

√
c

2ε2
+

√
c2

4ε4
+

8

27ε6
,

and

V =
3

√
c

2ε2
−
√

c2

4ε4
+

8

27ε6
.

where U, V ∈ R.
We have that

U + V ≥ 0, if and only if c ≥ 0.

Then we have three cases:

� c < 0

λ1 < 0, Re(λ2,3) = −λ1

2
> 0.

� c = 0

λ1 = 0, Re(λ2,3) = 0, Im(λ2,3) =

√
2

ε
.

� c > 0

λ1 > 0, Re(λ2,3) = −λ1

2
< 0.

When c passes through the value zero, the real eigenvalue becomes positive
and the real part of the complex conjugated eigenvalues become negative.
Numerical simulations show that solutions remain close to a periodic orbit (or
possibly an homoclinic cycle) and then, after a long time, start to move away.
In figure 7 below we represent the solution in the time interval (0, ε−2) which
is characterized by microstructure formation, and in the interval (0, 5ε−2) in
which the coarsening phenomenon is observed. In figure 8 we represent the
time series of X(t) for a time of order O(ε−2) and O(ε−3) respectively. In
the first case we observe oscillations of ux due to the phenomenon of mi-
crostructure formation while on the second one, we observe that the number
of oscillations of ux decreases due to the coarsening process and ux con-
verges to ±1. Since we are considering the equation on the whole real line, if
limx→∞ ux = ±1 then limx→∞ u = ±∞.

In order to present some description of this phenomenon we rewrite
ẋ3 = 1

ε2 f(x1, x2). Then it is easy to prove:

Proposition 3.1. The two sets

A+ := {(x1, x2, x3) ∈ R3 : f(x1, x2) > 0, x2 > 1, x3 > 0},
and

A− := {(x1, x2, x3) ∈ R3 : f(x1, x2) < 0, x2 < −1, x3 < 0},
are positively invariant for the system (3.5) with c > 0. Moreover, any solu-
tion starting inside A± is unbounded, that is, x1 → ±∞.
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Figure 7. The solution of the system (3.5) in the interval
(0, ε−2) and (0, 5ε−2) respectively.

For example in A+ we have

ẋ1 + ẋ2 + ẋ3 =
c

ε2
x1 + x2 + x3 +

2

ε2
x2(x2

2 − 1)

≥ c

ε2
x1 + x2 + x3

≥ min
{

1,
c

ε2

}
(x1 + x2 + x3).
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Figure 8. The time series of X(t) in a interval of time of
order O(ε−2) and O(ε−3) respectively: in the first case we
observe oscillations while in the second ux → −1.

Moreover, since ẋ1 > 0, there exists a time T at which x1(T )+x2(T )+x3(T )
becomes positive and from the precedent inequality we obtain that x1+x2+x3

explodes with x1, x2, x3 ≥ 0.

Moreover, we have the following:

Theorem 3.2. 1. If a solution starting outside A± reaches the point (0,±1, 0)
at some time, then it enters A±.

2. Solutions starting inside

B+ =

{
(x, y, z) ∈ R3 : f(x, y) > 0, y ≥

√
3

3
, z > 0

}
, (3.7)

enter A+ (a similar result is true for B− and A−) eventually.
3. For solutions in B±, if x1 → ±∞ then x2, x3 → ±∞ and viceversa.

Proof. The proof of (1) is trivial, then we pass to provide just a few details

for the proof of (2). If x2 ≥
√

3
3 , then the function g(x2) = 2x2(x2

2 − 1) is

increasing in B+ because g′(x2) = 2x3(3x2
2 − 1).

For the proof of (3) we note that from item (2) we have that solutions starting
in B+ enter the positively invariant set A+ eventually, then on this set we
have that x1 → +∞, from the third equation we have that ẋ3 → +∞ (since
x2 > 1 cannot diverge to −∞) and as a consequence x3 → +∞ (since x3 > 0
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in A+). From the second equation we have that ẋ2 → +∞ which implies that
x2 → +∞ (since x2 > 1 in A+). A similar result is valid with −∞ replacing
+∞ and A− replacing A+. The converse is also true since when solution
enters A+ we have, by the first equation of the system, ẋ1 → ∞ and as a
consequence x1 →∞. �

From the previous results we have obtained several classes of unbounded
solutions. In the next section we will focus on a particular class of such
solutions.

4. Approximate Solutions

In this section we construct an approximate solution of equation (3.3) with
K = 0 in order to qualitatively describe the dynamical features observed in
the previous sections.
Let us write system (3.5) with c 6= 0 in the coordinates (X,Y, Z): Ẋ

Ẏ

Ż

 =

 0 1 0

0 0
√

2
ε

c√
2ε
−
√

2
ε 0


 X

Y
Z

+

 0
0√

2
ε Y

3

 . (4.1)

In order to use perturbation theory we consider the following change of vari-
able:

X = εX̄, Y = εȲ , Z = εZ̄, c = εc̄,

for any ε 6= 0. Then we obtain:
˙̄X = Ȳ ,
˙̄Y =

√
2
ε Z̄,

˙̄Z = c̄ε√
2ε
X̄ +

√
2
ε Ȳ (ε2Ȳ 2 − 1),

(4.2)

and, in order to simplify the computation, using the cylindrical coordinates,
for (X,Y, Z) 6= (0, 0, 0) we have: X̄ = X̄,

Ȳ = R sin θ,
Z̄ = R cos θ,

we obtain the following system with respect to the variables (X̄, R, θ):
˙̄X = R sin θ,

Ṙ = cos θ√
2ε

{
c̄εX̄ + 2R3ε2 sin3 θ

}
,

θ̇ =
√

2
ε −

sin θ√
2Rε

{
c̄εX̄ + 2R3ε2 sin3 θ

}
.

To simplify this system, we use θ as an independent variable. The system

becomes {
dX̄
dθ =

√
2εR2 sin θ

2R−h(ε) sin θ := F1(ε),
dR
dθ = h(ε)R cos θ

2R−h(ε) sin θ := F2(ε),
(4.3)
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where we have set

h(ε) := h(R, θ, c̄, ε) = c̄εX̄ + 2ε2R3 sin3 θ.

For the next computations it is worth observing the following properties of
the function h(·):

h(0) = 0,

h′(ε) = c̄X̄ + 4εR3 sin3 θ,

h′(0) = c̄X̄,

h′′(ε) = h′′(0) = 4R3 sin3 θ,

h′′′(ε) = h′′′(0) = 0.

Let us consider the Taylor expansion of the functions Fi with respect to the
parameter ε:

Fi(ε) = Fi(0) + εF ′i (0) +
ε2

2
F ′′i (0) +O(ε3).

We first observe that Fi(0) = 0 for i = 1, 2. In details, we have for F1(·):

F ′1(ε) = A(θ) ·
{

1

2R− h(ε) sin θ
+

εh′(ε) sin θ

[2R− h(ε) sin θ]2

}
,

F ′1(0) =
A(θ)

2R
=
R sin θ√

2
,

F ′′1 (ε) = A(θ) sin θ ·
{

2
h′(ε)

[2R− h(ε) sin θ]2
+ ε

[
h′′(ε)

[2R− h(ε) sin θ]2

+2 sin θ
h′2(ε)

[2R− h(ε) sin θ]3

]}
,

F ′′1 (0) = 2A(θ) sin θ
h′(0)

4R2
=

c̄√
2

sin2 θ X̄,

F ′′′1 (ε) = A(θ) sin θ ·
{

2
h′′(ε)

[2R− h(ε) sin θ]2
+ 4

h′2(ε) sin θ

[2R− h(ε) sin θ]3

+

[
h′′(ε)

[2R− h(ε) sin θ]2
+ 2 sin θ

h′2(ε)

[2R− h(ε) sin θ]3

]
+ ....

}
,

F ′′′1 (0) = 3
√

2R2 sin3 θ ·
{
R sin2 θ +

c̄2X̄2

4R3

}
,
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where we have set for simplicity A(θ) =
√

2R2 sin θ.
For F2(·) we have:

F ′2(ε) = 2R B(θ) · h′(ε)

[2R− h(ε) sin θ]2
,

F ′2(0) =
B(θ)c̄X̄

2R
=
c̄

2
X̄ cos θ,

F ′′2 (ε) = 2RB(θ)

{
h′′(ε)

[2R− h(ε) sin θ]2
+

2[h′(ε)]2 sin θ

[2R− h(ε) sin θ]3

}
,

F ′′2 (0) =

{
2R3 sin2 θ +

c̄2X̄2

2R

}
cos θ sin θ,

F ′′′2 (ε) = 12R sin θB(θ)

{
h′(ε)h′′(ε)

[2R− h(ε) sin θ]3
+

sin θ(h′(ε))3

[2R− h(ε) sin θ]4

}
,

F ′′′2 (0) = 12c̄X̄R2 sin2 θ cos θ

{
sin2 θ +

c̄2X̄2

16R4

}
,

where we have set for simplicity B(θ) = R cos θ.
Then the system becomes:

dX̄
dθ = ε R√

2
sin θ + ε2

2
c̄√
2

sin2 θ X̄ + ε3

6 3
√

2R2 sin3 θ ·
{
R sin2 θ + c̄2X̄2

4R3

}
+O(ε4),

dR
dθ = ε c̄2 cos θ X̄ + ε2

2

{
2R3 sin2 θ + c̄2X̄2

2R

}
cos θ sin θ

+ ε3

6 12c̄X̄R2 sin2 θ cos θ
{

sin2 θ + c̄2X̄2

16R4

}
+O(ε4).

(4.4)
We write, for ε small, the solution of (4.4) in the following form:{

X̄(θ) = X̄0 + εH1(θ) + ε2

2 L1(θ) + ε3

6 M1(θ) +O(ε4),

R(θ) = R0 + εH2(θ) + ε2

2 L2(θ) + ε3

6 M2(θ) +O(ε4),
(4.5)

where Hi and Li for i = 1, 2 are smooth functions of θ which do not depend
on ε with Hi(0) = Li(0) = 0 for i = 1, 2.
Then, differentiating with respect to θ, we obtain{

dX̄
dθ = εdH1

dθ + ε2

2
dL1

dθ + ε3

6 M1(θ) +O(ε4),
dR
dθ = εdH2

dθ + ε2

2
dL2

dθ + ε3

6 M2(θ) +O(ε4),

while using equations of the system we have:

dX̄
dθ = εR0√

2
sin θ + ε2

2

{√
2 sin θH2(θ) + c̄√

2
sin2 θX0

}
+ ε3

6

{
3√
2
L2(θ) sin θ + 3√

2
c̄ sin2 θH1(θ) + 3

√
2R2

0 sin3 θ
[
R0 sin2 θ +

c̄2X̄2
0

4R3
0

]}
+O(ε4),

dR
dθ = ε c̄2 cos θX̄0 + ε2

2

{
c̄ cos θH1(θ) + 2R3

0 sin3 θ cos θ +
c̄2X̄2

0

2R0
sin θ cos θ

}
ε3

6 {...}+O(ε4).
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From the two previous expressions we obtain the derivatives of the functions
Hi: {

dH1

dθ = R0√
2

sin θ,
dH2

dθ = c̄
2 cos θX̄0.

Integrating the previous equations in [0, θ] we obtain the expression of the
functions Hi(·):

H1(θ) =
R0√

2
(1− cos θ),

H2(θ) =
c̄

2
X̄0 cos θ.

For the functions Li(·) we have the following:{
dL1

dθ = c̄√
2
X̄0[sin θ cos θ + sin2 θ],

dL2

dθ = c̄R0√
2

(cos θ − cos2 θ) + 2R3
0 sin3 θ cos θ +

c̄2X̄2
0

2R0
sin θ cos θ,

from which{
L1(θ) = c̄

2
√

2
X̄0[sin2 θ + θ − sin θ cos θ],

L2(θ) = c̄R0√
2

(sin θ − θ
2 −

1
4 sin 2θ) +

R3
0

2 sin4 θ +
c̄2X̄2

0

4R0
sin2 θ.

Finally, since we are only interested in the X component, we need to integrate
the following

dM1(θ)

dθ
=

3√
2

{
c̄R0√

2
(sin θ − θ

2
− 1

4
sin 2θ) +

R3
0

2
sin4 θ +

c̄2X̄2
0

4R0
sin2 θ

}
sin θ

+
3

2
R0c̄ sin2 θ(1− cos θ) + 3

√
2R2

0 sin3 θ

[
R0 sin2 θ +

c̄2X̄2
0

4R3
0

]
,

from which

M1(θ) =
3

4
c̄R0θ {1 + cos θ} − 3

2
c̄R0 sin θ cos θ − 3

4
c̄R0 sin θ − 3

4
c̄R0 sin3 θ

+
15

4

√
2R3

0

{
− sin4 θ cos θ

5
− 4

15
sin2 θ cos θ +

8

15
− 8

15
cos θ

}
+

9

8

√
2
c̄2X̄2

0

R0

{
− sin2 θ cos θ

3
+

2

3
(1− cos θ)

}
:= c̄R0θP1(θ) + c̄R0P2(θ) +R3

0P3(θ) +
c̄2X̄2

0

R0
P4(θ),

where Pi(θ), i = 1, 2, 3, 4, are bounded periodic functions.
Then we can write the approximated solution as

X̄(θ) = X̄0 + ε
R0√

2
[1− cos θ] + ε2 c̄

4
√

2
X̄0[sin2 θ + θ − sin θ cos θ]

+
ε3

6
[c̄R0θP1(θ) + c̄R0P2(θ) +R3

0P3(θ) +
c̄2X̄2

0

R0
P4(θ)] +O(ε4). (4.6)
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We observe that the coefficient of θ is

ε2

4

c̄√
2

{
X̄0 +

ε√
2
R0(1 + cos θ)

}
.

Then, if we choose such that

X̄0 +
ε√
2
R0 = 0, (4.7)

we have

X̄(θ) = −εR0√
2

cos θ + ε3 c̄R0

8
[− sin2 θ + sin θ cos θ]

+
ε3

6
[+c̄R0P2(θ) +R3

0P3(θ) +
c̄2X̄2

0

R0
P4(θ)] +

ε4

8
c̄R0θ cos θ +O(ε4).(4.8)

we observe that the biggest term (for large time) among the remaining terms
of order O(ε4) has the following form

c̄2X̄0f1(θ)θ2

where f1(θ) is a periodic function. Then we consider the following approxi-
mated function:

X̄◦(θ) = −εR0√
2

cos θ + ε3f2(θ) +
ε4

8
c̄R0θ cos θ, (4.9)

we observe that the higher order term of the difference between X̄◦(θ) and
the solution of the system, for large time, can be estimated by

D̄(θ) = k1(θ2 + k2)R0ε
5c̄2. (4.10)

Coming back to the original coordinates we have

X◦(θ) = εX̄◦(θ) = −ε2 R0√
2

cos θ + ε4f2(θ) +
ε5

8
cR0θ cos θ, (4.11)

and the error
D(θ) = k1(θ2 + k2)R0ε

7c2. (4.12)

Then for θ < ε3 the leading term of X◦(θ) is a periodic function:

γ(θ) = −ε2 R0√
2

cos θ,

while for time of order θ = O(ε3) the function starts to loose periodicity.
Using the third equation of the system in polar coordinates we obtain the
relation between θ and the “original time” t:

θ ≈
√

2

ε
t. (4.13)

The approximate solution qualitatively describes what was obtained by nu-
merical experiments: the solutions appear to be periodic (microstructure
formation) for a large interval of time and then start to loose periodicity
(in the sense that a coarsening phenomenon occurs). In particular, when
θ << ε−3 (that is t << ε−2), the function (4.11) appears periodic, while
when θ = O(ε−3) (that is t = O(ε2)) the linear term in θ cannot be disregard
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and the solutions “start to loose periodicity”.
We conclude the present work with several numerical simulations to illustrate
the results of the present section. In the figures 9 below we compare the so-
lution X̄(θ) with the periodic function X̄0 + ε√

2
R0[1− cos θ] in several time

scales.
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Figure 9. The comparison between the numerical solution
X̄(θ) (in red) computed using the Software Matlab and the
function X̄0+ ε√

2
R0[1−cos θ] (in green) with ε = 1

10 , R0 = 1,

X̄0 = −R0

2 ε and c̄ = 0.1. In the the first two simulations the

time intervals are of order O(ε−1) and O(ε−2) respectively, in
particular [0, 10] and [0, 100] respectively. The numerical so-
lution and the function γ(θ) cannot be distinguished. In the
remaining simulations, we consider a time of order O(ε−3),
[0, 5000] and O(ε−4) and [0, 10000]. We observe that in the
latter case the solution is no more periodic while for a time
of order O(ε−3) the solution becomes to move from the pe-
riodic approximation.

In figure 10 below we compare the solution X̄(t) of (4.2) with the function

X̄0 + ε√
2
R0

[
1− cos(

√
2
ε t)

]
in a time scale of order t = O(ε).
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t
0 1 2 3 4 5 6 7 8 9 10
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0.06

Figure 10. The solution X̄(t) of (4.2) (in red) and the func-

tion X̄0 + ε√
2
R0

[
1− cos(

√
2
ε t)

]
in a time scale of order t =

O(ε).

5. Conclusion

In this work we have presented a qualitative description of microstructure
formation and coarsening phenomena for the solutions of a nonlinear equation
presenting three different time scales with different dynamical features. Even
if it can be considered only a preliminary work we consider that the present
analysis could represent a good starting point for future research We have
related the microstructure formation to the existence of periodic stationary
solutions (analyzed in Section 2) while the coarsening phenomenon has been
described by studying a class of unbounded solutions (Section 3 and Section
4). We leave for future research the problem of the complete description of
the set of stationary solutions and the existence/non existence of solitons.
Moreover, we consider that the coarsening phenomenon could be analyzed
with different methods both numerically and analytically.
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